
Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1558

FPGA-BASED HIGH SPEED BLOWFISH ALGORITHM

1
SOUFIANE OUKILI,

 2
SEDDIK BRI

1,2
Materials and Instrumentation (MIN), High School of Technology,

Moulay Ismail University, 50040 Meknes, Morocco

E-mail:
1
soufiane.oukili@gmail.com,

2
seddikbri@gmail.com

ABSTRACT

Nowadays, security has become essential element of all systems and applications, due to the rapid growth

of information and communication technology. In this context, high speed and high volume secure

communications have been a high priority and challenging research area in both fields of mathematics and

engineering. In this paper, we present high speed hardware architecture of Blowfish cryptographic

algorithm. We had used pipeline technique to allow a parallel processing in order to obtain high throughput.

In addition, 5-stage pipeline round of Blowfish algorithm is proposed to increase the speed and the

maximum operating frequency. Furthermore, the S-box tables of each round of the algorithm had been

implemented in block RAMs to allow parallel data encryption. The proposed design had been successfully

implemented in FPGA devices. It improves data throughput by 104%.

Keywords: Security, Cryptography, Blowfish, Pipeline, High speed; FPGA

1. INTRODUCTION

The astounding growth of the Internet and

computer systems in the last century, have meant

that the need for effective security and reliability of

data communication, processing and storage is

greater than ever. As the fundamental of security

information, cryptographic algorithm plays a very

important role in the domain of information

security. An encryption algorithm, or cipher, is a

means of transforming plaintext into ciphertext

under the control of a secret or public key. Secret

key algorithm (symmetric cryptography) uses the

same cryptographic keys for both encryption of

plaintext and decryption of ciphertext. Public key

algorithm (asymmetric cryptography) uses pairs of

keys: public key for encryption with private key for

decryption [1-2]. The Data Encryption Standard

(DES) was the first modern symmetric key

algorithm used for encryption and decryption of

digital data. It had been developed in the 1970s at

IBM and adopted as a Federal Information

Processing Standard (FIPS) by the National

Institute of Standards and Technology (NIST) in

1977 [3]. In 1998, the NIST announced a

competition for a new encryption algorithm that

would be used for protecting sensitive information.

This algorithm would replace DES, which was not

resistant to known attacks because of the short key

length. After all reviews, NIST had chosen an

algorithm known as Rijndael. It was developed by

two Belgian cryptographers: Dr. Joan Daemen and

Dr. Vincent Rijmen. In November 2001, Advanced

Encryption Standard (standardized version of

Rijndael) becomes a FIPS standard (FIPS-197) [4-

5]. Blowfish is a symmetric block cipher algorithm.

It had been designed by Bruce Schneier in 1993. It

takes 64-bit plaintext and variable-length key, from

32 bits to 448 bits, as inputs and 64-bit ciphertext as

an output [6-7]. Blowfish had been identified as a

powerful cryptographic algorithm since it can

satisfy two basic requirements: high immunity to

attacks and relative low algorithm complexity [8]. It

is unpatented and no license is required, available

free for all uses. Besides, it is suitable and efficient

for hardware implementation [9].

There are software and hardware approaches to

implement cryptographic Blowfish algorithm.

Hardware implementation provides greater physical

security and higher speed as compared to software

implementation [10]. Because of the increasing

requirement to implement cryptographic algorithms

in fast rising high-speed network applications

combined with physical security, hardware

implementation becomes essential.

In this paper, we present high speed hardware

architecture and implementation of Blowfish

algorithm. We had used pipeline strategy. It

modifies the critical path by increasing possible

frequency of clock cycle. It consists in parallelizing

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1559

the data inputs and outputs with the processing by

inserting registers. 5-stage pipeline round of

Blowfish algorithm is proposed to increase the

speed and the maximum operating frequency. In

order to reduce more the path delay, we had divided

the addition modulo 232 into two additions modulo

216 and each one is executed separately and in a

parallel manner by inserting registers in appropriate

places. This will further increase the throughput of

the algorithm. Furthermore, in each encryption

round of the algorithm, S-box tables had been

implemented in block RAMs to allow parallel data

encryption. Our proposed design was implemented

on Xilinx Virtex-5 and Virtex-6 FPGA devices. The

FPGAs offer the advantage of hardware speed and

software flexibility and programmability.

This paper is structured as follows. Section 2

presents a brief background of the Blowfish

algorithm. Section 3 gives the relevant works of

various authors reported in the literature. Our

proposed Blowfish design is presented in Section 4.

Section 5 provides results and comparison between

our implementations and different reported ones.

Finally, conclusion and references are given

respectively.

2. BACKGROUND OF BLOWFISH

ALGORITHM

Blowfish is a symmetric block cipher. It

has a fixed 64-bit data block size and a variable

secret key range from 32 bits to 448 bits. The

algorithm consists of two parts: key expansion and

data encryption. The key expansion converts a key

of at most 448 bits into several subkey arrays

totaling 4168 bytes. The data encryption occurs via

a 16-round Feistel network. Each round consists of

a key-dependent permutation, and a key- and data-

dependent substitution. All operations are XORs

and additions on 32-bit words. The only additional

operations are four indexed array data lookups per

round [6].

2.1 Key expansion

Blowfish uses a large number of subkeys

(eighteen 32-bit P-array and four 32-bit S-boxes

with 256 entries each). These subkeys must be

calculated before any data encryption or decryption

using the Blowfish algorithm. The method is as

following:

1: Initialize first the P-array and then the four S-

boxes with hexadecimal digits pi.

2: XOR P1 with the first 32-bits of the key, XOR

P2 with the second 32-bits of the key, and so on for

all bits of the key (up to P18).

3: Encrypt the all zero string with the blowfish

algorithm, using the keys described in steps (1) and

(2).

4: Replace P1 and P2 with the output of step (3).

5: Encrypt the output of step (3) using the Blowfish

algorithm with the modified keys.

6: Replace P3 and P4 with the output of step (5).

7: Continue the process, replacing all elements of

the P-array, and then all four S-boxes in order, with

the output of the continuously changing Blowfish

algorithm.

2.2 Data encryption

As mentioned previously, Blowfish is a

Feistel network consisting of 16 rounds, as shown

in figure 1. The inputs are 64-bit plaintext and 18 P-

array sybkeys (32 bits). The output is a ciphertext

(64 bits). The Blowfish algorithm is described in

algorithm 1.

Figure 1. Block diagram of Blowfish algorithm

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1560

Algorithm1. Blowfish

Function F is calculated by Eqs. (1). It

divides XL into four eight-bit quarters: a, b, c, and

d. These quarters are used as input to the S-boxes.

The outputs are added (modulo 232) and XORed to

produce the final 32-bit output. This is shown in

figure 2. Decryption is exactly same as encryption,

except that P1, P2 ... P18 are used in the reverse

order.

F (XL) = ((S1,a + S2,b mod 2
32

) XOR S3,c) + S4,d mod

2
32

 (1)

Figure 2. Function F

2.3 Cryptanalysis

Cryptanalysis refers to the process of

illegally attempting to recover the plaintext (or the

key) that corresponds to a particular ciphertext.

Full-round version of Blowfish algorithm is

invulnerable against cryptanalysis, to date.

Numerous attack schemes have been proposed to

break the cryptographic system and extract secret

information, but none succeeded.

John Kesley could only break 3-round of

Blowfish and his cryptanalysis cannot be extended

beyond 3 rounds. Serge Vaudenay examined a

simplified variant of Blowfish, with the S-boxes

known and not key-dependent. For this variant, a

differential attack can recover the P-array with

2
8r+1

chosen plaintexts, where r is the number of

rounds. This attack is impractical in reality and

does not work against 8-round Blowfish and higher,

since more plaintext is required than can possibly

be generated with a 64-bit block cipher [8]. In

1996, Vincent Rijmen proposed a promising attack

in his doctoral dissertation, but it can only break 4

rounds of Blowfish and no more [11].

3. RELATED WORKS

Several different methods had been

presented in the literature to implement Blowfish

algorithm. Cody et al. [12] presented robust

implementation of Blowfish in hardware. The

design utilizes the simplicity of the algorithm to

create a relatively straightforward implementation

and uses the core-slow library for worst-case

scenario analysis. Kurniawan et al. [13] presented

the performance of blowfish algorithm with total

time taken for encryption, avalanche effect and

throughput from multiple testing scenarios as the

parameters. The Blowfish algorithm was

implemented on FPGA using VHDL language. The

results show that reducing the round of Feistel (F)

reduce the total encryption time, give greater

throughput and not affect avalanche effect

significantly. Kumara and Benakop [14] proposed

four different implementations of Blowfish

algorithm and analyzed the performance of it with

and without Wave Dynamic Differential Logic

(WDDL) style to provide security against

Differential Power Analysis (DPA) attack. Ahmad

and Ismail [15] proposed an improved power-

throughput Blowfish algorithm. It was designed

with 128-bit block size, which is comprised of

parallel blocks of 64-bit inputs that were

simultaneously executed. This enables the

throughput to be maximized. The parallel blocks

share the same S-boxes that are used for Feistel

function (F) and were stored in BRAMs. Guerrero

and Noras [16] presented fast Blowfish encryption

in hardware with a throughput of 1032 Mbps.

Sudarshan et al. [17] presented flexible architecture

for Blowfish algorithm called Dynamic

reconfiguration, Replication, Inner loop pipeline,

Loop folding architecture abbreviated as DRIL.

DRIL Architecture aims at efficient utilization of

hardware through replication and loop folding,

higher throughput through replication and inner

 Inputs: Plaintext (64 bits) and P1, P2, …, P18

 Output: Ciphertext (64 bits)

1 Divide plaintext into two 32-bit halves: XL, XR

2 For i = 1 to 16:

3 Calculate XL = XL XOR Pi

4 Calculate XR = F(XL) XOR XR

5 Swap XL and XR (undo the last swap)

6 end for

7 Calculate XR = XR XOR P17

8 Calculate XL = XL XOR P18

9 Recombine XL and XR (ciphertext)

10 return ciphertext

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1561

loop pipeline, flexibility through dynamic

reconfiguration and replication. Rafidah et al. [18]

presented a development of an improved power-

throughput Blowfish algorithm as an alternative

security algorithm. The proposed memory-based

method is used to optimize the performance of

Blowfish. The performance is analyzed in terms of

its architecture, throughput, and power

consumption. Kumar and Baskaran [19] proposed

low power, area and high throughput 4-stage

pipelined implementation of the Blowfish

cryptographic algorithm. It combines iterative

method and operator-rescheduling methods to

reduce the area occupied by the algorithm and

partially pipelined method to increase the

throughput. Joshi et al. [20] proposed

implementation of Blowfish algorithm with

modifying its function. They had shown that total

time taken for encryption and decryption is reduced

and the improvement will not violate the security of

the algorithm. Chatterjee et al. [21] presented 3-

stage pipeline implementation of Blowfish. Oukili

and Bri [22] proposed high throughput efficient

hardware architecture of Blowfish algorithm.

Pipeline technique was adopted in order to increase

the speed and the maximum operating frequency. In

addition, the S-boxes tables of each round of the

algorithm have been implemented in block RAMs

to allow parallel data encryption.

4. PROPOSED BLOWFISH DESIGN

The proposed Blowfish design aimed to

increase the throughput and use hardware resource

as less as possible. Thus, pipeline technique is

adopted. The pipeline strategy modifies the critical

path by increasing the possible frequency of clock

cycle. It consists in parallelizing the data inputs and

outputs with the processing. Consequently, the

design is divided into stages. By incrementing the

number of these stages, the critical path can be

decreased and as a result the speed is increased. The

optimum number of pipeline stages and the best

placement strategy for pipelining registers are two

main factors to achieve an area-throughput design.

As mentioned before, Blowfish is a 16-round

Feistel network cipher. Therefore, we have inserted

18 64-bit registers before and after each round,

forming a one-pass datapath for plaintexts. This is

shown in figure 3. Since the 64-bit of plaintexts are

processed in parallel, the throughput of the design

is directly related to the clock frequency of the

pipelined structure.

Figure 3. Proposed pipelined Blowfish

Clock frequency of a digital circuit is

determined by the delay of the longest path, which

is related to the combinational logic depth and

routing delay. By analyzing the logic paths, we had

noticed that the addition operations in the F

function of each round are the most expensive in

terms of execution time. To reduce the path delay,

we had divided the addition modulo 232 into two

additions modulo 216. Each one is executed

separately and in a parallel manner by inserting

registers in appropriate places. This will further

increase the throughput of the algorithm. Note, that

the increase of throughput requires an increase in

area, as registers are required to store intermediate

results. Figure 4 shows the proposed 5-stage

pipelined round i. The elements of the P-array

(18x32 bits) and the four S-boxes (256x32 bits)

subkeys are stored in BRAMs, where the

performance can be improved by decreasing the

delay into the clock- to-out value of the flip- flop

(FF). BRAM is used for storage of larger amount of

data. To make a parallel encryption, these S-boxes

are duplicated in all 16 rounds. This will

tremendously increase the performance of the

architecture. The ciphertext takes 82 clock cycles

latency, first time only. Then we recover it at each

clock cycle. In our proposed architecture, we used

pipelining and parallelism in order to break the

critical path delay and to obtain high encryption

throughput at the expense of area as compared with

the based non-pipelined Blowfish algorithm.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1562

Figure 4. Proposed pipelined round i

5. IMPLEMENTATION SUMMARY AND

COMPARISON

FPGA implementation of our proposed

Blowfish architecture was established on Virtex-5

(xc5vlx220t) and Virtex-6 (xc6vlx365t) devices

using Xilinx ISE Design Suite 14.7 as synthesis and

Modelsim 6.1f as simulation tools. The design was

described using VHDL language. The design

achieves a maximum clock frequency of 312.921

MHz (3.38 ns), a throughput of 20.026 Gbps and an

efficiency of 8.23 Mbps/slice on Virtex-5 FPGA

and a maximum clock frequency of 383.098 MHz

(2.61 ns), a throughput of 24.518 Gbps and an

efficiency of 13.03 Mbps/slice on Virtex-6. We

employ well-known Eq. (2) and Eq. (3) to calculate

the throughput and the efficiency, respectively. The

devices utilization summaries are given in table 1.

 Number of outputted bits

Throughput = (2)

 Delay of the critical path

 Throughput

Efficiency = (3)

 Used Slices

Table 1. Devices utilization summaries

There are several hardware

implementations for the Blowfish algorithm that

aimed to achieve the most efficient architectures, by

improving high throughput and area-efficient.

Table 2 shows the performance figures for some

reported architectures up to our best knowledge. It

provides values of hardware utilization, maximum

frequency, throughput and the increase in

throughput of the proposed architecture compared

to the reported ones, by a factor of.

As can be observed from table 2, the

highest throughput reported to our knowledge is 12

Gbps with an efficiency of 9.38 Mbps/slice [22].

By comparing these results with our proposed

implementation on a same FPGA board (Virtex-5),

we see that ours gives 1.66 times more throughput

with an increase of 66.77%. Furthermore, it

increases used slices by 90% and reduces the

efficiency by 12.79%. The implementation on

Virtex-6 FPGA increases the throughput by 104%,

the used slices by 46.95% and the efficiency by

38%.

As said before, our proposed Blowfish

design aimed to increase the throughput and use

hardware resource as less as possible. The reported

results show that our proposed architecture

provides better performance in terms of throughput

than the previous implementations at the cost of

increasing the area. Note that the increase of

throughput requires an increase in area, as registers

are required to store intermediate results.

Resources
Utilization

Virtex-5 Virtex-6

Number of slices
2434/ 34560

7%

1881/ 56880

3%

Number of slice

LUTs

4839/ 138240

3%

4770/ 227520

2%

Number of slice

registers

6080/ 138240

4%

5942/ 455040

1%

Number of

bonded IOBs

579/ 680

85%

579/ 720

80%

Number of block

RAMs

74/ 212

34%

73/ 416

17%

Total equivalent

cells
14138 -

Minimum period 3.38 ns 2.61 ns

Maximum

frequency
312.921 Mhz 383.098 Mhz

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1563

Table 2. Hardware utilization, maximum frequency and throughput results

6. CONCLUSION

In this paper, we present high throughput

Blowfish architecture. Pipelining technique is

performed to obtain high throughput than basic

structure by inserting registers in optimum

placements. Also, we have proposed 5-stage

pipelining Blowfish round to break the critical path

delay and reach any further speed. Moreover, S-

boxes are stored in block RAMs and introduced at

each round of Blowfish algorithm to perform a

parallel encryption. The implementations were

done by FPGA devices. The input can be loaded

every clock cycle and after an initial delay of 82

clock cycles, the encrypted data will appear

consecutively. The reported results showed that our

Blowfish implementations in terms of throughput

provide better performance compared to the

reported ones.

ACKNOWLEDGMENT

This work is supported by the presidency

of Moulay Ismail University, Meknes-Morocco

∗ Increase in throughput of our implementation on Virtex-6

compared to existing techniques (by a factor of)

REFRENCES:

[1] W. Stalling, “Cryptography and Network

Security Principles and Practices”, Prentice

Hall, 4
th

 ed., 2005.

[2] A. Kahate, “Cryptography and Network

Security”, Tata McGraw Hill, 2
nd

 ed., 2007.

[3] National Institute of Standards and

Technology, Federal Information Processing

Standards Publication 46-3: Data Encryption

Standard, 1999.

[4] National Institute of Standards and

Technology, Federal Information Processing

Standards Publication 197: Advanced

Encryption Standard, 2001.

[5] D. Joan and R. Vincent, “AES Proposal:

Rijndael”, National Institute of Standards and

Technology, 1999.

http://csrc.nist.gov/archive/aes/rijndael/Rijnda

el-ammended.pdf

[6] B. Schneier, “Description of a New Variable-

Length Key, 64-bit Block Cipher

(Blowfish)”, Cambridge Security Workshop

Proceedings, Cambridge, U. K., December 9-

11, 1993, pp. 191-204.

[7] B. Schneier, “Applied Cryptography:

Protocols, Algorithms, and Source Code in C,

Applied Cryptography”, John Wiley and

Sons, New York, 1996.

Architectures Devices

Slices /

Standard

Cells

Maximum

frequency

(Mhz)

Throughput

(Mbps)

Increase in

Throughput∗

[12] SOC (system on a chip) - / 4996 167 590 41.55

[13] Virtex4 xc4vlx25 678 / - - 673 36.43

[14] - - / - 13.09 840 29.18

[15] Virtex6 xc6vlx240T 2348 / - 174 928 26.42

[16] Altera EPM7128ELC84 - / - 27.02 1032 23.75

[17] Virtex2 2v1500fg456 77 / - 146.515 1545 15.86

[18] Zynq-7000 635 / - 324 2183 11.23

[19] Virtex2 xcv50-bg256 1608 / 5986 167 2670 9.18

[20] - - / 4608 - 3680 6.66

[21] Spartan3E xc3s500e - / - 295.63 6300 3.89

[22] Virtex5 xc5vlx220t 1280 / 9525 187.63 12008 2.04

Proposed design
Virtex5 xc5vlx220t 2434 / 14138 312.921 20026 1.22

Virtex6 xc6vlx365t 1881 / - 383.098 24518 -

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1564

[8] B. Schneier, “The Blowfish Encryption

Algorithm-One Year Later”, Dr. Dobb's

Journal, 1995.

https://www.schneier.com/cryptography/archi

ves/1995/09/the_blowfish_encrypt.html

[9] M.C.J. Lin and Y.L. Lin, “A VLSI

Implementation of the Blowfish

Encryption/Decryption Algorithm”, Asia and

South Pacific Design Automation Conference,

Yokohama, Japan, January 25-28, 2000, pp.

1-2.

[10] S.M. Yoo, D. Kotturi, D.W. Pan and J.

Blizzard, “An AES crypto chip using a high-

speed parallel pipelined architecture”,

Microprocessor and Microsystem, Vol. 29,

No. 7, 2005, pp. 317-326.

[11] V. Rijmen, “Cryptanalysis and design of

iterated block ciphers”, Doctoral dissertation,

Katholieke Universiteit Leuven, 1997.

[12] B. Cody, J. Madigan, S. MacDonald and

K.W. Hsu, “High Speed SOC Design for

Blowfish Cryptographic Algorithm”, IFIP

International Conference on Very Large

Scale Integration, Atlanta, USA, October 15-

17, 2007, pp. 284-287.

[13] N.P. Kurniawan, P. Yudha and D. Denny,

“An implementation of data encryption for

Internet of Things using Blowfish algorithm

on FPGA”, 2nd International Conference on

Information and Communication Technology,

Bandung, Indonesia, May 28-30, 2014, pp.

75-79.

[14] S.V. Kumara and P. Benakop, “High

throughput and high speed Blowfish

algorithm for secure Integrated Circuits”,

Anale. Seria Informatic, Vol. 12, No. 1, 2014,

pp. 24-29.

[15] R. Ahmad and W. Ismail, “Performance

Comparison of the Improved Power-

Throughput AES and Blow fish Algorithms

on FPGA”, Lecture Notes in Electrical

Engineering, Vol. 398, 2016, pp. 19-25.

[16] F. Guerrero and J.M. Noras, “Implementing

block ciphering algorithms in hardware”,

International Journal of Electronics, Vol. 83,

No.5, 1997, pp. 581-598.

[17] T.S.B. Sudarshan, R.A. Mir and S.

Vijayalakshmi, “DRIL A Flexible

Architecture for Blowfish Encryption Using

Dynamic Reconfiguration, Replication, Inner-

Loop Pipelining, Loop Folding Techniques”,

Advances in Computer Systems Architecture,

Vol. 3740, 2005, pp. 625-639.

[18] A. Rafidah, A.M. Asrulnizam and I. Widad,

“Development of an Improved Power-

Throughput Blowfish Algorithm on FPGA”,

IEEE 12th International Colloquium on

Signal Processing & its Applications,

Melaka, Malaysia, March 4-6, 2016, pp. 237-

241.

[19] P.K. Kumar and K. Baskaran, “An ASIC

implementation of low power and high

throughput blowfish crypto algorithm”,

Microelectronics Journal, Vol. 41, No. 6,

2010, pp. 347-355.

[20] T. Joshi, R. Yadav and U. Malviya, “Design

of enhanced speed Blowfish Algorithm for

cryptography with merged encryption &

decryption in VHDL”, International Journal

of Engineering Research and Applications,

Special issue: ICIAC, 2014, pp. 68-71.

[21] S.R. Chatterjee, S. Majumder, B. Pramanik

and M. Chakraborty, “FPGA Implementation

of Pipelined Blowfish Algorithm”, Fifth

International Symposium on Electronic

System Design, Mangalore, India, December

15-17, 2014, pp. 208-209.

[22] S. Oukili and S. Bri, “High Throughput

Parallel Implementation of Blowfish

Algorithm”, Applied Mathematics &

Information Sciences, Vol. 10, No. 6, 2016,

pp. 2087-2092.

