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ABSTRACT 

 
This paper presents a fully automatic approach for isolating the left and right coronary arteries from CTA 
images by embedding our improved fast seed detection method into localized active contour model. 
Usually active contour based methods require starting point known as seed for their evolution. Accurate 
provision of this seed point leads to the accurate segmentation. Manual feeding of seed point requires 
expertise as well as may lead to wrong segmentation. Therefore, in this paper we have combined the 
quantile and median based thresholded Hessian-based vesselness with that of local geometric features of the 
vessel to detect the coronary seed points accurately in an automatic fashion. Further, the detected seed 
points are fed to the active contour model which evolves in a localized way to track the entire coronary 
arteries to their distal ends. The obtained seed points as well as the obtained segmented left and right 
coronary arteries are verified by the radiologist at each step. The method is evaluated and validated on nine 
real clinical CTA datasets and also compared with the previous methods proposed by Lankton et. al and 
Khedmati et. al.. Experimental results reveal that the proposed method outperforms the previous methods 
qualitatively as well as quantitatively.  

Keywords: Computed Tomography Angiography, Coronary arteries, Hessian-based vesselness, Coronary 

Artery Disease, Deformable Model. 
 
1. INTRODUCTION  

Cardiovascular diseases are one of the most 
important causes of mortality in the industrialized 
and developing countries [1]. Coronary artery 
disease (CAD) has become a life threatening 
disease. The timely diagnosis of such diseases is 
highly demanded [2]. Hence, an accurate, fast and 
reliable diagnosis is very important.  

For the diagnosis of vascular disorders, 
segmentation of vasculatures is an indispensable 
step. Latest imaging modality such as Computed 
Tomography Angiography (CTA) is one of the 
most famous imaging tools used for diagnosing the 
cardiovascular diseases. CTA produces a detailed 
stack of images whose manual interpretation and 
analysis by medical experts is quite burdensome 
and tedious. To lessen the burden of experts, 
automated or semi-automated segmentation 
methods are highly required. The segmentation 
process is one of the pre-processing procedures 
extensively employed in the imaging field to extract 
the key features from the given data [3]. Despite 

extensive studies, the tracking of coronary arteries 
still remains a challenging task due to the complex 
structure of vasculatures and wide inter-patient 
variability.  

Figure 1 describes the anatomical behavior of the 
heart and the coronary arteries. As shown in Fig. 
1(a), the coronary arteries originate from the aorta 
and are located over the surface of the heart. 
Coronary arteries are the network of the blood 
vessels that pump the blood to the myocardium, the 
heart muscle, to feed it with oxygen nutrients [4]. 
There are two main coronary arteries:Left Coronary 
Artery (LCA) and the Right Coronary Artery 
(RCA). The LCA further splits into Left Circumflex 
Artery (LCX) and the Left Anterior Descending 
(LAD). Usually RCA branches into few marginal 
arteries and Posterior Descending Arteries (PDA).  

The anatomical appearance of coronary arteries 
in CTA data is shown in Fig 1(b), where an axial 
slice shows the origination of left and right 
coronary arteries. Figure 1(b) also shows the 
splitting of left coronary artery into its further 
branches LAD and LCX. 
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Figure 1: Anatomy of Coronary Arteries 

2. LITERATURE REVIEW 

Despite significant amount of research has 
already been dedicated towards the segmentation of 
coronary arteries [5, 6], this area still remains an 
active research topic. Most of the segmentation 
methods in the literature are interactive 
segmentation which requires user involvement and 
expertise. Segmentation based on the manual 
interaction from individual users may lead to 
erroneous segmentation as well as are non-
reproducible and they often increase the processing 
time. To overcome these shortcomings, various 
techniques have been presented in the literature 
which addresses the automatic segmentation of 
coronary arteries.  

Shawn Lankton [5] presented an approach 
for segmenting the coronary arteries using localized 
energy model. Their method requires an initial seed 
point manually for each artery separately that is to 
be used for evolving the contour. The method is 
simple but may produces leakages during the curve 
evolution process due to the presence of intensity 
inhomogeneity in CTA images. Abolfazl Khedmati 
et al. [7], also proposed a region growing based 
semi-automatic method for coronary artery 
segmentation. Their method utilizes the seed re-
adjustment criterion for every segment of each 
coronary artery in order to prevent them to fall into 
the wrong paths. However, the method requires lots 
of pre-processing and also finding correct path of 
artery may fall in a wrong path because of the slight 
differences in intensities. Another related method 
has been proposed by Ilkay Oksuz et al. [8] for the 
isolation of coronary arteries. Their method uses 
3D region growing which is followed by pre-
processing and vesselness map. To initialize the 
region growing algorithm, multiple seed points 
from both right and left coronary arteries are hired. 
Kitslaar et al. [6] first detected the complete heart 
section along with aorta followed by region 
growing method which started in the aorta and 
halted over the points where candidate components 
of the coronary tree were found. Bauer et al. [9] 
presented a generic approach for automatically 

detecting tubular objects along with the extraction 
of their centerlines which were grouped together 
into tree structures. 

By considering the shortcomings of all 
previously propose methods; there is a need of 
segmentation method for effectively segmenting the 
coronary arteries without the need of user 
involvement. Furthermore, the segmentation 
method must be able to produce leakage free 
segmentation.  

Therefore, in this paper, we have presented 
an effective method for segmenting the coronary 
arterial tree automatically by incorporating our 
improved seed detection procedure with that of the 
localized statistical energy model. The seeds are 
detected on the basis of geometrical feature analysis 
of the vessel and the vessel probability map. The 
energy commences its evolvement on the basis of 
detected seeds for both left and right coronary 
arteries without involvement of the user.  

The paper is organized in four sections. 
Second 3 discuss the proposed methodology with 
examples. The experimental results are discussed in 
Section 4. Lastly, Section 5 concludes the presented 
work. 

3. PROPOSED METHOD 

The proposed method consists of two steps 
as shown by the block diagram in Figure 2. The 
first step comprises of sequence of operations for 
locating the correct coronary seed points whereas, 
the second step makes use of the detected coronary 
seed points and performs the segmentation of both 
left and right coronary arteries. In this paper, we 
have extended our work of improved fast seed 
detection [10] to obtain the final segmentation. 

 
3.1 Seed Detection 

Active contour model requires initial seed 
for its further propagation hence providing an initial 
seed point is a very crucial task for tracking the 
coronary arteries till their distal ends. Feeding of 
initial seed points manually may fall into the wrong 
paths and may also increase the processing time. 
Therefore, we have adopted our automatic seed 
detection framework for detecting the initial left 
and right coronary seeds that will eventually grow 
in the subsequent step for tracking the coronary 
arteries to their distal ends. 

Firstly, an axial slice consisting of left and 
right coronary artery components, is selected from 
a given CTA dataset by using Eq. (1), where N 
indicates the total no. of slices present in a CTA 
volume,  cr is some constant and P is the index of 
the selected axial slice. 
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*P cr N=    (1)  
 

After selection of an axial slice, the heart region 
detection technique [11] is applied to detect only 
the heart region from the chosen slice which is 
further scrutinized by applying a threshold of -600 
HU to keep only the voxels which belong to the 
heart region and remove the other regions such as 
lungs. 
 

 
Figure 2: Block Diagram of the Proposed Method 

After thresholding, famous Hessian-based 
vesselness probability map [12] is computed for the 
obtained restricted domain. However, Hessian-
based vesselness measure usually cannot detect 
vessel features for boundary pixels, because the 
vessel components at the boundary of the vessel 
might be a bit narrow than the original ones. 
Therefore, we have further thresholded the Hessian-
based vesselness with respect to quantile and 
median values. This is done because of the 
observation that most of the responses in Hessian-
based vesselness are zero. Then, sobel edge 
detector is applied on the resultant data to obtain 
the edges of the components. Further, contour 
tracing [13] is performed and the curvature is 
computed for each of the obtained component by 
using Eq. (2), where ‘L’ represents the number of 
pixels belonging to the traced contour, ‘i’ is the 
index of the current traced pixel and ‘dir’ indicates 
the direction of the corresponding pixel. 
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A separate bounding box is created for each of the 
component and is known as the ROI (Region of 
Interest) for that vessel candidate. Then for each of 
the vessel candidate, we compute the local 
geometric feature by finding out the three parallel 
vessel cross-sections and generating the UV-planes 
of indices [-1, 0, 1] which are perpendicular to the 
direction of the vessel. On each UV-plane, we cast 
the rays in sixteen uniform directions from their 
respective center points. Then the border points are 
computed for each ray by employing the concept of 
radial gradient and the length of each ray is 
computed. Further, rays are sorted for each UV-
plane with respect to their length and three shortest 
and three longest rays are removed. For each of the 
left ray index j=[1,. . . , 10], the maximum Bmax[j] 
and minimum  Bmin[j] values are computed among 
the three ray lengths. The local geometric feature is 
computed by using Eq. (3). 
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The local geometric feature given in Eq. (3) is 
incorporated along with the Hessian-based 
vesselness and the final geometric feature that we 
have adopted is calculated by using Eq. (4), where 
TF is the threshold used for Hessian-based 
vesselness and TGF is the threshold used for the 
local geometric feature. 
 

1,  ( )   GF(x) T
vesselness( )  

0,

F GF
if F x T and

x
otherwise

≥ ≥
=
 
 
 

    (4)  

 
The vesselness defined by Eq. (4) gives the seeds 
which are guaranteed to be the coronary 
components and hence will be used by the 
subsequent stage of segmentation. Figure 3 shows 
the selected axial slice and the detected seeds for 
left and right coronaries. 
 
3.2 Segmentation 

By using the information of the detected 
coronary seeds, we start the segmentation of left 
and right coronary arteries by employing the Chan-
Vese deformable model [14] in a localized way. 
The active contour model makes use of the initial 
seeds and starts to grow to track the possible 
coronary arteries.  
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Figure 3: Selection of an Axial Slice and Seed 

Detection (a) Axial Slice (b) Detection of Initial Coronary 

Seeds. 

The well-known Chan Vese energy 
formulation as defined in Eq (5) isolates the object 
from homogenous background on the basis of 
global mean intensities of inner and outer regions 
of the contour, respectively. The parameter I(x) 
represents the image, whereas, c1 and c2 
correspond to mean intensities of global interior 
and global exterior regions, respectively and µ 
length(C) controls the regularity by penalizing the 
length. 
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To deal with the intensity variation in CTA images, 
we use the concept the localization of region based 
segmentation energies with respect to spatial 
information. A contour is drawn surrounding the 
region of interest and then the energy is localized in 
a way that  statistical models of inside and outside 
regions of the contour become adaptive to the 
information present in an image. For the 
localization, a ball function is used to calculate the 
statistics of the particular region at each point of the 
curve and is defined by Eq. (6), where ‘x’ 
represents the point on the contour and ‘y’ 
represents the point present inside the ball having 
radius ‘r’ and centered at ‘x’. 
 

1,
( , )

0,

x y r
B x y

otherwise

 − <
=  
 

   (6) 

 
The behavior of the ball drawn at each point of the 
contour with respect to interior and exterior regions 
is illustrated by Figure 4. 

The curve evolution equation on the basis 
of localized intensities is defined by Eq. (7), where 
contour is embedded as a signed distance function 

φ , F indicates the image-based force, δφ denotes 

the interface at the zero level set and the parameter 
λ is used for controlling the length of the curve to 
avoid infinite boundaries. 
 

 
Figure 4: Behavior of Ball Function. (a) Interior 

Region of the Contour (b) Exterior Region of the Contour. 
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(7) 
By incorporating the force in terms of Chan Vese 
energy in a localized level-set framework, the 
deformation equation can be expressed as defined 
by Eq. (8). 
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(8) 
The interior region of the curve is defined by the 
Heaviside function, Hφ . It is equal to 1 when 

0,φ < 0 when 0,φ > and has a smooth transition 

through 0. 
 
4. EXPERIMENTAL RESULTS 

This section is dedicated for illustrating 
the effectiveness of the proposed method. For the 
accurate isolation of the left and right coronary 
arteries, the proposed method has been 
implemented and tested on nine real clinical CTA 
data sets. The average voxel size of the datasets is 
0.37*0.37*0.36 mm3. All images are reconstructed 
at 512*512 size with different number of slices 
ranging from 250 to 350.  For all experiments, we 
have used 2 to 5 scale range for determining the 
Hessian-based vesselness measure. The values of 
thresholds, TF and TGF in Eq. (4), are set to 0.009 
and 18, respectively. For computing Eq. (3), the 
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constant ‘k’ is set to 2 in our experiments. For the 
selection of an axial slice, the value of the constant 
cr is used within the range of 0.4 to 0.6. The 
geometrical feature analysis is carried out on the 
chosen axial slice followed by median and quantile 
based thresholding of Hessian-based vesselness. 
Although, level set approach is popular in 
representing the contour because of its simple 
implementation and adaptation towards the 
topological changes. However, these methods show 
slow computation. It is therefore, we have adopted 
sparse field technique developed by Whitaker [15] 
to implement our proposed algorithm. For a fair 
comparison with the previously described method 
[5] we have used the same settings for level set 
implementation of active contour. The parameter 

values 0.1max
d

dt

φ
λ

 
=  

 
 and r = 5mm are used 

throughout. The choice of r is reasonable, 
representing the maximum possible diameter for 
vessels in the vessel tree [5]. All the experiments 
were performed using MATLAB on a machine 
having 2.14 GHz processor with 4 GB RAM. 

We show the efficiency of our method 
with the help of visual results after getting them 
verified by the radiologist. The average processing 
time to segment coronary arteries using the 
proposed method is 15 ± 5 minutes. 

Figure 5, shows the detected coronary 
seeds marked in red color along with the contour 
evolution process, where the middle row shows the 
selected axial slice along with the detected seeds. 
The first row of Fig. 5 consists of three example 
slices which show the evolution of contours as the 
slices are navigated in forward direction. Whereas, 
the last row of Fig. 5 shows the backward 
progression of contour on three example slices. The 
utilization of detected seed’s information in both 
directions under the guidance of our thresholded 
Hessian-based vesselness follows the coronary 
arteries till their distal ends. There is a possibility 
that the coronary components are present in the 
slices exists before and after the selected axial slice 
used for seed detection. Therefore, we evolve the 
energy model in two directions in order to grab all 
the possible coronary components existing in the 
data. This grabbing of potential coronary 
components results in the tracking of entire 
coronary arteries to their distal ends. 

The advantage of seed detection procedure 
is that, unlike Lankton’s approach, we do not need 
to provide seed separately for each artery (LCA and 
RCA). The detected seeds of the proposed method 
would be enough to track both arteries completely.  

The segmentation results of left and right 
coronary arteries for three randomly selected CTA 
volumes are exhibited by Fig. 6, where the 
performance comparison of the proposed method 
and the previous methods is shown visually. The 
first row of Fig. 6 shows the ground truth data 
obtained by the radiologist, whereas, the 
segmentation results obtained by Khedmati’s and 
Lankton’s approaches are shown by the second and 
third row, respectively. The superior results of our 
proposed method are illustrated in the last row of 
Fig. 6. 

By looking at the results of Fig. 6, it can 
be observed that the proposed method has 
delineated the coronaries till their potential ends 
correctly as depicted by the regions enclosed by the 
green boxes except for a case shown by the blue 
box, where our method and Lankton’s method 
could not follow the arterial progression till end as 
compared to Khedmati’s result. Although, 
Khedmati’s method works well in such situation 
due to their seed adjustment procedure during pre-
processing stage, but their method is dependent on 
manual adjustment. 

Besides, as illustrated by the third row of 
Fig. 6, the segmentation of left and right coronaries 
using Lankton’s technique consists of lots of 
leakages and incomplete structure of arteries due to 
their intensity based curve evolution procedure. On 
the contrary, Khedmati’s method often suffers from 
leakages and discontinuities of vessels. Conversely, 
the vesselness guidance of our method has 
produced leakage free segmentations along with the 
possible correct coronary side branches. 

For comprehensive evaluation of the 
proposed, Lankton’s, and Khedmati’s method, we 
have computed following parameters, true positive 
rate (TPR), positive predictive value (PPV) and F-
Measure using Eq.(9), (10) and (11). The overall 
statistical comparison is shown in Table 1.TPR is 
also known as sensitivity and recall, measures the 
portion of positive voxels in the ground truth that 
are also identified as positive by the segmentation 
being evaluated[16]. PPV is the precision and the 
parameter F-measure, measures the segmentation 
accuracy by combining the precision and recall. 

 

,
TP

TPR
TP FN

=
+

   (9) 

 

,
TP

PPV
TP FP

=
+

   (10) 

 



Journal of Theoretical and Applied Information Technology 
15th April 2017. Vol.95. No 7 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195      

 
1570 

 

2* *TPRPPV
F measure

PPV TPR
− =

+
  (11) 

Khedmati’s method requires multiple seed points as 
well as manual adjustment during region growing 
process, whereas, lankton’s method needs to 
provide initial seed point individually for each 
artery to continue its contour based evolution which 
may require user expertise. 

Table 1: Comprehensive Evaluation 

 TPR PPV F-Measure 
Lankton 0.52 0.75 0.62 

Khedmati 0.41 0.64 0.46 
Proposed 0.83 0.82 0.82 

 
Our proposed method automatically 

detects the coronary seed points based on the 
geometrical analysis and hence becomes free from 
seed adjustment as well as from manual feeding of 
initial coronary seeds. The statistical data given in 
Table 1 confirms the superior performance of the 
proposed method as compared to the Lankton’s and 
Khedmati’s approach. Although, Lankton’s 
approach has higher TPR and PPV as compared to 
Khedmati’s method but both of them has lower 
TPR and PPV value when compared with the 
proposed method. The proposed method overall 
achieves 20% and 36% improvements as compared 
to Lankton’s and Khedmati’s methods, 
respectively. The better performance of our method 
can also be observed by looking at the graph shown 
in Figure 7. 

 
Figure 7: Graph showing TPR, PPV, and F-Measure. 

 

Unlike Khedmati’s and Lankton’s approach, 
the proposed method is completely automatic and 
free from leakages and gaps as shown in Figure 6. 
The proposed method is highly effective having 
high TPR, PPV and F-measure as compared to 
Lankton’s and Khedmati’s approach, as shown in 
Table 1 and Figure 7.  However, in one instance our 
method was not able to complete delineate the RCA 

up to the distal end as shown by the blue box in 
Figure 6.  

 
5. CONCLUSION 

An automatic delineation method has been 
presented to segment the coronary arteries from 
CTA data without any user intervention. The 
method embeds our automatic framework of seed 
detection within the deformable model. The energy 
model starts its evolution with automatically 
detected coronary seeds and deforms locally to 
track all the possible coronary arteries. The 
localized energy model is run under the guidance of 
Hessian-based vesselness in both forward as well as 
backward direction in order to grab the coronary 
arteries to their distal ends without any leakage. 
The proposed method has been tested on nine real 
clinical CTA volumes and it is found that it 
effectively produces both of the coronary arteries 
(LCA and RCA) accurately except for one rare 
instance where the proposed method was not able 
to generate RCA up to the distal end. The 
performance of the proposed method has been 
shown qualitatively as well as quantitatively. The 
proposed method is proven to be highly effective in 
segmenting coronary arteries and does not produce 
and leakage or gaps. In future, we will test the 
proposed method on more challenging datasets 
having severe stenosis and narrowing of vessels. 
We further plan to employ the proposed method for 
segmenting coronary arteries for the detection of 
soft plaque by analyzing the cross-sections of the 
obtained segmentation at each point of the artery in 
detail. 
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Figure 5: Two-Way Contour Evolution 

 
 

 
Figure 6: Comparison of Segmentation on Three Randomly Selected Datasets 


