
Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1372

 A NOVEL METHOD FOR EVALUATION OF NOSQL

DATABASES: A CASE STUDY OF CASSANDRA AND REDIS

1
HADI HASHEMI SHAHRAKI,

2*
TAGHI JAVDANI GANDOMANI,

2
MINA ZIAEI NAFCHI

1
Department of Computer Engineering

Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2
Department of Computer Engineering

Boroujen Branch, Islamic Azad University, Boroujen, Iran

E-mail:
1
hadihashemi_sh@yahoo.com,

2
t_javdani@azad.ac.ir, ziaei.mina@yahoo.com

ABSTRACT

In today's complex world, due to the increasing use of web-based programs, smart phones and social

networks, production rate is increasing constantly as well as volume of data. Also, companies try to provide

their services with more features in order to stay ahead of their competitors. That increases the production

of information by the users too. In this case, it seems that moving from rational databases to non-relational

databases in a necessity. With regard to the various of use cases and their requirements, also the primary

features of NoSQL databases, choosing the most appropriate NoSQL database can be big concern of

developers. The right selection of NoSQL databases will avoid to wasting time, money, and energy. On this

paper, we propose a general and structured method to help developers, customers, and managers to evaluate

NoSQL databases in the right way and facilitate the process of decision making to select one of them.

Keywords: Non-Relational Databases, Nosql Databases, Evaluation, Performance, Scalability

1. INTRODUCTION

Nowadays, the volume of data is

increasing constantly; hence the cost of relational

databases scalability will be very expensive. In

contrast, NoSQL databases are designed for

appropriate horizontal scalability and

implementation of the community hardware.

On the one hand, concept of "one size fit's it all" is

not appropriate for current application scenarios and

mainly is suitable for systems with high workload

applications. [1]. Also, according to report of

Digital Universe, the volume of data is expected to

be double in every two years over the world. So,

often systems that use RDBMS will be restricted

against of the rapid data growth. In addition, since

the emergence of RDBMS, most of the information

systems have been built based on them [1].

Furthermore, some of information systems need to

higher performance and distributed databases rather

than higher reliability [2]. Existing cloud

environments should to be supported by particular

feature including flexible schema, fault-tolerance,

simple invocations, optimum use of distributed

indexes and RAM, availability, and replication of

data over the multiple servers [3-4]. NoSQL

databases always have many goals and advantages.

One of their main goals is cost and risk reduction by

using of community servers. This is the idea used

by Google in BigTable.

The purpose of performance can be many factors

such as throughput, run time, average operation

latency, diffusion index points, being suitable for

real time applications, etc. [5].

MapReduce is one of the effective techniques in

enhancement of the performance [2]. However, it

had been used for parallel processing by Google.

Discussion, analysis, benchmark and evaluation of

NoSQL databases together with comparison of

them will help developers and customers to select

the best choice to meet their requirements [3].

Careless in choosing databases and low attention to

nature of data and environment results in to

increasing re-work for revising structure and

selection of database. Therefore, evaluation and

analysis of databases should be done carefully by

using of the best tools to save money, cost, and

resources [6]. Indeed, paying enough attention

during the evaluation process is crucial. On the

other hand, regarding to data growth on the web,

concerns about scalability, maintenance,

management, and inefficient performance of

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1373

database systems are increasing too. NoSQL

databases have many goals and benefits. One of the

main objectives is reducing costs and risks by using

Commodity Server. The objective of the

performance can be providing several factors such

as throughput and response time, average delay of

operations, the diffusion index points, the

appropriateness of the database for indexing,

suitability for real time systems, and suitability for

low volume and accessible data [5]. MapReduce is

one of the techniques that are used to increase

performance of databases. MapReduce algorithm

originally developed at Google for parallel

processing of data [2]. Discussion, review,

analyzing, evaluate and benchmark of NoSQL

databases along with comparison of them will help

developers and businesses to choose the best

solution for their needs [3]. In case of selection of a

database without considering their data types and

the required working environment, a huge amount

of re-works should be done to in order to select the

best choice of database. Thus, evaluation and

analysis of the databases by using the available

tools in order to choose the best option should be

considered specifically [6].

In fact, during the evaluation process, it is necessary

to pay attention to the more effective items.

However, due to the increasing of large volumes of

data over Internet, concerns for scalability,

maintenance, management, and inefficiency of

database systems. These concerns are important

factors influenced by the features of NoSQL

databases. The previous studies indicate that there is

not enough confidence in using and implementing

of NoSQL databases [4,7-8]. It is why in some

studies emergence of NoSQL database is called as

“NoSQL movement” indicating lack of enough trust

to them. Therefore, this paper tries to propose a

novel method of evaluation and analysis of such

databases to make them more transparent [9-11]. In

order to eliminate these concerns, we need to prove

performance and providing evaluation of the

database. The novel aspect of this paper is

providing a detailed evaluation method which is

presented in Figure 21. The proposed method

includes selection of the proper details (number of

threads, number of records, etc.) based on the

general rule of 2
i
. This leads to better evaluation by

considering real environments (with different

workloads). Furthermore, this paper proposes a new

metric named “Diffusion Index Points” as a new

factor that has not been used yet.

Finally, it should be noted that, the main aim is to

clarify the behavior of a database in the provided

conditions and environments.

2. SELECTION OF CANDIDATE

DATABASES AND OTHER FACTORS

Regarding to our goal and variety of

NoSQL databases and their features, it has been

tried to select two databases from two more

popular, key-value and column-store categories.

Thus, Cassandra and Redis were selected. For the

evaluation of each Workload, we used 1, 2, and 4

threads for Machine1 and Machine2. Also, we used

1, 2, 4, 8, and 16 threads for Machine3. We can

evaluate maximum processor power using the same

number of test threads and processor threads [9].

We can measure maximum power processors in this

direction. The other goal of this paper was targeted

selection of numbers to use 2
i
 general rule for the

numbers.

3. TEST ENVIRONMENT

This evaluation had been done on 3

machines. Machine1 had a Core i3 processor, 2GB

RAM; Machine2 had a Core i5 processor, 6GB

RAM, and Machine3 was an account of AmirKabir

University cloud system that had 16 cores and

32GB RAM. The evaluation had been done using

YCSB framework. The number of evaluation

threads was 1 to 16, and the number of records was

selected 2000 to 1024000. On each database we

used two Workloads, WorkloadA and WorkloadF.

Totally, 423 experiments have been done and the

main steps of the evaluation were “identifying

effective factors”, “benchmarking”, and “analysis

and interpretation”.

These machines and different variables were

selected to achieve different results and closer to

real environments. Variable names indicated

machine number, database name, Workload, and

number of threads. For instance,

“M1_Cassandra_WorkloadA_with 1 thread”

indicates Machine1, Cassandra DB, WorkloadA

and one thread.

4. LIMITATION

One of the features NoSQL database

evaluation is that so many factors should be

considered. Thus, developers need to deal with

many details in the evaluation process.

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1374

With regard to the activities and internal operations

of operating systems and getting different results in

different time slices, it is recommended to do same

evaluations in different times. To make the

evaluations closer to the real conditions

environments and in case of availability of

laboratory facilities, evaluations can be done in

different models of Sharding technique. On the

other hand, the CPU Overclock might be used to

evaluate the maximum CPU power for processing

records.

5. RESULTS

First, a brief definition of the concepts used in

the evaluation process is provided.

• Run Time:

Runtime is the total testing time (operations on

records) based on type of workload and the number

of operations.

• Throughput:

Throughput is the Average number of

operations in a second that is estimated by the

YCSB framework.

• Average latency:

Average latency is the average measured

response time of a given database operation in the

microsecond.

• Diffusion Index Points on Run Time:

It shows to what extent increasing number of

threads influences response and execution time.

We did benchmarking based on different criteria

including run time, throughput, average latency and

diffusion of run time points.

5.1 Run Time

As shown in Figure 1, the run time for 1, 2, and

4 threads there is the same from 2000 to 64000

records approximately. But the start of

effectiveness and different number of threads is

from 128000 records. So that, 4 threads case shows

the best performance and the worst performance is

shown on 1 thread.

Notable point is that there is the same performance

on 2 and 4 threads on 1024000 records. That means

in Cassandra and WorkloadA, there is no

considerable different for population of 1000000

records and number of users (threads). But, if this

number of records is requested by one user in one

node with same configure of Machine1, that node

will run time will be doubled.

In Figure 2 WorkloadA is compared with

WorkloadF in the same machine and database.

WorkloadA is 1.28 times faster than WorkloadF on

512000 records and 1.46 times on 1024000 records.

Figure 1: Run Time on Cassandra and Workloada

Figure 2: Comparison of Workloada and Workloadf

On Redis database the start of effectiveness is seen

from 64000 records. Important note is that

Machine1 can process only up to 521000 records,

as shown in Figure 3. Also, this machine and

WorkloadF got timeout error. This case has been

shown in Figure 4.

Figure 3: Run Time on Redis and Workloadf

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1375

 Figure 4: Run Time on Redis and Workloada

But after loading data and on 1024000 records, the

system was in a Waiting state. This is mainly

because of the In-Memory nature of the database

and low memory (only 2GB) available in

Machine1. This means that, if a node with the same

power of Machine1 does not able to process

512000 records by a user. But this number of

records can be processed by 2 threads as well as by

4 threads. On Machine1, two Workloads have been

compared as shown in Figure 5(a). Naturally, since

WorkloadF is heavier than WorkloadA, it shows

weaker performance. So, superiority factor on

256000 records is 1.46 and on 512000 records is

1.52. As previously mentioned, this is because of

the In-Memory nature of Redis.

Although in Cassandra and 1024000 records, there

is greater run time rather than Redis. But, the test

has been done completely in Redis, because of its

In-Memory feature. As shown in Figure 5(b) we

compared 2 threads and 4 threads on Machine2.

Run time difference on 512000 records for 4

threads rather than 2 threads was 70 s. This

difference reaches to 19 s by doubling number of

the records. So we can conclude that in real

environments with a certain difference between the

numbers 2 and 4 of threads and population of

1000000 records cannot be felt. While this process

cannot be seen on Redis. So that, in both of tests the

different is 3 s. as shown in Figure 6, that means

Redis retains its influence. That it shows the nature

of Redis against increasing the number of records

and the number of threads in this range in real

environments. According to this test, can be said

this event will remain on more records. Based on

this evaluation with confidence, we can be said the

impact of this factor in Redis is much weaker.

(a)

(b)

Figure 5: Comparison of Run Time of Both Databases

(A) And Comparison of 2 Thread and 4 Threads States

On Workloadf and Machine2(B)

Figure 7 is a sub-display of Figure 5 depicting

128000 and 256000 records states. The run time

only on 256000 records for 4threads is about 124ms

greater than 2 threads case.

Figure 6: Comparing of 2 Threads and 4 Threads on
Redis

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1376

Figure 7: Run Time on Workloada and Redis

5.2 Throughput

As shown in Figure 8, in Cassandra

throughput increases in Machine3 by increasing the

number of threads, as expected. This event is the

same as for WorkloadF. But as shown in Figure 9

and Figure 10, Redis has a threshold on 8 threads so

that not only more throughputs cannot be seen, but

also, number of records was decreased in most

cases. The few cases where the number of 16

threads is better than 8 threads are on 64000 records

that it can be seen in Figure 9. However, the

difference is very low. So it can be seen that on

Redis increasing of throughput is not equal with

increasing of speed. In Figure 11 and Figure 12, we

compared Cassandra and Redis on the best number

of threads states, i.e. 8 threads and 16 threads. As

can be seen Redis on WorkloadA has 2.18 times

superiority rather than Cassandra, and on

WorkloadF Redis has 2.30 times performance than

Cassandra. This event on 8 threads has greater

superiority factor. Superiority factor of the

performance in WorkloadA is 3.46 and in

WorkloadF are 4.26.

Figure 8: Throughput on Workloada and Cassandra

Figure 9: Throughput on Workloada and Redis

Figure 10: Throughput on Workloadf and Redis

 Figure 11: Comparison of Cassandra and Redis on 8

Threads

 Figure 12: Comparing Cassandra and Redis On 8 Threads

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1377

5.3 Update, Write, Read Latency Average

In Figure 13, we presented operations

average latency with 256000 records on different

threads and WorkloadA. In this test, the average

read latency has 825µs threshold on 4 threads. The

number of threads starts from 1 and increases to 16

threads using the general rule 2
i
.

First, the average latency is started with 1449µs on

1 thread and continues to 4 threads descending, but

after that this event to 16 threads is ascending. So

based on our use case statistical population, we

should consider a trade-off between number of

requests and number of users. The best case for

such a statistical population will be 4 threads for a

node like Machine3 and on 256000 records.

Same situation can be seen in Figure 14 which

depicts the average latency for different thread

numbers in WorkloadF. However, the best case can

be seen for 2 threads. This situation can be seen for

Update and Modify too.

Figure13: Average Latency on Cassandra and Workloada

Figure14: Average Latency on Cassandra and Workloadf

While as shown in Figure 15 to 18, unexpectedly

on Redis average latency is ascending and the best

state is seen in 1 thread continuously.

Figure 15: Average Latency on Redis and Workloada

Figure 16: Average Latency on Redis and Workloadf

Figure 17: Average Latency on Redis and Workloada

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1378

Figure 18: Average Latency on Redis and Workloadf

5.4 Diffusion Index Points On Run Time

Diffusion index indicates increase the

number of threads how much will have impact on

run time. The following charts display the impact of

increasing number of users over the same of

records. More difference between diffusion points

and diffusion index indicates lower impact of

increasing number of users (threads). Generally,

can be said: Impact factor of increasing number of

threads = the role of users in determining run time.

Diffusion index on Cassandra and Machine2 and on

both of Workloads is shown in Figure 19(a). Also

Diffusion index on Redis and on both of Workloads

is shown on Figure 19(b). In the evaluation process,

we display diffusion of diffusion index on

Machine3 on Figure 20. As can be seen, all

diffusion index points (with the exception of one

point) are on top and far from the diffusion index.

Because of the more number of threads on

Machine3, this event is noticeable. So that, on

Cassandra only 3 points (1thread states on both of

Workloads and 2 threads states on WorkloadF) are

on the top of the diffusion index. That means run

time of only 3 points is higher than value of

diffusion index.

(a)

(b)

Figure 19: Diffusion Index Points on Both of Workloads

and Cassandra

(a)

(b)

Figure 20: Diffusion Index Points on Both of Workloads

and Redis

At the same time, run time of 7 points have the

same value with diffusion index or have less than

diffusion index. Due to existing of appropriate

resources on this machine, the most of the

distribution points can be seen around the diffusion

index. This event shows high impact of the

increasing number of threads on the performance.

So that, Redis has lower dispersion because of

being close to the diffusion points in Casandra.

6. FUTURE WORKS

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1379

According to variety of factors in

databases evaluation, conducting more tests reveals

more aspects so that developers would encourage

experiencing more situations. The more awareness

about NoSQL databases, the better evaluation

process. So, more knowledge about the evaluation

process leads to the better results. Because of

running Operation System’s tasks, it is better that

evaluation process to be done in different time

slices.

Furthermore, evaluation can be performed in

various models of Sharding techniques to get closer

to real world situation. Also, Chi-square can be

used in the evaluation process. On the other hand,

to evaluate the maximum power of processor to

process records, processor over clock can be

considered.

7. CONCLUSION

Conducted evaluation has been done in

four steps including run time, average latency,

throughputs, and diffusion index. Regarding the run

time, start of effectiveness was from 128000

records in WorkloadA in Cassandra. So that the

best performance is on 4 threads and the worst

performance is on 1 thread. In throughput aspect on

Cassandra and Machine1 increasing the throughput

against the number of records is irregular. While on

Redis this process is regular and there is the better

performance of Redis on WorkloadA with 2.18-fold

of superiority factor on 16threads and 3.46-fold on

8threads.Also this process and performance is

correct in WorkloadA. So that, this database has

2.30-fold of superiority factor on 16threads and

4.26-fold on 8threads. In this evaluation, with

WorkloadA, 4threads and Machine3 the average

read latency has 825ms threshold. So, we should do

trade-off between the number of requests and the

number of users.

The best state on Redis is 1thread. The reason of

this event is In-Memory feature on Redis. It is

mainly because switching between threads reduces

performance. In this evaluation, because of having

less and lower resources in Machine 2, all points of

diffusion index (exception one point) are above and

far from diffusion index. Results on this event due

to existence of appropriate resources and more

number of threads in Machine3 are more

significant. In Cassandra only 3 points are higher

than value of diffusion index. While run time of 7

points have the same value with diffusion index or

have less than diffusion index. This event reflects

the high impact of increasing the number of threads

in the performance in this machine.

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1380

REFRENCES:

[1] Y.L. Choi, W.S. Jeon, and S.H. Yoon,

“Improving Database System Performance by

Applying NoSQL”, JIPS, Vol. 10, No. 3,2014

pp.355-364.

 [2] A. Lith, and J. Mattsson, “Investigating storage

solutions for large data-A comparison of well

performing and scalable data storage solutions

for real time extraction and batch insertion of

data”, Department of Computer Science and

Engineering CHALMERS UNIVERSITY OF

TECHNOLOGY Goteborg Sweden, Master of

Science Thesis, 2010.

[3] S.K. Gajendran, “A survey on nosql databases”,

University of Illinois, ebook. 2012

[4] K. Grolinger, W.A. Higashino, A. Tiwari, and

M.A. Capretz, “Data management in cloud

environments: NoSQL and NewSQL data

stores”, Journal of Cloud Computing:

Advances, Systems and Applications, Vol. 2,

No. 1, 2013, pp.1.

[5] Data Engineering [in Persian]. (2016),

www.bigdata.ir, last accessed June 2016.

[6] M.A. Olson, “Selecting and implementing an

embedded database system. Computer”, IEEE

Computer Society Press Los Alamitos, Vol. 33,

No. 9, 2000, pp.27-34.

[7] Y. Abubakar, T.S. Adeyi, and I.G. Auta,

“Performance evaluation of nosql systems using

ycsb in a resource austere environment”, ijais,

Vol. 7, No. 8, 2014, pp.23-27.

[8] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and

J. Abramov, “November. Security issues in

nosql databases”, International Conference on

Trust, Security and Privacy in Computing and

Communications, 2011, pp. 541-547.

[9] C. Mohan, “History repeats itself: sensible and

NonsenSQL aspects of the NoSQL hoopla”,

International Conference on Extending

Database Technology, 2013, pp. 11-16.

[10] J.E. Pagán, J.S. Cuadrado, and J.G. Molina,

“Morsa: A scalable approach for persiscesting

and accessing large models”, International

Conference on Model Driven Engineering

Languages and Systems, Vol. 6981, No.

0302-9743, 2011, pp. 77-92.

[11] A. Zaslavsky, C. Perera, and D.

Georgakopoulos, “Sensing as a service and big

data”, arXiv, preprint arXiv:1301.0159.

Journal of Theoretical and Applied Information Technology
31

st
 March 2017. Vol.95. No 6

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1381

Figure 21: Method Of Evaluation Of Nosql Databases

