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ABSTRACT 

 
Nowadays, integrating natural language processing techniques on software systems has caught many 
researchers’ attentions. Such integration can be represented by analyzing the morphology of the source 
code in order to gain meaningful information. Feature location is the process of identifying specific portions 
of the source code. One of the most important information lies on such source code is the identifiers (e.g. 
Student). Unlike the traditional text processing, the identifiers in the source code is formed as multi-word 
such as ‘Employee-Name’. Such multi-words are not divided using white space, instead it can be formed 
using special characters (e.g. Employee_ID), CamelCase (e.g. EmployeeName) or using abbreviations (e.g. 
EmpNm). This makes the process of extracting such identifiers more challenging. Several approaches have 
been performed to resolve the problem of splitting multi-word identifiers. However, there is still room for 
improvement in terms of accuracy. Such improvement can be represented by utilizing more robust features 
that have the ability to analyses the morphology of identifiers. Therefore, this study aims to propose a 
hybrid method of feature extraction and Naïve Bayes classifier in order to separate multi-word identifiers 
within source code. The dataset that has been used in this study is a benchmark-annotated data that contains 
large number of Java codes. Multiple experiments have been conducted in order to evaluate the proposed 
features independently and with combinations. Results shown that the combination of all features have 
obtained the best accuracy by achieving 64.7% of f-measure. Such finding implies the usefulness of the 
proposed features in terms of discriminating multi-word identifiers.  
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1. INTRODUCTION  

 
Software engineering is the process of analyzing 

software systems in order to improve the efficiency 
[1]. This process can be explained as supplying 
recommendation, illustration and providing reports 
for enhancing the performance of a particular 
system. To do so, a comprehensive analysis should 
be concentrated on the significant features shown in 
the source code of the system [2].  

Analyzing these features within the code 
provides valuable understanding of the intention of 
the code which facilitate the process of re-use and 
modification that would be performed on such code. 
One of the common concepts that are frequently 
used in any source code is the identifiers (e.g. string 
Name) [3]. Extracting such identifiers would offer a 
good opportunity to understand the headlines of the 
source code where the programmer declares all the 
objects that will be used in the system (e.g. student, 

employee, etc.) [4]. In addition, the process of 
extracting identifiers has a significant impact on 
improving feature locations. Feature location aims 
to extract specific portion of the source code that 
typically correspond to the developer’s query [5].  

Since the source code is written by the natural 
language, analyzing the source code can be done by 
using Natural Language Processing techniques. 
However, there are multiple differences between 
the regular text and the source code. In the source 
code, the multi-word identifiers are written without 
a space between them, instead several strategies can 
be used. First, it may be divided using special 
characters such as ‘Employee-Name’ or 
‘Employee_Name’ [3]. Second, it may be written 
using ‘CamelCase’ approach, this approach aims to 
capitalize the first letter of the first words and the 
first letter of the second word without spacing (e.g. 
EmployeeName) [6]. Apart from the multi-word 
splitting problem, the identifiers in the source code 
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may be written using abbreviations such as ‘Emp’ 
for ‘Employee’ [7].  

The most complicated splitting mechanism is the 
multi-word that are separated neither by special 
characters nor by CamelCase. In such case, both 
words are in lowercase and attached to each other 
without a white space such as ‘studentid’. Hence, 
there is no unified or agreement mechanism to write 
the identifiers in the source code. This can make 
extracting such identifiers from the source code a 
challenging task 

 Several approaches have been proposed to 
resolve such problem [3, 4, 6, 7]. Yet, there is a 
need for enhancement in terms of recall and 
precision. Such requirement of improvement is 
represented by using more robust features that have 
the ability to recognize the splitting words. 

Therefore, this study aims to identify an 
extension of features with machine learning 
technique in order to separate the multi-word 
identifiers. These features will have the ability to 
utilize the characteristics of multi-word identifiers 
in the source code. After that, supervised machine 
learning technique of Naïve Bayes will be used in 
order to classify the identifiers based on the 
required number of splitting. 

In this vein, the objectives of this paper can be 
represented as developing the extended features and 
combining it with Naïve Bayes classifier. The 
classification will be based on the number of 
separations required to divide the multi-word 
identifiers extracted from source codes.   

The paper is being organized as; Section 1 
provides the introduction, Section 2 discusses the 
related work, Section 3 illustrates the process of 
carrying out the proposed method. Section 4 depicts 
the experimental results obtained by the proposed 
method. Section 5 concludes the research findings 
and highlights both limitations and future 
directions.  

2. RELATED WORK 

Nowadays, researchers pay more attention in 
terms of applying information retrieval approaches 
for extracting identifiers, and identifying feature 
location from the source code. For instance, Marcus 
& Maletic [8] have proposed a Latent Semantic 
Indexing (LSI) method for software engineering 
applications. Such method aims to classify the 
portions of the source code by identifying the 
similarity among such portions. One of these 
portions is the identifiers. The authors have linked 
the concepts (i.e. identifiers) with each other in a 

matrix of similarity. In this manner, the lexical 
similarity among the identifiers will be examined.  

In the same manner, Poshyvanyk et al. [9] have 
proposed a Visual Studio plugin for enhancing the 
process of search within the source code based on 
natural language processing techniques. In this vein, 
the developer will be able to type a query (usually 
as identifier) in order to get relevant portion from 
the source code. The proposed tool works by 
identifying the most similar portion in the source 
code with the typed query in terms of lexical 
similarity.  

However, one of the challenging task that facing 
the mapping the between query typed by the 
developer and the relevant portion within the source 
code is the multi-word identifiers. Obviously, many 
identifiers are being declared with multiple words. 
Since the programming languages hinder the 
developer to separate the multi-word identifiers by 
a blank space therefore, developers tend to use 
multiple approaches for the separation whether 
using punctuation, digit or using CamelCase. 
Hence, there is a vital demand to accommodate a 
separation process in order to divide the multi-
words identifiers into their original form. 

 Binkley & Lawrie [4] have addressed this 
problem by proposing an approach for handling the 
process of dividing multi-word identifiers 
automatically. They have used regular expression 
approach in order to exploit the CamelCase and 
special characters such as ‘underscore’.   

Similarly, Field et al. [7] have proposed a 
dictionary-based approach where numerous 
keywords and tokens are located. Then, a process of 
string-matching has been performed in order to 
match the words between the source code and the 
dictionary.  

Enslen et al. [3] have proposed a statistical 
approach for dividing multi-word identifiers based 
on word frequency. Their hypothesis emphasis that 
the occurrence of an identifier should be frequent 
such as ‘Employee-Name’ and ‘Employee-Income’. 
Therefore, the process of dividing multi-word 
identifiers lies on analyzing the frequency of such 
identifiers where the clues (e.g. Employee) could be 
appeared. 

Lawrie & Binkley [6] have proposed a 
normalization technique for the vocabulary in the 
source code. Their technique aims to expand the 
abbreviations before matching any vocabulary 
dictionary. Their hypothesis lies on the frequent use 
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of abbreviations in the source code such as ‘Emp-
Name’.  

It is obvious that there is a diversity in terms of 
the techniques used for dividing the multi-word 
identifiers. for this purpose, this study aims to 
examine multiple features such as lexical features 
(i.e. punctuation, capitalization and digit) and 
dictionary-based approach (i.e. spell checker) in 
order to highlight the most appropriate feature set 
for the separation process. Such examination will 
significantly contribute toward improving the 
effectiveness of the classification results.    

The key difference of this study lies on the 
examination of different kind of the features 
including morphological features (i.e. 
capitalization, containing digit and containing 
punctuation) and dictionary-based feature (i.e. spell 
checker).  

3. PROPOSED METHOD 

The proposed method consists of four main 
phases as shown in Fig. 1 including Dataset, 
Transformation, Feature Extraction and 
Classification. Dataset phase discusses the data that 
will be used in the experiment including the source 
of such data, details and characteristics. Whereas, 
transformation phase discusses the preparation tasks 
that have been conducted in order to turn the data 
into an appropriate form for representation. Feature 
extraction phase is associated with the contribution 
of this study in which multiple features are being 
developed to enhance the process of splitting 
identifiers. Finally, classification phase is 
associated with the type of machine learning used to 
classify the instances based on the developed 
features. 

 

Figure1. Proposed method 

3.1. Dataset 

In order to apply the proposed method of 
splitting identifiers, it is necessary to find a 
benchmark dataset of a source code where experts 
have splitted the identifiers manually which can 
facilitate the process of training using machine 
learning technique.  For this purpose, a benchmark 
of source code has been collected from the study of 
Enslen et al. [3] that will be used in this study. Such 
data contains 9000 open source programs using 
multiple programming languages such as Java, C 
and C++ from SourceForge which is a website 
consists of numerous programming projects with its 
source code. As shown in Figure 2, the data is 
formed un-structurally in a text file containing 
multiple information such as the ID number of the 
identifiers, the original identifiers, programming 
language used, the name of the program, splitted 
identifiers by experts, number of splitting and other 
information.  
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Figure 2. Sample of the dataset 

3.2. Transformation 

As mentioned earlier, the data should be 
transformed into an appropriate representation in 
order to facilitate the feature extraction. This can be 
represented by dividing each identifier with its 
information in a record in order to be relational 
data. Obviously, this requires naming the attributes’ 
labels and accommodate a filtering task to avoid the 
unwanted attributes. This task has been performed 
using a tab delimiter separation mechanism. Fig. 3 
shows the results of this phase.   

 

Figure 3. Transforming the data 

As shown in Fig. 3, the data has been 
transformed into five columns including (i) ID, (ii) 
original identifier, (iii) programming language used, 
(iv) splitted identifiers, and (v) the class label. Note 
that, the class label is considered to be the number 
of splitting required for each identifier, and it 
ranged from 0 to 12, this leads to 13 class labels. 

 3.3. Feature Extraction 

Basically, features can be defined as the 
characteristics and properties of each instance 
where specific description of the instance can be 
depicted [10]. For example, the length of a given 
word could be a significant feature that may 
indicate the class label of this word. In this vein, 
features play an essential role in terms of the 
classification where the significant feature that has 

the ability to accurately describe the instance would 
definitely improve the performance of the 
classification. Vice versa, the weak feature would 
indeed affect the performance of the classification 
negatively.  Because of that, this study aims to 
develop accurate features that have the ability to 
discriminate the situations of splitting identifiers. 
For this purpose, four features are being developed 
including capital count, punctuation count, digit 
count and spell checker. These four features can be 
illustrated as: 

3.3.1 Capital Count 

Most of the developers are using the CamelCase 
in order to declare an identifier. CamelCase aims to 
capitalize the first letter in the first word, as well as, 
capitalize the first letter of the second words, with 
keeping the remaining letters in lower-case. In this 
manner, counting the capital letters for each 
identifier would significantly indicate the required 
number of splitting. Table 1 depicts a sample of this 
feature. 

Table 1. Sample of capital count feature 

Original Identifiers Count Capital 

CreateProcess 2 
DrawThemeTab 3 

GetTokenAt 3 
GetFront 2 

 

3.3.2 Punctuation Count 

Similar to the CamelCase, sometimes developers 
are using special characters such as ‘*_@#&’ in 
order to separate the multi-word identifiers instead 
of capital letters. Therefore, counting these 
punctuations would indicate the number of splitting 
required for each identifier. Table 2 depicts a 
sample representation of this feature.  

Table 2. Sample of punctuation count feature 

Original 

Identifiers 

Punctuation  Punctuation 

count 

create-process - 1 
draw_theme_tab _ 2 

get/token/at / 2 
get|front | 1 

 

3.3.3 Digit Count 

Similar to both CamelCase and punctuation, 
some developers are using numbers to separate the 
multi-word identifiers. Apparently, exploiting the 
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count of the occurrence for these numeric values 
would indicate the number of splitting required for 
each identifier too. Table 3 depicts a sample of digit 
count feature representation.  

Table 3. Sample of digit count feature 

Original Identifiers Digit Capital 

Max2stack 1 
Value2use 1 
Get2class 1 
Set3value 1 

3.3.4 Spell Checker 

This feature aims to utilize the spell checker that 
is being used by Microsoft Word. As shown in Fig. 
4, Microsoft Word utilizes a spell checking for the 
multi-word such as ‘CreateProcess’ in order to 
provide suggestions for correcting the word. To do 
so, Microsoft uses a dictionary for English words in 
order to accommodate a matching for possible 
words from the dictionary.  

 

Figure 4. Sample of Microsoft spell checker 

In the suggestions box, the correct word can be 
shown as ‘Create Process’ therefore, this study 
aims to use the number of words shown in the 
suggestion box (i.e. which is 2) in order to indicate 
the required number of splitting.  

3.5. Classification  

In this phase, the classification of the identifiers 
will be conducted in which every identifier will be 
classified into its actual class label (i.e. number of 
required splitting). To do so, a Naïve Bayes 
classifier is being used. The reason behind using 
such classifier lies on its ability to identify the 
performance of each feature independently [11]. 
This can enable us to examine the performance of 
each feature separately in order to identify the best 
combination of these features. Naïve Bayes is using 
a training data shown in Fig. 5 where each identifier 
is being represented with all the features and the 
class label. This training data will be used in order 
to compute the probability of each feature with 
corresponding class label to classify the testing data 
that does not contain a class label.  

 

 

Figure 5. Training and Testing representation used by NB classifier

As shown in Fig. 5, the training set is containing 
the class labels whereas the testing set does not 

contain the class labels in which the NB classifier is 
required to classify the class label. 
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Naïve Bayes classifier aims to classify the 
instances based on a probabilistic model in which 
the maximum probability of certain class label, will 
be assigned to the testing instance using the 
following formula: 

���� � argmax
��

|�|	�����|��� (1) 

 
where ����|�� is the probability of a document d 

given a class Ci, and P�d� is the probability of 
document d. 

3.6. Evaluation  

In order to evaluate the classification process, the 
common information retrieval metrics precision, 
recall and f-measure have been used to for this 
purpose. Precision can be computed as: 

��������� �
��

�� � ��
 

(1) 

Precision is defined as the number of correct 
identified matches compared to the total number of 
correct matches and false matches identified by the 

system. On the other hand, recall can be computed 
as: 

������ �
��

�� � ��
 

(2) 

Recall is defined as a number of correct 
identified matches compared to the total of number 
of correct matches and the needed matches but not 
identified by the system. Finally, f-measure can be 
computed as: 

�  !���"�� �
2�� $ ��

�� � ��
 

(3) 

4. RESULTS  

In order to assess the performance of the 
proposed features, three experiments have been 
conducted. First experiment will be concentrated on 
the independent performance for each feature 
(shown in Fig. 6). Second experiment will be 
concentrated on the pair combination between the 
features (shown in Fig. 7). Third experiment will be 
focused on the full combinations among the 
features (shown in Fig. 8).  

 

Figure 6. Performances of independent features 
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Figure 7. Performances of pair combinations among the features 

 

Figure 8. Performances of full combinations among the features

As shown in Fig. 6, spell checking feature has 
outperformed the other features by achieving an f-
measure of 53.9%. This is due to the tremendous 
capability of using dictionary that contains large 
amount of English words which the spell checker 
utilized to retrieve the correct number of words. In 
addition, punctuation feature has outperformed the 
remaining features by obtaining an f-measure of 
41.1%. This reveals that the separation of multi-
word identifiers in the dataset was mostly 
performed using one of the special characters. 
Furthermore, capital count feature has followed by 
the punctuation by achieving an f-measure of 37.5% 
and outperforming the digit count feature which 
achieved an f-measure of 34.9%. This was expected 
because developers would separate the multi-word 

identifiers using the CamelCase more than the use 
of digit.  

On the other hand, as shown in Fig. 7, the highest 
performance for the pair combination was obtained 
by the combination of punctuation and spell by 
achieving an f-measure of 60.6%. This was 
expected because both features have shown superior 
results independently. Surprisingly, the combination 
of capital and punctuation shown the second highest 
value of f-measure by achieving 55.2%. On the 
other hand, the two combinations that contains spell 
feature shown good results including capital with 
spell and digit with spell by achieving 54.8% and 
54.1% respectively. Finally, the combination of 
capital and digit shown the lowest performance by 
achieving 37.5% of f-measure. This was expected 
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because both features got the lowest performances 
independently.  

Finally, as shown in Fig. 8, the highest 
performance was achieved when all the features 
have been combined in which the f-measure was 
64.7%. This was followed by the combination of 
capital, punctuation and spell by achieving 64% of 
f-measure. Furthermore, the combination of 
punctuation, digit and spell achieved 63.1% of f-
measure. Finally, the lowest performance was when 
capital, punctuation and digit have been combined 
by achieving 55.8% of f-measure.  

5. CONCLUSION 

This study aimed to develop a set of features that 
have the ability to discriminate, distinguish and 
describe the characteristics of splitting identifiers. 
For this manner, a benchmark dataset has been used 
in this study which contains numerous multi-word 
identifiers that have been extracted and splitted 
from various source codes. Consequentially, four 
features are being extracted including capital count, 
punctuation count, digit count and spell checker. 
After the features are being extracted, the data will 
be used to train a Naïve Bayes classifier which will 
accommodate a classification process to identify the 
required number of splitting for each identifier. To 
evaluate the proposed method, the features have 
been examined in terms of effectiveness 
independently and with combinations.  

Experimental results shown that the best f-
measure was achieved by the combination of all the 
features by obtaining 64.7%. This result implies the 
usefulness of such feature in terms of splitting 
identifiers.  

The main limitation behind this study lies on the 
dataset where it tends to be relatively small data. As 
a future research, examining a large-scale data that 
may contain numerous forms of multi-word 
identifiers would significantly contribute toward 
improving the classification accuracy.  

6. DISCUSSION 

To provide a proper clarification of the 
accomplishment of this study, it is necessary to 
accommodate a comparison with the state of the art. 
Lawrie et al. [4] who have proposed a 
morphological approach for dividing the multi-
word identifiers, achieved 62% of f-measure. In 
addition, Enslen et al. [3] have proposed a statistical 
approach for dividing the identifiers, they achieved 
an f-measure of 60%. Furthermore, Lawrie & 
Binkley [12] have proposed a dictionary-based 
approach and attained an f-measure of 61%. 

Comparing these results with the proposed 
method’s results (i.e. 64.7% of f-measure), it is 
obvious that the proposed method has outperformed 
the state of the art. This could be due to the 
diversity of features used in this study, unlike the 
related word who concentrated on a specific type of 
features.  
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