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ABSTRACT 

 
In this article the nonlinear time fractional order partial differential equation (NTFPDE) subject to a 
boundary controller at the boundary is considered. The semi-discretized backstepping control technique is 
used for stabilize the partial differential equation with fractional order 0 1.q< ≤  To the author best 

knowledge, this is the first time in the literature that the backstepping method is being used for stabilizing 
NTFPDE. Illustrative example is given to demonstrate the effectiveness of the proposed control scheme. 
Simulation results show that the proposed design not only can stabilize the NTFPDE but performs better 
than an integer order as well.   

Keywords: Backstepping Method, Fractional Lyapunov Function, Fractional Derivative, Boundary 

Control, Fractional Euler’s Method. 
 

1. INTRODUCTION  

 
In recent years, the number of scientific 

and engineering problems containing fractional 
derivative and control is already large and has gain 
a huge amount of attention. The concept of 
fractional calculus has interacted with the control 
community deeply due to the fractional order 
controller is proved to be given a more freedom in 
the design [1,2].  

The backstepping control is one category 
of control approaches that has gain a considerable 
attention in the case of controlling parametric 
nonlinear strict feedback systems. 

Due to the huge advantages the 
backstepping technique gives in integer order, such 
as global stability, good tracking and transient 
performance. The technique has been extensively 
studied in many areas. A number of result using 
this technique can be cited as robotics [3-6], neural 
networks [7-10], and secure communications [11-
14] and several other research works can be found 
in the literature [15-20]. 

.  However, it has been very few research 
in the literature that are succeeded to apply the 
backstepping method on the case of the fractional 
order system. For instance, for the first time, Efe 
has tried to extend the backstepping technique to 
fractional order systems in [21]. Next, Sahab has 

implemented a generalization backstepping method 
in order to find an approximation error of the 
fractional differential equation regarding two new 
hyperchaotic system of fractional order [22]. In 
[23], the author has used the backstepping method 
to described and designed a controller for a 
fractional order chaotic system control issue. 

Earlier this century, to invertebrates a new 
method to deal with partial differential equations 
(PDEs), the backstepping approach was developed. 
The development of a continuum backstepping 
approach for stabilizing parabolic linear PDEs was 
first introduced by Smyshlyaev and Krstic in 2004, 
[24]. While backstepping design for linearized 
Navier–Stokes equations have been introduced by 
Vazquez and Krstic in 2007, [25]. The extension of 
backstepping approach to the second-order 
hyperbolic PDEs is given by Krstic et al. in 2008, 
[26], [27]. Then, in 2008 a new adaptive designs for 
boundary control has been developed by Krstic and 
Smyshlyaev, for the linear parabolic PDEs with 
unknown parameters [28], [29]. Also, Krstic and 
Smyshlyaev in 2008 [30] developed the 
backstepping design for the first-order hyperbolic 
PDEs and presented a design for linear time 
invariant ordinary differential equations (ODEs) 
with time delays, these recovers the classical 
predictor designs for the finite spectrum 
assignment. In 2008, Vazquez and Krstic [31], [32] 
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introduced for the first time boundary control 
designs of nonlinear PDEs, focusing on a certain 
class of parabolic PDEs with nonlinear functions 
and Volterra series nonlinear operators. In 2008, 
Krstic [33] employed an infinite-dimensional 
backstepping transformation, in connection with 
Lyapunov function, these results in infinite 
dimensional systems consisting of ODE plant state 
and delay state. Krstic in 2009, introduced an 
approach to design a least square estimator with the 
use of unfiltered regress. Then he presented the first 
last squares based adaptive nonlinear control design 
which yields completely to a Lyapunov function 
[34]. The next step for Krstic was to introduced an 
approach for compensating input delay of arbitrary 
length in nonlinear control system which is a 
nonlinear version of the smith predictor and it’s 
various predictor based modifications for linear 
plants. This method deals with the infinite 
dimensionality of the actuator dynamics [35]. In 
2010, Krstic considered the closed loop system 
with a time varying Lyapunov functional equation 
and he established the exponential stability [36]. 
The challenge is the selection of a state for a 
transport PDE, which has a non-constant 
propagation speed, and is the basis of the stability 
analysis. In 2010, Smyshlyaev and Krstic 
introduces a comprehensive methodology for 
adaptive control design of parabolic PDEs with 
unknown functional parameters, including reaction-
convection-diffusion systems ubiquitous in 
chemical, thermal, biomedical, aerospace and 
energy systems [37]. In 2013, Bekiaris and Krstic 
consider nonlinear systems with time delays that 
depend on the delayed state, i.e., the delay is 
defined implicitly as a nonlinear function of the 
state at a past time, which depends on the delay 
parameter itself, [38]. Krstic and Bekiaris in 2013 
[39], review several representative but with general 
results on nonlinear control in the infinite-
dimensional setting. Firstly, they present certain 
designs for nonlinear ODEs with constant time-
varying or state-dependent input delays that arise in 
numerous applications of networks control. 
Secondly, they present a design for nonlinear ODEs 
with a wave (string) PDE at its input, which is 
motivated by the drilling dynamics in petroleum 
engineering. Third, present a design for systems of 
two coupled nonlinear first-order hyperbolic PDEs, 
which is motivated by slugging flow dynamics in 
petroleum production in off- shore facilities. 
Bernard and Krstic in 2014 [40] address the 
problem of adaptive output feedback stabilization 
of general first-order hyperbolic partial integro 
differential equations (PIDE), where such systems 

are also referred to as PDEs with non-local (in 
space) terms, apply control at one boundary, take 
measurements on the other boundary, and allow the 
system’s functional coefficients to be unknown. 
However, to the best of the author knowledge, there 
are not many attempts concerning the boundary 
feedback stabilization of an unstable time 
fractional-order diffusion system. The boundary 
stabilization for one dimensional fractional 
diffusion wave equation, based on numerical 
solution techniques, has been studied in [41,42]. In 
those studies, the focus was to use the fractional 
order boundary controller and derive the boundary 
control of a caputo fractional wave equation. In 
addition, in 1D system of the heat conduction 
process. Fourier law and the connection between 
anomalous diffusion are not satisfied [43]. It is 
confirmed that many real-world life systems can be 
well characterized by utilizing the notions of 
fractional order [44, 45], this is the reason why the 
fractional-order models are superior in comparison 
with the integer-order models. 

In this paper, we propose the backstepping 
method for stabilizing NTFPDE. To the best of our 
knowledge, this is the first time in the literature that 
the backstepping is being used for stabilizing 
NTFPDE. The semi-discretized fractional-order 
backstepping approach will be introduced to find 
the boundary controller function which stabilizes 
the NTFPDE by transformation it into an equivalent 
stable closed loop. We describe fractional 
derivative by using Caputo definition for different 
order q with (0,1].q∈ Then our attempt is to design 
the feedback control law analytically using the 
fractional order backstepping. Illustrative example 
is presented to demonstrate the approach efficiency. 
The main aim of tis contribution is to derive a 
systematic method of constructing Mittag–Leffler 
stable closed-loop systems for NTFPDE and a 
global convergence is built into them.  
The rest of this article is organized as follows: 
Some definitions and related theorems for 
fractional order calculus is listed in section two, and 
we illustrate in section three the main results of 
backstepping approach to stabilize NTFPDE based 
on fractional Lyapunov function. Finally, section 
four provides an example and the result is 
illustrated the availability of our proposed method. 
The conclusions is devoted in section five. 
 
2. FRACTIONAL CALCULUS 

In this section, we introduce the definitions of 
fractional derivative and some related theorems 
which are used further in this paper. 
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Definition 1 [46].  
The Riemann-Liouville fraction-al integral operator 

of order 0q ≥ , of a function  , 1f Cµ µ∈ ≥ −  is 

defined as 

1

0

1
( ) ( ) ( ) , 0, 0

( )

x

q q
J f x x s f s ds q x

q

−= − > >
Γ ∫

                                                                              (1) 

with the Gamma function 1

0

( ) z xz x e dx

∞
− −Γ = ∫       (2) 

 
Definition 2 [46].  

The fractional derivative of ( )f x in Caputo sense is 

defined as 

1 ( )

0

1
( ) ( ) ( )

( )

x

q m q q m q mD f x J D x s f s ds
m q

− − −= −
Γ − ∫

for 1 , , 0m q m m x− < < ∈Ν >                             (3) 

 
Theorem 1 [47]. 
Assume that both f (u) and u (x) are q times 
differentiable with u and x respectively. The chain 
rule of fractional derivative can be described as the 
following equation 
 

1( ( )) ( ) ( )
(2 )

q q q
q

q q q

f u x f u u x
q u

x u x

−∂ ∂ ∂
= Γ −

∂ ∂ ∂
 

                                                                 (4) 
 
Theorem 2 ( Mittage-Leffler stability) [48]. 
Let ( ) 0u t = be the equilibrium point of the 

fractional order system ( , ), ,qD u f u t u= ∈Ω  where 

Ω  is a neighborhood region of the origin. Assume 
that there exists a fractional Lyapunov function 

( , ( )) : [0, ) nV t u t ∞ ×ℜ →ℜ and K-class functions 

, 1, 2,3
i

iξ = satisfying 

1. ( ) ( )1 2( , ( )) ;u V t u t uξ ξ≤ ≤                 (5)                                    

2. ( )3( , ( )) .qD V t u t uξ≤ −                         (6)                                                                                                                  

Then the fractional order system is asymptotically 

Mittage-Leffler stable. Moreover, if ,nΩ = ℜ  the 
fractional order system is globally asymptotically 
Mittage- Leffler stable. 
 
 
 
Definition 3 [49]. 

A smooth function ( , ( )) :[0, ) nV t u t ∞ ×ℜ →ℜ is 

called a control fractional Lyapunov function for 

the fractional order system ( , ), ,q nD u f u U u= ∈ℜ   

(0,0) 0f = with the control law ( )U uα= if there 

exist three K-class functions , 1, 2,3
i

iξ = such that  

1. ( ) ( )1 2( , ( )) ;u V t u t uξ ξ≤ ≤ .                                                    

2. ( )3( , ( )) .qD V t u t uξ≤ −  

Lemma 1 [49]. 
Let ( )u t ∈ℜ be a real continuously differentiable 

function. Then for any 
( 1)( ) ( ) ( )q r r qD u t ru t D u t−≤                  (7)    

                                                                                                                          
where 0 1q< ≤   is the fractional order. 

 
Lemma 2 [49]. 
For the fractional order system ( , ), ,qD u f u U u= ∈ℜ  

0 1, (0,0) 0q f< ≤ = with the control law ( )U uα=  

is asymptotically Mittage-Leffler stable if for 

2 , ,n
r n= ∈Ν there exist a K-class functions ,ξ  

such that 

( )1 1 ( , ( ))r q ru D u u f u u uα ξ− −= ≤ −       (8)  

                                                                                                                      
                                                                           

3. MAIN RESULTS 

Consider the following nonlinear time 
fractional order partial differential equation 

( , ) ( , ) ( ( , ))c q

t xx
D u x t u x t f u x t= +          (9) 

where c q

t
D is the fractional derivative of ( , )u x t of  

order q with respect to t in the sense of Caputo and 

the fractional order q belong to (0,1], 2 ( ),u L∈ Ω  

(0,1) [0, ],Ω = × Τ 0Τ > , and f is a nonlinear function 

of u such that ( )f C
∞∈ ℜ . With initial condition 

 ( ,0) ( ), 0 1u x g x x= < <                    (10) 

The boundary condition at 0x = is homogenous 
Dirichlet 
 (0, ) 0, 0u t t= ≥                                (11) 

and the boundary condition at other end 
 (1, ) ( )u t U t=                                      (12) 

where ( ) : [0,1] [0,1]U t C C→ is the unknown non- 

linear feedback control function to be design to 
achieve stabilization. 
 The backstepping design technique is 
applied to obtain the boundary control function of 
equation (9). The design procedure is divided into 
the following stages: 
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 In the first stage the nonlinear time 
fractional order partial differential equation (9) will 
be semi-discretized into an equivalent nonlinear 
system of fractional order as follows: 

Fix  and  as the step size of 

discretization of system (9)-(12) over the interval of 
the space variable (0,1).x∈ Also, let ( ) ( , )

i
u t u ih t=  

for all 0,1, , 1i N= +K where it is assumed that 

0 ( )u t is the boundary condition at 0x =  

and 1( )
N

u t+ is the control function at 1x = , hence 

using the central differencing for discretizing 
( , )

xx
u x t ,we have 

 0 ( ) 0u t =                                                (13) 

 

1 1
2

2
( ( )), 1,2, ,c q i i i

t i i

u u u
D u f u t i N

h

+ −− +
= + = K

                                                   (14) 

1 ( )
N

u U t+ =                                    (15) 

We can write the nonlinear semi-discretized system 
of fractional differential equations as: 

 

1 2 1 12 2

2 3 2 1 22 2 2

12 2 2

1 2
( )

1 2 1
( )

1 2 1
( )

c q

t

c q

t

c q

t n n n n

D u u u f u
h h

D u u u u f u
h h h

D u U u u f u
h h h

−

= − +

= − + +

= − + +

M

   

                                                                (16)                              
In the second stage we will design the need 

controller according to the idea of backstepping. 
The backstepping design procedure requires n 
steps, and the virtual control

i
α   and the controller 

U will be constructed. The design procedure is 
elaborated in the following. 
The coordinate transformation of error variables 
can be expressed as 

1, 1, 2, ,
i i i

w u i nα −= − = K                (17) 

where 0 0α =  and 1 0
n

w + =  

Step 1: we start with first equation of (16). Design 
a suitable stabilizing function 1α to stabilize 1( ).w t  
Select the first fractional Lyapunov function 

2
1 1

1

2
v w=                                                (18) 

Then the q-th order time derivative of 1v  is given 

by        
2

1 1 1 1 2 1 1 1 1 12 2 2

1 1 2
( )q

tD v k w w w w w k w
h h h

α≤ − + + − +

 
                                                              (19)                                                                                            

The virtual control law 1α  is designed as 

 2 2
1 1 1 1(2 ) ( )k h u h f uα = − −                (20) 

where 1 0k > is a design parameter. w2 is to be 

governed to zero. Then the resulting q-th order 
derivative is 

2
1 1 1 1 22

1q

tD v k w w w
h

≤ − + , 1 0k >           (21) 

Step 2: Study the second equation of eq.(16) by 
considering 2α as a virtual control variable. The 

control objective is to make 2 0w → as .t →∞  

Define a second fractional control Lyapunov 
function as 

                                                                                                 

2
2 2

1

2
v w=                                               (22) 

and its q-th order time derivative is given by  
 

        

2 2
2 1 1 2 2 2 3 2 22 2

2 1 2 2 2 12 2 2

1
1 1 1 1

1 1
(

2 1 1
( )

(2 )

q

t

q q q

u t

D v k w k w w w w
h h

u u f u k w w
h h h

q u D D u

α

α−

≤ − − + +

− + + + +

−Γ −

 

                                                                            (23) 
By selecting 

2
2 2 2 1 2 12 2 2

1
2 1 1 1 1

1 2 1
(

( ) (2 ) q q q

u t

h k w w u u
h h h

f u q u D D u

α

α−

= − − + − −

+Γ −
 

                                                                            (24) 

where 2 0,k > is the design parameter,  w3 is to be 

governed to zero. Thus we have 
2

2
2 2 32

1

1q

t i i

i

D v k w w w
h=

≤ − +∑                  (25) 

Step i ( 3, , 1i n= −K ) study the ith equation of 

eq.(16) with the virtual control variable 
i

α . The 

control fractional Lyapunov function is chosen as 

               2
1

1
,

2
i i iv v w−= +                                     (26)                                                   

Its q-th time derivative is given by    

    

2
12 2

1

1 1 22 2 2

1
1

1
1

1 1
(

1 2 1
( )

(2 ) )
j

i
q

t i j j i i i i i i

j

i i i i

i
q q q

j u i t j

j

D v k w w w w k w
h h

w u u f u
h h h

q u D D u

α

α

+
=

− − −

−
−

−
=

≤ − + + +

+ − + + −

Γ −

∑

∑

  

                                                           (27)                                                   
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By slecting 

2
1 1 22 2 2

1
1

1
1

1 2 1
(

( ) (2 ) )
j

i i i i i i

i
q q q

i j u i t j

j

h k w w u u
h h h

f u q u D D u

α

α

− − −

−
−

−
=

= − − + −

− + Γ −∑
 

                                                    (28) 

where 0,ik > is the design parameter,  wi+1 is to be 

governed to zero. Then the resulting q-th order 
derivative of 

i
v is 

2
12

1

1i
q

t i j j i i

j

D v k w w w
h

+
=

≤ − +∑                (29) 

At this point, one can conclude that wi  converge to 
zero asymptotically. 
Step n: In the last step n, the actual control U 

appears and is at our disposal. The aim is that 
design a suitable control law to make 0

n
w → as 

t →∞ , select the fractional Lyapunov function as 

2
1

1
,

2
n n nv v w−= +                                         (30)                                                                              

Then we can obtain the q-th order time derivative 
as 
  

2

2
1

1 12 2 2

1
1

1
1

1
(

1 2 1
( )

(2 ) )
j

i
q

t n j j n n n

j

n n n n

n
q q q

j u n t j

j

D v k w w U k w
h

w u u f u
h h h

q u D D uα

=

− −

−
−

−
=

≤ − + + +

− + +

− Γ −

∑

∑

 

                                                                (31) 
The controller ( )U t is given by  

2
1 22 2 2

1
1

1 1
1

2 2 1
(( ) ( )

(2 ) )
j

n n n n n

n
q q q

n n j u n t j

j

U h k u u f u
h h h

k q u D D u

α

α α

− −

−
−

− −
=

= − − − +

− + Γ −∑
  

                                                                            (32)  
 

where 0,nk >  is the design parameter. Then the 

resulting q-th order derivative of 
n

v is                                                                                                                                                    

2

1

,
n

q

n i i

i

D v k w
=

≤ −∑                                        (33)                                                                                                             

In this sage, it is convenient to consider, according 
to lemma (2) that the closed-loop system is stable 
regarding to the classical Lyapunov stability. Then, 
two cases is considered in our work.  

1. When 0 ,w ≠ we know 0.q

nD V < There 

exists a K-class function 1ξ such that 

( )1 1, [ , , ]q

n nD V w w w wξ Τ≤ − = K  

2. When 0 ,w = we know 0.q

nD V ≤  

Accordind to the fractional comparsion 
principle [48], we know that 

,q q

n nD V D k V k≤ ⇒ ≤  

where ( 0)
n

k V t= =  is apositive constant. 

According to the first case in theorem (2), the 
closed loop system it’s defined to be asympotically 
Mittage-Leffler stable. 

In the third stage substitute ( )U t evaluated 
by equation (32) back into system (16), for i N= , a 
system of N nonlinear fractional order differential 
equations is obtained. The solution of resulting 
system may be solved by using any method for 
solving a nonlinear system of fractional order.  
 

4.  SIMULATION RESULT 

Consider the nonlinear time fractional 
order partial differential equation: 

 
2( , ) ( , ) ( , ), 0 1c q

t xx
D u x t u x t u x t q= + < ≤  

                                                    (34)                                                                                                
 

( ,0) sin( ), 0 1xu x e x xπ= < <           (35) 

(0, ) 0, (1, ) ( ), 0u t u t U t t= = ≥        (36) 

The open loop system (34)-(36) with (1, ) 0u t =   is 

unstable. Using the central differencing discretize-
ation with N =3 for the space variable will give    

2
1 2 1 1

2
2 3 2 1 2

2
3 3 2 3

16 32

16 32 16

16 32 16

c q

t

c q

t

c q

t

D u u u u

D u u u u u

D u U u u u

= − +

= − + +

= − + +

         (37) 

Step1. Let 1 1 2 2 1,w u w u α= = − , the first Lyapunov 

function 2
1 1

1

2
v w= , 2

1 1 2 1 1 1(16 32 16 )q

t
D v w w w u α≤ − + +  

If choose 21
1 1 1 1

1
(2 ) , 0

16 16

k
u u kα = − − > , w2 is to 

be governed to zero. 
Step 2. The second Lyapunov function 

2 2
2 1 2

1 1

2 2
v w w= + , let 3 3 2w u α= − , we have  

2
2 2 1 2 2 3 2 1(32 32 16 16 )q q

t t
D v w u u u w Dα α≤ − + + + −  
If choose 

2
2 1 2 2 2 2 1 1 2

1
( 32 (32 ) ), 0

16
q

tu k u u k D kα α α= − + − − + + >   

w3 is to be governed to zero. 
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where 

21
1 1 2 1 1 1

32 (2 )
( )(16 32 ), 0

16 8 (3 )
q

t

k q
D u u u u k

q
α

− Γ −
= − − + >

Γ −
 

Step 3. The third Lyapunov function 

2 2 2
3 1 2 3

1 1 1

2 2 2
v w w w= + + , we have  

2
3 3 3 2 3 2 3 3

2 3

(16 32 16 16

), 0

q

t

q

t

D v w U u u u w k w

D kα

≤ − + + + + −

>
 

 
The design parameters are chosen as 

1 2 3 32k k k= = =                             (38) 
The nonlinear controller U (t) becomes 

2
2 3 2

2
1 2 12

2
2 2

2
1 2 2 2

1 8 2
( ) ( 64 ( )

16 (2 ) 2

14 16
( 7) ( 2
2 (2 )

2 1 3
) ( )

2 8(2 ) 4(2 ) (3 )

1 1 3
(
2(2 ) 2(2 ) 2(2 )

U t u u
q q

u u u
q q

u
q q q q

u u
q q q

= − − + −
− −

+ − − + − +
− −

−
+ −

− − − −

−
+ + +

− − −

 

3 4
1 12

3
2 3 2 1 3

2
1 2

1 3 2
)

(3 ) 64(2 ) (3 ) 2

1 2 1

8(2 ) 2 8(2 )

)

u u
q q q q

u u u u u
q q q

u u

− −
− − − −

− − −
− − −

 

                                                                            (39) 

Hence, we have 2 2 2
3 1 1 2 2 3 3

q

t
D v k w k w k w≤ − − −  

2 2 2
3 1 2 332 32 32q

t
D v w w w→ ≤ − − −  

Substitute equation (39) into (37), we have 
 

2
1 2 1 1

2
2 3 2 1 2

3 3 2 1 22

2 2
1 22

2
1 2

16 32

16 32 16

8 2
32 48 ( )

(2 ) 2

14 16 2
( 7) ( 2 )
2 (2 ) 2

1 3 (2 )
( )
8(2 ) 4(2 ) (4 )

c q

t

c q

t

c q

t

D u u u u

D u u u u u

D u u u u u
q q

u u
q q q

q
u u

q q q

= − +

= − + +

= − − + − +
− −

− − + − +
− − −

− Γ −
+ − +

− − Γ −
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                                                                            (40) 

Numerical simulation have carried out 
using fractional Euler’s method with time step size 
is set to 0.01. The initial state is (0.0176, 0.0452, 
0.087). 
Figure (1) and Figure (4) illustrate the solution of 

1 2 3( ), ( ), ( )u t u t u t for different values of [0,1]t∈ , 

while the controlled function U(t) is presented in 
figures (2& 5) and figures (3 & 6) illustrate the 
solution of system (40) with the initial condition  

( ,0) sin( )xu x e xπ=  which is equivalent to the 

solution of the original nonlinear time fractional 
order  partial  differential  equation (34) with  order  
q =0.75and q = 1 respectively.  
 
 

 

Figure 1: The solutions 1 2 3( ), ( ), ( )u t u t u t with q =0.75 

 

 

 
 

Figure 2: The controller U (t) with q =0.75 
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Figure 3: Closed-loop response with controller (q =0.75) 

 

  

Figure 4: The solutions 1 2 3( ), ( ), ( )u t u t u t with q =1 

 

 
 

 

Figure 5: The controller U (t) with q =1 
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Figure 6: Closed-loop response with controller (q =1) 

 
In order to give a good comparison, the simulation 
results are given in tabulated form.  Table 1 and 
Table 2 present the obtained result of computer 
simulation for 1 2 3( ), ( ), ( )u t u t u t of system (40) and 

the boundary control U(t) , for 0.75q = ,  and 

1q = respectively. While Table 3 present the 

simulation result for q=1  by using the procedure 
proposed  in [50] 
From the results, it is seen that  

1. 1 2 3( ), ( ), ( )u t u t u t  converges in a finite time 

which is equivalent to the solution of the 
original NTFPDE (34), it is seen that the 
proposed technique is feasible for 
stabilizing NTFPDE. Also our technique 
performs better than the proposed 
procedure in [50].   

2. We need to calculate
i

α symbolically using 

the recursive relationship (28) and then to 
evaluate it for several different functions 
u(t) and for different nonlinear functions 
f(u). The symbolic calculation becomes 
extremely demanding computationally for 
increasing values of N.  

 
 

 
 
 
 
 
 
 
 
 
 

 
 

t u1 u2 u3 U 
0 0.017601 0.045195 0.087 -0.182 

0.1 0.3427×10-3 0.3681×10-3 -0.01 -0.015 
0.2 -0.3066×10-4 -0.3241×10-4 0.92×10-4 -0.1297×10-3 
0.3 0.7336×10-5 -0.1185×10-4 -0.2201×10-4 0.474×10-4 
0.4 0.5356×10-6 0.1178×10-5 -0.1607×10-5 -0.4712×10-5 
0.5 -0.844×10-7 3.577×10-7 0.1808×10-6 -0.1431×10-6 
0.6 -9.771×10-9 -6.704×10-3 2.931×10-8 2.682×10-7 
0.7 5.546×10-9 -8.669×10-10 -1.664×10-8 3.468×10-9 
0.8 -8.402E×10-11 6.919×10-10 2.521×10-10 -2.768×10-9 
0.9 -3.976×10-11 -2.718×10-11 1.193×10-10 1.087×10-10 
1.0 2.621×10-12 -4.138×10-12 -7.862×10-12 1.655×10-11 

Table 1:Simulation Result When q = 0.75 
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5. CONCLUSIONS 

 
In this article, the discretize backstepping 

method has been proposed. With this method, an 
effective controller can be designed for stabilizing 
NTFPDE with order 0 1.q< ≤ The design procedure 

which consist of three steps is constructed such that 
the analytical form of boundary controller can 
always be constructed with appropriate choices of 
some design parameters. Simulation results show 
that the discretized fractional order backstepping 
technique is very effective and convenient but the 
calculation of the virtual control α becomes 
demanding computationally for decreasing values 
of h (step size of discretization) and its depending 
on the complexity of the nonlinear function f (u).  

For future work, one can assume more 
applications of the proposed procedure for other 
types of fractional partial differential equations 
such as fractional hyperbolic and fractional elliptic 
partial differential equations.  
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Table 2:Simulation Result When q = 1 

 

t u1 u2 u3 U 
0 0.017601 0.045195 0.087 -0.182 

0.1 0.2615×10-3 0. 6768×10-4 -0.5069×10-3 -0. 271×10-3 
0.2 -0. 1562×10-5 -0.1977×10-5 0.1055×10-4 0.7908×10-5 
0.3 0.262×10-5 1.084×10-7 -0.662×10-5 -4.336×10-7 
0.4 -5.838×10-8 3.28×10-9 2.01×10-7 -1.311×10-8 
0.5 2.82×10-9 -3.721×10-10 6.84×10-9 1.49×10-9 
0.6 3.35×10-10 -3.982×10-12 -6.802×10-10 1.59×10-11 
0.7 1.18×10-11 3.16×10-14 -2.859×10-11 -1.262×10-13 
0.8 -2.269×10-13 2.88×10-14 8.25×10-13 -1.154×10-13 
0.9 1.21×10-14 -2.096×10-15 -3.337×10-14 8.38×10-15 
1.0 0 0 1.09×10-15 0 

 

 
Table 3:Simulation Result When q = 1  Using Proposed Procedure In [50] 

 

t u1 u2 u3 U 
0 0.017601 0.045195 0.087 -8.175×10-4 

0.1 4.274×10-3 4.844×10-3 2.419×10-3 3.803×10-6 
0.2 1.286×10-3 1.791×10-3 1.247×10-3 2.645×10-7 
0.3 4.712×10-4 6.658×10-4 4.704×10-4 3.453×10-8 
0.4 1.76×10-4 2.489×10-4 1.76×10-4 4.811×10-9 
0.5 6.578×10-5 9.302×10-5 6.84×10-9 6.72×10-10 
0.6 2.458×10-5 3.477×10-5 2.458×10-5 9.388×10-11 
0.7 7.751×10-6 1.083×10-5 7.751×10-6 8.947×10-12 
0.8 2.88×10-6 4.072×10-6 2.88×10-6 1.288×10-12 
0.9 1.076×10-6 1.522×10-6 1.076×10-6 1.799×10-13 
1.0 4.023×10-7 05.689×10-7 4.023×10-7 2.513×10-14 

 

 
 
 
 


