
Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1549

A HYBRID METHOD OF FEATURE EXTRACTION AND
NAÏVE BAYES CLASSIFICATION FOR SPLITTING

IDENTIFIERS

1
NAHLA ALANEE,

2
MASRAH AZRIFAH AZMI MURAD

Faculty of Computer Science and Information Technology Universiti Putra Malaysia, 43400 Serdang,

MALAYSIA

E-mail:
1
nahlaalanee@yahoo.com,

2
masrah@upm.edu.my

ABSTRACT

Nowadays, integrating natural language processing techniques on software systems has caught many
researchers’ attentions. Such integration can be represented by analyzing the morphology of the source
code in order to gain meaningful information. Feature location is the process of identifying specific portions
of the source code. One of the most important information lies on such source code is the identifiers (e.g.
Student). Unlike the traditional text processing, the identifiers in the source code is formed as multi-word
such as ‘Employee-Name’. Such multi-words are not divided using white space, instead it can be formed
using special characters (e.g. Employee_ID), CamelCase (e.g. EmployeeName) or using abbreviations (e.g.
EmpNm). This makes the process of extracting such identifiers more challenging. Several approaches have
been performed to resolve the problem of splitting multi-word identifiers. However, there is still room for
improvement in terms of accuracy. Such improvement can be represented by utilizing more robust features
that have the ability to analyses the morphology of identifiers. Therefore, this study aims to propose a
hybrid method of feature extraction and Naïve Bayes classifier in order to separate multi-word identifiers
within source code. The dataset that has been used in this study is a benchmark-annotated data that contains
large number of Java codes. Multiple experiments have been conducted in order to evaluate the proposed
features independently and with combinations. Results shown that the combination of all features have
obtained the best accuracy by achieving 64.7% of f-measure. Such finding implies the usefulness of the
proposed features in terms of discriminating multi-word identifiers.

Keywords: Feature Location, Split Identifiers, Feature Extraction, Naïve Bayes, Source Code

1. INTRODUCTION

Software engineering is the process of analyzing

software systems in order to improve the efficiency
[1]. This process can be explained as supplying
recommendation, illustration and providing reports
for enhancing the performance of a particular
system. To do so, a comprehensive analysis should
be concentrated on the significant features shown in
the source code of the system [2].

Analyzing these features within the code
provides valuable understanding of the intention of
the code which facilitate the process of re-use and
modification that would be performed on such code.
One of the common concepts that are frequently
used in any source code is the identifiers (e.g. string
Name) [3]. Extracting such identifiers would offer a
good opportunity to understand the headlines of the
source code where the programmer declares all the
objects that will be used in the system (e.g. student,

employee, etc.) [4]. In addition, the process of
extracting identifiers has a significant impact on
improving feature locations. Feature location aims
to extract specific portion of the source code that
typically correspond to the developer’s query [5].

Since the source code is written by the natural
language, analyzing the source code can be done by
using Natural Language Processing techniques.
However, there are multiple differences between
the regular text and the source code. In the source
code, the multi-word identifiers are written without
a space between them, instead several strategies can
be used. First, it may be divided using special
characters such as ‘Employee-Name’ or
‘Employee_Name’ [3]. Second, it may be written
using ‘CamelCase’ approach, this approach aims to
capitalize the first letter of the first words and the
first letter of the second word without spacing (e.g.
EmployeeName) [6]. Apart from the multi-word
splitting problem, the identifiers in the source code

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1550

may be written using abbreviations such as ‘Emp’
for ‘Employee’ [7].

The most complicated splitting mechanism is the
multi-word that are separated neither by special
characters nor by CamelCase. In such case, both
words are in lowercase and attached to each other
without a white space such as ‘studentid’. Hence,
there is no unified or agreement mechanism to write
the identifiers in the source code. This can make
extracting such identifiers from the source code a
challenging task

 Several approaches have been proposed to
resolve such problem [3, 4, 6, 7]. Yet, there is a
need for enhancement in terms of recall and
precision. Such requirement of improvement is
represented by using more robust features that have
the ability to recognize the splitting words.

Therefore, this study aims to identify an
extension of features with machine learning
technique in order to separate the multi-word
identifiers. These features will have the ability to
utilize the characteristics of multi-word identifiers
in the source code. After that, supervised machine
learning technique of Naïve Bayes will be used in
order to classify the identifiers based on the
required number of splitting.

In this vein, the objectives of this paper can be
represented as developing the extended features and
combining it with Naïve Bayes classifier. The
classification will be based on the number of
separations required to divide the multi-word
identifiers extracted from source codes.

The paper is being organized as; Section 1
provides the introduction, Section 2 discusses the
related work, Section 3 illustrates the process of
carrying out the proposed method. Section 4 depicts
the experimental results obtained by the proposed
method. Section 5 concludes the research findings
and highlights both limitations and future
directions.

2. RELATED WORK

Nowadays, researchers pay more attention in
terms of applying information retrieval approaches
for extracting identifiers, and identifying feature
location from the source code. For instance, Marcus
& Maletic [8] have proposed a Latent Semantic
Indexing (LSI) method for software engineering
applications. Such method aims to classify the
portions of the source code by identifying the
similarity among such portions. One of these
portions is the identifiers. The authors have linked
the concepts (i.e. identifiers) with each other in a

matrix of similarity. In this manner, the lexical
similarity among the identifiers will be examined.

In the same manner, Poshyvanyk et al. [9] have
proposed a Visual Studio plugin for enhancing the
process of search within the source code based on
natural language processing techniques. In this vein,
the developer will be able to type a query (usually
as identifier) in order to get relevant portion from
the source code. The proposed tool works by
identifying the most similar portion in the source
code with the typed query in terms of lexical
similarity.

However, one of the challenging task that facing
the mapping the between query typed by the
developer and the relevant portion within the source
code is the multi-word identifiers. Obviously, many
identifiers are being declared with multiple words.
Since the programming languages hinder the
developer to separate the multi-word identifiers by
a blank space therefore, developers tend to use
multiple approaches for the separation whether
using punctuation, digit or using CamelCase.
Hence, there is a vital demand to accommodate a
separation process in order to divide the multi-
words identifiers into their original form.

 Binkley & Lawrie [4] have addressed this
problem by proposing an approach for handling the
process of dividing multi-word identifiers
automatically. They have used regular expression
approach in order to exploit the CamelCase and
special characters such as ‘underscore’.

Similarly, Field et al. [7] have proposed a
dictionary-based approach where numerous
keywords and tokens are located. Then, a process of
string-matching has been performed in order to
match the words between the source code and the
dictionary.

Enslen et al. [3] have proposed a statistical
approach for dividing multi-word identifiers based
on word frequency. Their hypothesis emphasis that
the occurrence of an identifier should be frequent
such as ‘Employee-Name’ and ‘Employee-Income’.
Therefore, the process of dividing multi-word
identifiers lies on analyzing the frequency of such
identifiers where the clues (e.g. Employee) could be
appeared.

Lawrie & Binkley [6] have proposed a
normalization technique for the vocabulary in the
source code. Their technique aims to expand the
abbreviations before matching any vocabulary
dictionary. Their hypothesis lies on the frequent use

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1551

of abbreviations in the source code such as ‘Emp-
Name’.

It is obvious that there is a diversity in terms of
the techniques used for dividing the multi-word
identifiers. for this purpose, this study aims to
examine multiple features such as lexical features
(i.e. punctuation, capitalization and digit) and
dictionary-based approach (i.e. spell checker) in
order to highlight the most appropriate feature set
for the separation process. Such examination will
significantly contribute toward improving the
effectiveness of the classification results.

The key difference of this study lies on the
examination of different kind of the features
including morphological features (i.e.
capitalization, containing digit and containing
punctuation) and dictionary-based feature (i.e. spell
checker).

3. PROPOSED METHOD

The proposed method consists of four main
phases as shown in Fig. 1 including Dataset,
Transformation, Feature Extraction and
Classification. Dataset phase discusses the data that
will be used in the experiment including the source
of such data, details and characteristics. Whereas,
transformation phase discusses the preparation tasks
that have been conducted in order to turn the data
into an appropriate form for representation. Feature
extraction phase is associated with the contribution
of this study in which multiple features are being
developed to enhance the process of splitting
identifiers. Finally, classification phase is
associated with the type of machine learning used to
classify the instances based on the developed
features.

Figure1. Proposed method

3.1. Dataset

In order to apply the proposed method of
splitting identifiers, it is necessary to find a
benchmark dataset of a source code where experts
have splitted the identifiers manually which can
facilitate the process of training using machine
learning technique. For this purpose, a benchmark
of source code has been collected from the study of
Enslen et al. [3] that will be used in this study. Such
data contains 9000 open source programs using
multiple programming languages such as Java, C
and C++ from SourceForge which is a website
consists of numerous programming projects with its
source code. As shown in Figure 2, the data is
formed un-structurally in a text file containing
multiple information such as the ID number of the
identifiers, the original identifiers, programming
language used, the name of the program, splitted
identifiers by experts, number of splitting and other
information.

�������

������	�
���	�

�������
�������	�

������� �	��� ���������	�

����� �	��� ����� �������

����� ����� ������������	�

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1552

Figure 2. Sample of the dataset

3.2. Transformation

As mentioned earlier, the data should be
transformed into an appropriate representation in
order to facilitate the feature extraction. This can be
represented by dividing each identifier with its
information in a record in order to be relational
data. Obviously, this requires naming the attributes’
labels and accommodate a filtering task to avoid the
unwanted attributes. This task has been performed
using a tab delimiter separation mechanism. Fig. 3
shows the results of this phase.

Figure 3. Transforming the data

As shown in Fig. 3, the data has been
transformed into five columns including (i) ID, (ii)
original identifier, (iii) programming language used,
(iv) splitted identifiers, and (v) the class label. Note
that, the class label is considered to be the number
of splitting required for each identifier, and it
ranged from 0 to 12, this leads to 13 class labels.

 3.3. Feature Extraction

Basically, features can be defined as the
characteristics and properties of each instance
where specific description of the instance can be
depicted [10]. For example, the length of a given
word could be a significant feature that may
indicate the class label of this word. In this vein,
features play an essential role in terms of the
classification where the significant feature that has

the ability to accurately describe the instance would
definitely improve the performance of the
classification. Vice versa, the weak feature would
indeed affect the performance of the classification
negatively. Because of that, this study aims to
develop accurate features that have the ability to
discriminate the situations of splitting identifiers.
For this purpose, four features are being developed
including capital count, punctuation count, digit
count and spell checker. These four features can be
illustrated as:

3.3.1 Capital Count

Most of the developers are using the CamelCase
in order to declare an identifier. CamelCase aims to
capitalize the first letter in the first word, as well as,
capitalize the first letter of the second words, with
keeping the remaining letters in lower-case. In this
manner, counting the capital letters for each
identifier would significantly indicate the required
number of splitting. Table 1 depicts a sample of this
feature.

Table 1. Sample of capital count feature

Original Identifiers Count Capital

CreateProcess 2
DrawThemeTab 3

GetTokenAt 3
GetFront 2

3.3.2 Punctuation Count

Similar to the CamelCase, sometimes developers
are using special characters such as ‘*_@#&’ in
order to separate the multi-word identifiers instead
of capital letters. Therefore, counting these
punctuations would indicate the number of splitting
required for each identifier. Table 2 depicts a
sample representation of this feature.

Table 2. Sample of punctuation count feature

Original

Identifiers

Punctuation Punctuation

count

create-process - 1
draw_theme_tab _ 2

get/token/at / 2
get|front | 1

3.3.3 Digit Count

Similar to both CamelCase and punctuation,
some developers are using numbers to separate the
multi-word identifiers. Apparently, exploiting the

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1553

count of the occurrence for these numeric values
would indicate the number of splitting required for
each identifier too. Table 3 depicts a sample of digit
count feature representation.

Table 3. Sample of digit count feature

Original Identifiers Digit Capital

Max2stack 1
Value2use 1
Get2class 1
Set3value 1

3.3.4 Spell Checker

This feature aims to utilize the spell checker that
is being used by Microsoft Word. As shown in Fig.
4, Microsoft Word utilizes a spell checking for the
multi-word such as ‘CreateProcess’ in order to
provide suggestions for correcting the word. To do
so, Microsoft uses a dictionary for English words in
order to accommodate a matching for possible
words from the dictionary.

Figure 4. Sample of Microsoft spell checker

In the suggestions box, the correct word can be
shown as ‘Create Process’ therefore, this study
aims to use the number of words shown in the
suggestion box (i.e. which is 2) in order to indicate
the required number of splitting.

3.5. Classification

In this phase, the classification of the identifiers
will be conducted in which every identifier will be
classified into its actual class label (i.e. number of
required splitting). To do so, a Naïve Bayes
classifier is being used. The reason behind using
such classifier lies on its ability to identify the
performance of each feature independently [11].
This can enable us to examine the performance of
each feature separately in order to identify the best
combination of these features. Naïve Bayes is using
a training data shown in Fig. 5 where each identifier
is being represented with all the features and the
class label. This training data will be used in order
to compute the probability of each feature with
corresponding class label to classify the testing data
that does not contain a class label.

Figure 5. Training and Testing representation used by NB classifier

As shown in Fig. 5, the training set is containing
the class labels whereas the testing set does not

contain the class labels in which the NB classifier is
required to classify the class label.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1554

Naïve Bayes classifier aims to classify the
instances based on a probabilistic model in which
the maximum probability of certain class label, will
be assigned to the testing instance using the
following formula:

���� � argmax
��

|�|	�����|��� (1)

where ����|�� is the probability of a document d

given a class Ci, and P�d� is the probability of
document d.

3.6. Evaluation

In order to evaluate the classification process, the
common information retrieval metrics precision,
recall and f-measure have been used to for this
purpose. Precision can be computed as:

��������� �
��

�� � ��

(1)

Precision is defined as the number of correct
identified matches compared to the total number of
correct matches and false matches identified by the

system. On the other hand, recall can be computed
as:

������ �
��

�� � ��

(2)

Recall is defined as a number of correct
identified matches compared to the total of number
of correct matches and the needed matches but not
identified by the system. Finally, f-measure can be
computed as:

� !���"�� �
2�� $ ��

�� � ��

(3)

4. RESULTS

In order to assess the performance of the
proposed features, three experiments have been
conducted. First experiment will be concentrated on
the independent performance for each feature
(shown in Fig. 6). Second experiment will be
concentrated on the pair combination between the
features (shown in Fig. 7). Third experiment will be
focused on the full combinations among the
features (shown in Fig. 8).

Figure 6. Performances of independent features

0

0.1

0.2

0.3

0.4

0.5

0.6

Capital Count Punctuation Count Digit Count Spell Checking

F-measure

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1555

Figure 7. Performances of pair combinations among the features

Figure 8. Performances of full combinations among the features

As shown in Fig. 6, spell checking feature has
outperformed the other features by achieving an f-
measure of 53.9%. This is due to the tremendous
capability of using dictionary that contains large
amount of English words which the spell checker
utilized to retrieve the correct number of words. In
addition, punctuation feature has outperformed the
remaining features by obtaining an f-measure of
41.1%. This reveals that the separation of multi-
word identifiers in the dataset was mostly
performed using one of the special characters.
Furthermore, capital count feature has followed by
the punctuation by achieving an f-measure of 37.5%
and outperforming the digit count feature which
achieved an f-measure of 34.9%. This was expected
because developers would separate the multi-word

identifiers using the CamelCase more than the use
of digit.

On the other hand, as shown in Fig. 7, the highest
performance for the pair combination was obtained
by the combination of punctuation and spell by
achieving an f-measure of 60.6%. This was
expected because both features have shown superior
results independently. Surprisingly, the combination
of capital and punctuation shown the second highest
value of f-measure by achieving 55.2%. On the
other hand, the two combinations that contains spell
feature shown good results including capital with
spell and digit with spell by achieving 54.8% and
54.1% respectively. Finally, the combination of
capital and digit shown the lowest performance by
achieving 37.5% of f-measure. This was expected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Capital +

Punctuation

Punctuation +

Digit

Digit + Spell Capital + Digit Capital + Spell Punctuation +

Spell

F-measure

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Capital +

Punctuation + Digit

Punctuation + Digit +

Spell

Capital + Digit +

Spell

Capital +

Punctuation + Spell

All

F-measure

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1556

because both features got the lowest performances
independently.

Finally, as shown in Fig. 8, the highest
performance was achieved when all the features
have been combined in which the f-measure was
64.7%. This was followed by the combination of
capital, punctuation and spell by achieving 64% of
f-measure. Furthermore, the combination of
punctuation, digit and spell achieved 63.1% of f-
measure. Finally, the lowest performance was when
capital, punctuation and digit have been combined
by achieving 55.8% of f-measure.

5. CONCLUSION

This study aimed to develop a set of features that
have the ability to discriminate, distinguish and
describe the characteristics of splitting identifiers.
For this manner, a benchmark dataset has been used
in this study which contains numerous multi-word
identifiers that have been extracted and splitted
from various source codes. Consequentially, four
features are being extracted including capital count,
punctuation count, digit count and spell checker.
After the features are being extracted, the data will
be used to train a Naïve Bayes classifier which will
accommodate a classification process to identify the
required number of splitting for each identifier. To
evaluate the proposed method, the features have
been examined in terms of effectiveness
independently and with combinations.

Experimental results shown that the best f-
measure was achieved by the combination of all the
features by obtaining 64.7%. This result implies the
usefulness of such feature in terms of splitting
identifiers.

The main limitation behind this study lies on the
dataset where it tends to be relatively small data. As
a future research, examining a large-scale data that
may contain numerous forms of multi-word
identifiers would significantly contribute toward
improving the classification accuracy.

6. DISCUSSION

To provide a proper clarification of the
accomplishment of this study, it is necessary to
accommodate a comparison with the state of the art.
Lawrie et al. [4] who have proposed a
morphological approach for dividing the multi-
word identifiers, achieved 62% of f-measure. In
addition, Enslen et al. [3] have proposed a statistical
approach for dividing the identifiers, they achieved
an f-measure of 60%. Furthermore, Lawrie &
Binkley [12] have proposed a dictionary-based
approach and attained an f-measure of 61%.

Comparing these results with the proposed
method’s results (i.e. 64.7% of f-measure), it is
obvious that the proposed method has outperformed
the state of the art. This could be due to the
diversity of features used in this study, unlike the
related word who concentrated on a specific type of
features.

REFERENCES

[1] Dag IK Sjøberg, Jo E Hannay, Ove Hansen,
Vigdis By Kampenes, Amela Karahasanovic,
Nils-Kristian Liborg, and Anette C Rekdal, "A
survey of controlled experiments in software
engineering," Software Engineering, IEEE

Transactions on, vol. 31, pp. 733-753, 2005.
[2] Stephen W Thomas, "Mining software

repositories using topic models," in
Proceedings of the 33rd International

Conference on Software Engineering, 2011,
pp. 1138-1139.doi.

[3] Eric Enslen, Emily Hill, Lori Pollock, and K
Vijay-Shanker, "Mining source code to
automatically split identifiers for software
analysis," in Mining Software Repositories,

2009. MSR'09. 6th IEEE International

Working Conference on, 2009, pp. 71-80.doi.
[4] Dawn Lawrie, Henry Feild, and David

Binkley, "Quantifying identifier quality: an
analysis of trends," Empirical Software

Engineering, vol. 12, pp. 359-388,
2007.doi:10.1007/s10664-006-9032-2
http://dx.doi.org/10.1007/s10664-006-9032-2.

[5] Kunrong Chen and Václav Rajlich, "Case
Study of Feature Location Using Dependence
Graph," in IWPC, 2000, pp. 241-247.doi.

[6] Dawn Lawrie and Dave Binkley, "Expanding
identifiers to normalize source code
vocabulary," in Software Maintenance

(ICSM), 2011 27th IEEE International

Conference on, 2011, pp. 113-122.doi.
[7] Henry Feild, David Binkley, and Dawn

Lawrie, "An empirical comparison of
techniques for extracting concept
abbreviations from identifiers," in
Proceedings of IASTED International

Conference on Software Engineering and

Applications (SEA’06), 2006.
[8] Jonathan I Maletic and Andrian Marcus,

"Supporting program comprehension using
semantic and structural information," in
Proceedings of the 23rd International

Conference on Software Engineering, 2001,
pp. 103-112.doi.

Journal of Theoretical and Applied Information Technology
15th April 2017. Vol.95. No 7

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1557

[9] Denys Poshyvanyk, Andrian Marcus, Yubo
Dong, and Andrey Sergeyev, "IRiSS-A Source
Code Exploration Tool," in ICSM (Industrial

and Tool Volume), 2005, pp. 69-72.doi.
[10] Dayne Freitag, "Machine learning for

information extraction in informal domains,"
Machine learning, vol. 39, pp. 169-202, 2000.

[11] Jin Huang, Jingjing Lu, and Charles X Ling,
"Comparing naive Bayes, decision trees, and
SVM with AUC and accuracy," in Data

Mining, 2003. ICDM 2003. Third IEEE

International Conference on, 2003, pp. 553-
556.doi.

[12] D. Lawrie and D. Binkley, "Expanding
identifiers to normalize source code
vocabulary," in 2011 27th IEEE International

Conference on Software Maintenance (ICSM),
2011, pp. 113-
122.doi:10.1109/ICSM.2011.6080778.

