
Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1382

 A USER FRIENDLY AND IMPROVED DESIGN FOR

SECURE DELETION IN CLOUD STORAGE

1
BENTAJER AHMED,

1
ENNAAMA FAOUZIA,

 2
HEDABOU MUSTAPHA and

1
ELFEZAZI SAID

1
Cadi Ayyad University, High School of Technology of Safi, LAPSSII Laboratory, Morocco

2
Cadi Ayyad University, National School of Applied Sciences of Safi, MTI Laboratory, Morocco

E-mail:
1
(a.bentajer, faouzia.ennaama,selfezazi)@gmail.com,

2
mhedabou@gmail.com

ABSTRACT

Assured file deletion is a major concern in cloud computing security. The countermeasures proposed by

Cloud Service Providers (CSPs) are not totally satisfactory from the data owner's perspective. Because,

CSP do not offer an irrefutable proof of an assured file deletion. Other proposed approaches for achieving

assured deletion in cloud storage are based on the use of encryption operations. File Assured Deletion

(FADE) is most efficient amongst them. The system is built upon cryptographic techniques to guarantee

privacy and integrity of outsourced files. This paper illustrates a secure yet user friendly update for FADE.

The proposed update, is easy to implement, require less computational resources and ensure assured file

deletion. Furthermore, we implemented a prototype of our update to validate the model, and verify that it

offers assured deletion with a minimal trade-off of performance for large files upload and download

operations.

Keywords: Cloud Computing, Secure Deletion, Confidentiality, Cloud Storage.

1. INTRODUCTION

Cloud Computing is a new wind of change in

IT’s world. SMEs (Small and Medium Companies)

considers it as a great solution to be competitive [1].

The concept has significant trend with a potential of

increasing agility, flexibility, and lowering the

costs. Moving to the cloud need to be especially

cognizant of the various obstacles that organizations

should be aware of to take some preventive

measures [2, 31]. The reason is that security in the

cloud differs from that in in-house IT infrastructure

[3]. Cloud Storage is a delivery model proposed by

CSPs (Cloud Service Providers) which offers an

abstraction of infinite storage on-demand (e.g.

Dropbox [4]) that helped SMEs saving millions of

dollars [3, 5]. However, the consumer’s perspective

of cloud storage is still moderated. The concern is

about the CIA triad (Confidentiality, Integrity and

Availability) [5, 6]. The reason behind this, is that

the consumer does not have a clear vision of CSPs

procedures to ensure data confidentiality in term of

storage location or assured deletion. As mentioned

by NIST guide for assured deletion and Garfinkel et

al. in their study of disk sanitization [9, 8] deleting a

file only remove its entry from the table and does

not delete it from the physical media until new data

overwrites it. Likewise, CSPs are not offering a

clear vision to their consumers about the procedures

for file’s assured deletion, what causes them to be

worried about the remnant of replicated files[8, 9,

10].

The confidentiality concern prompted some

organizations to take some management preventive

solutions [11] as the deletion of replicated files after

a finite number, of year and files should not exceed

the country’s bound [3]. But it stills not enough as

secure delete in the cloud depends on a million

different variables. In their analysis of data

remnants in cloud storage services, Quick et al.

have identified that potential data resides even

when anti-forensic process was undertaken, the

study showed that some data remain on the

computer hard drive after using a storage software

(Dropbox, Google drive) or when using the web

browser to access cloud storage service, also

uninstalling the storage client from the virtual

machine does not really remove the synchronized

folder then the files are exposed to confidentiality

leakage and are not assuredly deleted[12, 13, 14].

Thereby, the implication of CSPs, researchers and

engineers become more and more needed to save

files confidentiality since proposed conventional

methods [8, 9, 15] are no longer effective and

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1383

viable for assured deletion. A recommended

approach for file’s assured deletion in the cloud is

the use of encryption mechanism, the aim is to

encrypt files before outsourcing them. Vanish’s

solution is adopted for this purpose [16], the system

implements policy-based approach to encrypt files

before outsourcing them and assuredly delete them

by deleting the corresponding cryptographic keys

after a defined time period ensuring that files

remain unreadable. Vanish is time-based policy,

Tang et al. proposed an evolved implementation

called FADE (File Assured DEletion) which is a

generalization of time based file assured deletion

[17]. FADE combines one- or two-level Boolean

expression to generate the policy’s corresponding

key and encrypt files before outsourcing them, yet

maintaining and protecting keys leverage another

security issue: can we trust the Key Manager? In

our proposed update, we try to reinforce the trust

between the KM and file owner by splitting the

encryption duty, because if we can not trus the

cloud storage it have to be the same for KM.

Besides the proposed update use stronger control

key, since the AES-128 key used in FADE can be

now recovered through a biclique attack [29].

The rest of the paper is organized as follows: in

the “Background” section, we present a survey

about methods and mechanisms used for secure

deletion and policy based secure deletion. In the

“Security Analysis of FADE” section, we present

FADE and discuss the Key Manager’s security

concern because it is considered as a third party in

FADE’s design and being that security of files is

more centralized on it. In the “Proposed Design”

section, we present our design and the prototype

implementation, which will be validated by a

statistical study, that is illustrated in the “Evaluation

and discussion” section. Finally, we come to end

with our conclusions.

2. SECURE DELETION

Secure deletion refers to a set of

operations and processes to assuredly delete data

from a storage media and make the file recovery

infeasible for a given level of efforts. Referring to

NIST Guide [9] and Garfinkel et al. study [8],

assured deletion can be achieved in multiple ways

clearing, purging/sanitizing, degaussing, media

destruction and encryption the most common are

secure overwriting and encryption based deletion

[10, 18]. In the cloud using secure overwriting

through a pattern is an abstract operation. Since

deleting files are due to CSP’s praxis, nothing

guarantee that all replicated files will be

simultaneously overwritten. Protection of

outsourced data through encryption has been

considered by researchers in the field, Darren et al.

analyzed popular cloud storage service with

different case study in different devices (laptop and

mobile) and showed that there is some leaked

information when using storage service [19, 12, 13,

14]. Besides they showed that it was possible to

gain full access to files in Google drive and

Dropbox when the client software is installed

without the need to have credential information

(username and password), also in previous version

of Dropbox client software, it was possible to copy

the Sync file to another computer and synchronize

it to an account. Besides, user privacy concerns in

OSN (online social network) is considered as a big

problem since deleted pictures may not be

immediately removed from the OSN servers which

can compromise the user’s privacy [20].

For all this reasons and others, we can be

sure that file’s privacy in the cloud should not be a

one side responsibility, but the consumer needs to

be part in order to be sure that the confidentiality of

its data is preserved. Ateniese et al. [21] proposed

an auditing system that verifies the integrity of

outsourced data. Wang et al. proposed also a secure

and efficient access to large scale outsourced data

mechanisms that support changes in user access

rights [22], but those solutions involve some

engineering change and their implementation is

more challenging. NIST guide and researchers [6,

8, 9] agreed that the optimal solution for assured

deletion is encryption; because, in contrast of

alternative methods, cryptographic based deletion

techniques can be easily deployed with all kind of

storage system regardless of their physical location

and with no need to make engineering changes,

besides the control of data is maintained by the

consumer and security properties are derived from

cryptography. That is why many storage

manufacturers started releasing their Self-Encrypted

Drives (SEDs) [8], but this does not involve the

consumer in encryption process since cryptographic

operations have to be done on off-premise side (at

CSP). Besides, the technology is not immune to

attack, thing that have been demonstrated by Daniel

Boteanu at Black hat Europe 2015 in Amsterdam

through the hot plug attack. However, the

development of encryption algorithms and schemes

played an important role in the evolution of secure

deletion in the cloud [23]. The operation has taken

another meaning and the implication of consumer

play an important role. The aim is the use of policy

based encryption, meaning that each file is

associated with a set of policies in order to make

the delete operation easy and flexible when the

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1384

policy meets the need by deleting the associated

key.

2.1 Policy Based Deletion

The policy-based secure deletion scheme,

aims to maintain files on storage media and

selectively delete some of them when a policy

meets the needs, the general idea is similar to

access control [24] but the aim here is the delete

and not the access operation. A user will be able to

decrypt a file, if and only if his attributes satisfy the

policy of the respective file. Policies may be

defined over attributes using conjunctions,

disjunctions and (k,n)-threshold gates, i.e., k out of

n attributes have to be present. For example, in

Figure. 1, File1 is associated to policies Alice and

Exp2017. Meaning that the decryption key will be

deleted when Alice leaves the organization or the

policy ”Exp2017” is satisfied (the date is 01-01-

2018 unless it was renewed). Perlman [25],

introduced time-based file assured deletion which

mean that, after a predefined time duration, keys are

deleted and makes associated files inaccessible. The

operation consists of encrypting the file with a Data

Key which in its turn encrypted by a Control key

that is maintained by a separate third party (Key

Manager) and when the predefined period expire

the Key Manager remove the Control Key. This

design was later prototyped in Vanish [16].

Figure 1: Example of policy graph

3. FILE ASSURED DELETION (FADE)

FADE’s popularity increased quickly,

researchers and engineers starts studying its

capabilities [26] and security concerns [27]. FADE

is built upon standard cryptographic techniques, the

encrypted files remain on, an untrusted, cloud

storage and encryption keys are independently

maintained by, a trusted, Key Manager (KM). The

delete operation is similar to ABE (attribute based

encryption)[23] paradigm whereby access rights are

granted to users through the use of policies.

FADE’s upload scenario is as follow (Figure. 2):

• For each policy, Pi the Key

Manager generates large RSA prime number pi and

qi.

• Calculate ni = pi × qi

• Then the Key Manager choose RSA

Private/Public pair control key (di,ei)/(ni,ei).

• Key Manager sends its public key (ni,ei)

to data owner.

• Data owner generates a data key K and a

secret key Si (Both K and Si are generated using

symmetric-key encryption AES-128).

• Data owner sends to cloud the encrypted

file F. [Enc{K}Si, Siei , Enc{F}K] and drop K and

Si since they are stored at cloud storage.

Figure 2 : FADE upload operation

For file download scenario and more

information about FADE design, we refer the

reader to [17].

3.1 Security Analysis of FADE

As mentioned earlier FADE’s design is

based on blinded RSA, which have shown some

side channel leakage [28], meaning that data owner

encrypts the file through a Data Key, and this data

key is further encrypted by key manager’s control

key. Since CSP is an untrusted third party, we

believe that it has to be the same for KM. In the

upload operation (Fig. 2), data owner’s

cryptographic keys are stored at the CSP, while KM

store its cryptographic key locally. Then, if CSP

colludes with KM they can decrypt sensitive files

following the same download operation described

in FADE.

Ranjan et al. [27] have shown, in their

network security study of FADE, that some

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1385

information (policy, public key and private key)

can be easily leaked by sniffing the network flow

between data owner and key manager. If there is a

policy belonging to many users e.g. P1: members of

IT group. A range of files satisfy this policy (P1) so

if one client captures the Pi of some i
th

 client he can

get client’s secret key and access all files that

satisfy the same policy even if the client asks for

key deletion. Also, Habib et al. [26] pointed that

FADE’s design has complex system architecture

for storing keys at the Key Manager.

FADE uses symmetric encryption (AES-

128) for cryptographic operations. A study [29]

proved that a biclique attack could recover an AES-

128 keys with a computational complexity of

2126.13 and data complexity 256. Thus, with the

rise of computational machines, the recovery of

such key will become easier in the coming decades.

3. PROPOSED UPDATE

We would like to inform the reader that

our update benefits from all security aspects in

FADE, our main contributions are: (i) adding a

secure channel between data owner and KM for key

exchange. The Control Key is encrypted before it is

sent to data owner. (ii) The design is lightweight

through the use of XOR operation, which makes it

more suitable for personal use (iii) cryptographic

process is split between data owner and KM. The

operation is described in this section.

In our case study, we consider that KM is

an untrusted third party since it is the same for CSP.

Our proposed update splits encryption’s duty. The

cryptographic key is divided into two parts: KM’s

key Ke and data owner’s key Kc. The combination

of the two keys is used for cryptographic

operations. Ke is an AES-256 key, the choice was

made based on the study presented in [29] because

AES-256 needs more level effort to be discovered

and does not threaten the practical use of AES due

to its high computational complexity. In client’s

side we use the XOR operation, a random key is

generated based on the length read from the file.

The idea behind XOR encryption is that it is

impossible to reverse the operation without

knowing the initial value of one of the two

arguments which is the case in our proposed

solution. For example, if we XOR two variables of

unknown values, we cannot know from the output

what the values of those variables are. If (A ⊕ B)

returns TRUE, we cannot know whether A is

FALSE and B is TRUE, or whether B is FALSE

and A is TRUE. However, if KM security is

compromised and the attacker get access to Ke, or

the key manager colludes with cloud storage it will

be impossible to get access to the file because Kc is

needed, and it is encrypted with the client’s Public

key.

File upload and keys exchange scenario

(Figure. 3):

• For each policy Pi, KM generates secret

AES-256 key Kei.

• KM sends Kei encrypted with data

owner’s public key Enc{Kei}PubC

• Data owner generates a data key Kc.

• Data owner encrypts the file F with its

data key Enc{F}Kc

• Data owner sends to cloud [Pi,

Enc{Enc{F}Kc}Kei]

• Data owner sends its data key encrypted

with its public key to KM Enc{Kc}PubC

Figure 3 : Proposed Update Upload Operation.

File Download and key exchange scenario (Figure.

4):

• Data owner fetch [Pi,Enc{Enc{F}Kc}Kei]

from cloud storage

• Data owner sends Pi to KM.

• KM sends the corresponding control key

Enc{Kei}PubC and data key Enc{Kc}PubC.

• Data owner decrypts Kc and Ke using its

private key.

• Data owner decrypts the file F.

Figure 4 : Proposed Update Download Operation

4. EVALUATION AND DISCUSSION

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1386

We used the Dropbox API [4, 30] to

download/upload plain files from/to Dropbox for

different sizes.

All the tests have been done on a computer with i7-

5500 2.40 Ghz processor and 16Go of Ram. It is

important to note that the performance results

depend on the deployment environment.

Nevertheless, we emphasize that our experiments

can prove the feasibility of the update in reinforcing

security of FADE.

We implement a prototype of our update

atop Dropbox, evaluate the experimental results and

performances. It is crucial that the modification

does not introduce substantial performance

overhead that will lead to a big increase in data

management costs and significant computational

overhead. Therefore, our empirical results aim to

answer the following issue: Does the update

improve security of KM on behalf of time overhead

performance? We average each of our measurement

results over 5 different trials.

We measured the time performance of the

design using our developed prototype. We divided

the overhead time of each measurement into three

components:

• Data transmission time: The

download/upload time between file owner and

cloud storage.

• Cryptographic operations: The total

computational time used for performing AES and

XOR encryption operation.

• Key manager: The interaction time

between KM and file owner for generating and

downloading cryptographic key and policy.

The experiments aim to measure the running time

(in second) of file upload and download operations

for different sizes (Table 3 and 4) and to calculate

the overhead cost time (table 1 and 2). Our

experiments showed that plain file transmission is a

dominant factor and the cryptographic operations

time increases linearly with the file size and

remains negligible compared to time upload and

download operations.

Table 1: Overhead Cost Time for Upload Operation

File Size Proposed update overhead cost

time

1KB 21.02%

10KB 20.28%

100KB 11.69%

1MB 3.44%

5MB 1.21%

10MB 0.97%

Table 2: Overhead Cost Time for Download Operation

File Size Proposed update overhead cost

time

1KB 89.86%

10KB 66.95%

100KB 36.91%

1MB 27.21%

5MB 8.97%

10MB 7.80%

First, the proposed update is a security

improvement of FADE, which is considered to be

the best known scheme for secure deletion in cloud

storage.

We note that when the file size is small,

the cryptographic operations and data transmission

could be equal to plain file upload and download.

However, the whole operation time is negligible

and data owner could not feel the overhead time.

In FADE’s download operation [17], the data

owner fetches [Enc{K}Si, Si
ei
, Enc{F}K] from the

storage cloud. Then the data owner generates a

secret random number R, computes R
ei
, and sends

R
ei
.Si

ei
to KM to request for decryption. The KM

then computes and returns ((R.Si)
ei
)

di
 to the data

owner. The data owner can now remove R and

obtain Si, and decrypt Enc{K}Si and hence Enc{F}K.

Following the same procedure, KM and

CSP can collude to get access to data owner files.

However, the proposed update splits the

cryptographic operation between KM and data

owner. The file is encrypted first by Kc then by Ke.

And since Kc is stored encrypted by data owner’s

public key at KM, it is hard for KM and CSP to

collude and read sensitive data. Moreover, even if

KM’s security is compromised, data owner’s file

will remain protected since the attacker can’t get

Kc.

The key leakage inherent to FADE [26] is

no longer a problem, because the flows between

key manager and client are reduced and reinforced

through encryption (each key exchange is

encrypted). Also, the problem of AES-128 key-

recovery attack [29] is no longer a concern for

coming decades, because the updated design uses

an AES-256 key.

The empirical study of the proposed

update shows that the overhead cost is slightly

negligible when we deal with files of large size.

Namely more than 1MB, the overhead tends to a

negligible value, which lead us to conclude that the

update is a user friendly solution because it does

not involve a complex system architecture for

generating cryptographic keys as FADE. that

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1387

reinforce the security of FADE and data privacy. In

a nutshell, the proposed update enhances the

security of FADE without penalizing significantly

its performance (Fig. 5 and 6).

Figure 5 : Upload overhead cost time

Figure 6 : Download overhead cost time

5. ASSUMPTION

Our main design goal is to provide assured

deletion of files with a high security insurance.

When the file owner asks for a file to be, the KM

delete the corresponding Control Key. In case that

he does not, and the KM colludes with the cloud

storage in order to get sensitive data, it will be hard

for both of them since the file is encrypted by the

file owner’s data key which is stored encrypted at

the KM. However, we stress that this design is not

intended to be a formal specification (indeed many

important business and engineering questions

would need to be addressed). However, it’s only

meant reinforce the security concern of FADE and

emphasis it security concern as described in

[26,27,28,29] . We believe that at such stage it is

still important to improve KM security robustness

in order to minimize the chance of being

compromised since it’s considered as a high target

for external attacker.

6. CONCLUSION

Nowadays, data confidentiality become

more challenging and sensitive in public cloud

storage solutions. While its benefit is well

understood by consumers, its security concern in

term of confidentiality and assured deletion are not.

Our contribution presents an introduction to some

confidentiality concerns about public storage

solution in term of assured deletion and proposed

mechanism to mitigate them as FADE.

Although, FADE proved its capability to

ensure assured file deletion, but the design showed

some leakage that we tried to improve in order to

benefit from the security advantage of cryptography

by involving the consumer in encryption process

and increasing the security of key management.

When FADE design focused on files assured

deletion our proposed update focused on keys

security by splitting the duty of encryption between

the consumer and key manager. We noticed that our

new design's performance stays insignificant when

the file size increases. Thus, it is more suitable for

organizations that aim to archive large files. In the

other hand individual customers who manipulates

small file sizes can still get best result. So we can

say that the new design improves security of key

management without affecting the overhead

performance.

In our future work, we will try to design a

solution similar to ABE mechanism, in order to

have a provably secured and optimized system that

will benefit from all the advantage of cryptography

security with less interaction with the key manager

in order to reduce the risks of web flow’s leakage

and to leverage the Key Manager trust’s problem.

ACKNOWLEDGEMENT

Authors are thankful to SEF and MH for their
helpful discussions and for providing several useful
references. They wish also to thank Miss. Hajar
Chiba for pointing out first layer English
corrections. They would also like to thank the
reviewers and Editor for the time that they will
consider for the work.

REFRENCES:

[1] Rai, R., Sahoo, G., Mehfuz, S.: Exploring the f

actors influencing the cloud computing adoptio

n: a systematic study on cloud migration. Sprin

gerPlus 4, 1-12 (2015). doi:10.1186/s40064-01

5-0962-2

[2]

[3] A. Bentajer , K. Abouelmehdi, L. Dali, S. Elfez

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1388

azi, M. Hedabou, and F. ElAmrani : An assess

ing approach based on fmeca methodology to e

valuate security of a third party cloud provider.

Journal of Theoretical and Applied Information

Technology. vol 74, 336-344 (2015)

[4] L.K. Ronald and R.D. Vines: Cloud Security:

A Comprehensive Guide to Secure Cloud Com

puting. Wiley Publishing, Hoboken (2010)

[5] Dropbox for .NET Developers. https://www.dr

opbox.com/developers/documentation/dotnet

[6] K. Hashizume and Rosado, D.G., Fernandez-M

edina, E., Fernandez, E.B.: An analysis of secu

rity issues for cloud computing. Journal of Inte

rnet Services and Applications, vol. 4, p.1-13 (

2013). doi: 10.1186/1869-0238-4-5

[7] Y.A.A.S. Aldeen and M. Salleh and M.A. Razz

aque: A comprehensive review on privacy pres

erving data mining. SpringerPlus, vol. 4, p. 1-3

6 (2015). doi:10.1186/s40064-015-1481-x

[8] S. Aljawarneh. Advanced Research on Cloud

Computing Design and Applications, IGI

Global. Hershey, doi:10.4018/978-1-4666-

8676-2

[9] S.L. Garfinkel and A. Shelat: Remembrance of

data passed: a study of disk sanitization practic

es. IEEE Security Privacy, pp.17-27, (2003). d

oi:10.1109/MSECP.2003.1176992

[10] NIST, Computer Security Division, Informatio

n Technology Laboratory: NIST Special Public

ation 800-88 Revision 1 Guidelines for Media

Sanitization. Gaithersburg (2014). NIST, Com

puter Security Division, Information Technolo

gy Laboratory

[11] S. Skorobogatov: Data remanence in flash me

mory devices. In: Rao, J.R., Sunar, B. (eds.) Cr

yptographic Hardware and Embedded Systems

- CHES 2005: 7th International Workshop, Edi

nburgh, UK, August 29 - September 1, 2005. P

roceedings, vol. 3659, pp. 339-353. Springer, B

erlin, Heidelberg (2005)

[12] D. Yimam and E.B. Fernandez: A survey of co

mpliance issues in cloud computing. Journal of

Internet Services and Applications, vol. 7, pp. 1

-12, (2016). doi:10.1186/s13174-016-0046-8

[13] Q. Darren and R.C. Kim-Kwang: Dropbox anal

ysis: Data remnants on user machines. Digit. In

vestig., p. 3-18, (2013). doi:10.1016/j.diin.2013

.02.003

[14] Q. Darren and R.C. Kim-Kwang: Google drive:

Forensic analysis of data remnants. Journal of

Network and Computer Applications, pp. 179-

193 (2014). doi:10.1016/j.jnca.2013.09.016

[15] Q. Darren, B. Martini, and R.C. Kim-Kwang:

Microsoft skydrive cloud storage forensic

analysis. In: Cloud Storage Forensics, 1st

Edition, 1st edn., pp. 23-61. Syngress, Boston

(2014)

[16] K. Munadi, F. Arnia, M. Syaryadhi, M. Fujiyo

shi, and H. Kiya: A secure online image tradin

g system for untrusted cloud environments. Spr

ingerPlus, Vol. 4, pp. 1-12, (2015). doi:10.118

6/s40064-015-1052-1

[17] R. Geambasu, T. Kohno, A.A. Levy, and H.M.

Levy: Vanish: Increasing data privacy with

self-destructing data. In: Proceedings of the

18th Conference on USENIX Security

Symposium, pp. 299-316 (2009)

[18] Y. Tang, P.P.C. Lee, J.C.S. Lui, and R. Perlma

n.: Secure overlay cloud storage with access co

ntrol and assured deletion. IEEE Transactions o

n Dependable and Secure Computing, Vol. 9, p

p. 903-916, (2012). doi:10.1109/TDSC.2012.4

9

[19] P. Gutmann: Secure deletion of data from mag

netic and solid-state memory. In: Proceedings o

f the 6th Conference on USENIX Security Sym

posium, Focusing on Applications of Cryptogr

aphy – Vol. 6, pp. 8-8 (1996). USENIX Associ

ation

[20] Q. Darren, B. Martini, and R.C. Kim-Kwang:

Cloud storage forensic framework. In: Cloud St

orage Forensics, 1st Edition, 1st edn., pp. 13-2

1. Syngress, Boston (2014)

[21] S. Lai, J.K. Liu, K-K.R. Choo, and K. Liang.:

Secret picture: An efficient tool for mitigating

deletion delay on osn. In: Qing, S., Okamoto, E

., Kim, K., Liu, D. (eds.) Information and Com

munications Security: 17th International Confe

rence, ICICS 2015, Beijing, China, December (

2015), Revised Selected Papers, pp. 467-477. S

pringer, Cham (2016)

[22] G, Ateniese, R. Di Pietro, L.V. Mancini, and G

. Tsudik: Scalable and efficient provable data p

ossession. In: ACM (ed.) Proceedings of the 4t

h International Conference on Security and Pri

vacy in Communication Netowrks, pp. 1-10 (2

008). doi:10.1145/1460877.1460889. http://doi

.acm.org/10.1145/1460877.1460889

[23] W. Wang, Z. Li, R. Owens, and B. Bhargava: S

ecure and efficient access to outsourced data. I

n: ACM (ed.) Proceedings of the 2009 ACM

Workshop on Cloud Computing Security, pp. 5

5-66 (2009). doi:10.1145/1655008.1655016. ht

tp://doi.acm.org/10.1145/1655008.1655016

[24] H.C.A. van Tilborg, and S. Jajodia: Encyclope

dia of Cryptography and Security. Springer, Bo

ston, MA (2011). doi:10.1007/978-1-4419-590

6-5

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1389

[25] M. Habiba, M.R. Islam, A.B.M.S Ali, and M.Z

. Islam: A new approach to access control in cl

oud. Arabian Journal for Science and Engineeri

ng, vol. 41, pp.1015-1030 (2016). doi:10.1007/

s13369-015-1947-8

[26] R. Perlman: File system design with assured de

lete. In: Third IEEE International Security in St

orage Workshop (SISW’05), pp. 6-88 (2005). d

oi:10.1109/SISW.2005.5

[27] A.B. Habib, T. Khanam, and R. Palit: Simplifie

d file assured deletion (sfade) - a user friendly

overlay approach for data security in cloud stor

age system. In: IEEE (ed.) International Confer

ence on Advances in Computing, Communicati

ons and Informatics (ICACCI), pp. 1640-1644

(2013). doi:10.1109/ICACCI.2013.6637427. I

EEE

[28] A.K. Ranjan, V. Kumar, and M. Hussain: Secu

rity analysis of cloud storage with access contr

ol and file assured deletion (fade). In: IEEE (ed

.) Second International Conference on Advance

s in Computing and Communication Engineeri

ng (ICACCE), pp. 453-458 (2015). doi:10.110

9/ICACCE.2015.10. IEEE

[29] C. D. Walter. Longer randomly blinded RSA

keys may be weaker than shorter ones. In

Proceedings of the 8th international conference

on Information security applications

(WISA'07), Sehun Kim, Moti Yung, and

Hyung-Woo Lee (Eds.). Springer-Verlag,

Berlin, Heidelberg, pp. 303-316. (2007).

[30] B. Tao, H. Wu, "Improving the biclique crypta

nalysis of AES", Proc. Australas. Conf. Inf. Se

curity Privacy, vol. 9144, pp. 39-56, Jun. 2015.

http://dx.doi.org/10.1007/978-3-319-19962-7_

3

[31] Dropbox Core API.

https://www.dropbox.com/developers-va/core/docs

[32] Jayaprakash Kar, and Manoj Ranjan Mishra,

"Mitigating Threats and Security Metrics in

Cloud Computing," Journal of Information

Processing Systems, vol. 12, no. 2, pp.

226~233, 2016. DOI: 10.3745/JIPS.03.0049.

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1390

ANNEXURE:
Table 3: Overhead Cost Time for Upload Operation

File

Size

Plain

upload

Proposed

update

upload

Policy

transmission

XOR(second) AES(second)

1KB 0.365 0.693 0.292 0.012 0.024

10KB 0.466 0.778 0.271 0.015 0.026

100KB 0.978 1.339 0.322 0.013 0.026

1MB 1.9 2.417 1.9 0.187 0.029

5MB 6.73 7.334 6.73 0.13 0.084

10MB 8.12 8.753 8.12 0.23 0.093

Table 4: Overhead Cost Time for Download Operation

File

Size

Plain upload Proposed update

download

Policy

transmission

XOR(second) AES(second)

1KB 1.41 1.712 0.262 0.015 0.025

10KB 1.57 1.89 0.279 0.015 0.026

100KB 3.25 3.63 0.341 0.013 0.026

1MB 15.6 16.137 0.321 0.187 0.029

5MB 51.6 52.225 0.411 0.13 0.084

10MB 75.5 76.233 0.41 0.23 0.093

