
Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1182

AN AUTOMATED USE CASE DIAGRAMS GENERATOR

FROM NATURAL LANGUAGE REQUIREMENTS

1
MALEK ZAKARYA ALKSASBEH,

 2
BASSAM A. Y. ALQARALLEH,

 3
TAHSEEN A.

ALRAMADIN,
 4
KHALID ALI ALEMERIEN

1&2&3
Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an, Jordan

4
Department of Computer Information Systems, Tafila Technical University, Tafila, Jordan

E-mail:
1
malksasbeh@ahu.edu.jo,

2
alqaralleh@ahu.edu.jo,

3
tahsen@ahu.edu.jo,

4
khalid.alemrien@ttu.edu.jo

ABSTRACT

Use case modeling is an important requirements engineering technique which plays an important role in

describing the systems specifications and facilitating systems development. The use of linguistic

representations of system requirements as a source of information for generating use case models is a

challenging task and can be considered relatively a new field. This paper has tackled the problem of

extracting the required elements that are needed to automatically generate use case diagrams from

specification documents which are written in common natural language. Therefore, we have developed an

automated system which employs the Natural Language Processing (NLP) techniques to parse

specifications syntactically based on a predefined set of heuristic rules. Furthermore, our system

incorporates the capability of analyzing and understanding the English text as a semantic unit to infer some

important linguistic features such as reference, comparing and additive cohesive devices. The extracted

information is then mapped into actors and use cases, which are the basic elements of use case diagrams.

Our proposed approach was evaluated using both recall and precision performance measurements. The

experiments revealed that our system has an average of 96% recall and 84% precision.

Keywords: Use case diagrams, Natural Language Processing, User requirements analysis, Automatic

Diagrams Generation, Information Extraction.

1. INTRODUCTION

 The automation of structured information

extraction (IE) from natural language text using

NLP is a relatively new field, which needs a large

amount of domain knowledge [1]. NLP is a field of

both computer artificial intelligence and

computational linguistics which is used to facilitate

the interactions between computers and human

(natural) languages. NLP has significantly

contributed to the area of human-computer

interaction [2]. Generally, NLP employed to

automatically extract the information stored in

natural language and convert it to a machine

understandable format. However, the high

ambiguity and complex grammar of unstructured

data create significant challenges for the variety of

NLP approaches [3]. NLP has become increasingly

important with growing various applications which

range from search, automated machine translation

to general human-computer interaction [4].

 Use case diagrams play a broader role in

describing systems specifications, and facilitating

systems analysis, design, and implementation [5].

However, building such diagrams is very important

and time-consuming task which requires a complete

understanding of the system requirements [6]. The

use case models describe and represent the

interaction between the actors and the system in

order to achieve a goal [7]. An actor may be certain

user type or a role played by a user, such as a

person, an organization, another software system, a

hardware device, a process [8, 9]. On the other

hand, a use case represents some system's

functionality, a specific way of using the system.

However, generating use case models by extracting

use case elements from linguistic textual

representations using NLP is still a challenging

task.

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1183

 In this paper, we introduce a new automated

structured approach to acquiring, analyze and then

transform natural language descriptions into use

case diagrams. The user writes a few paragraphs in

simple English language to describe the system

requirements. Our approach uses NLP techniques to

extract use case diagram elements via translating

the textual specifications to words, these words are

categorized into several Parts Of Speech (POS), and

then we apply stemming algorithm and a set of

syntactic heuristic rules to identify the actors and

use cases of the target software system. After the

compound analysis and extraction of associated

information, the designed system draws the desired

use case diagram.

 It is important to mention, that our proposed

system extends the use of NLP to have semantic

analysis besides the structured analysis to infer new

linguistic features such as reference, comparing and

additive cohesive devices such as pronouns,

"equally", "similarly", "same as", "also", "plus",

"moreover", "furthermore", "besides",

"additionally" and "as well as". These cohesive

devices are words and phrases that connect

sentences and paragraphs together creating a

smooth flow of ideas. Our methodology can be

considered a step towards the analysis and the

understanding of the English text as a semantic

unit. The concept of cohesion is a semantic one

which refers especially to non-structural text

forming relation.

 The rest of the paper is organized as follows:

related work is presented in Section 2. Our

proposed approach is described in Section 3,

evaluation results are presented in Section 4, and

conclusion in section 5. Finally, limitations and

future work are presented in Section 6.

2. LITERATURE REVIEW

 This section briefly reviews some leading

research efforts which focused on applying natural

language processing to extract knowledge from

requirement specifications to generate use case

diagrams, ER diagrams, and various UML

diagrams.

 Recently, some commercial products for

representing use case models have been developed,

including Visual UML, GD Pro, Smart Draw,

Rational Rose, Microsoft’s Visio, etc.[10]. Some

advanced tools were proposed to automate some

software engineering activities which are more

complicated than just providing help in drawing

various UML diagrams. In [11], the authors

proposed an approach that can extract the basic

elements for generating a class diagram such as

classes, data members and member functions from

user requirements written in a clear way. This

approach was implemented as a software tool to

generate the class diagrams. Two other

approaches[12] and [13] take unstructured

requirements in the form of plain text as input in

order to derive activity diagrams.

 Also, DMG [14] provides a basis for the

development of new heuristics applied in ER-

Converter which extracts knowledge from

requirements specifications. DMG is the only

existing work that proposes a large number of both

syntactic and semantic heuristics to be used in

transforming natural language into ER models.

However, the work has not been implemented.

In[15], the authors give another good example of

heuristics-based approaches for generating ER

elements from natural language specifications. A

number of syntactic and semantic heuristics were

proposed in order to produce good results in

identifying the relevant and correct results of the

ER elements. Another ER generator [3] is a rule-

based system that generates ER models from

natural language specifications. The proposed

methodology is based on a set of generic and

specific rules that combine different concepts from

others work.

 Another paper [10] presents NLP based

automated system for generating UML diagrams

after analyzing the given system requirements in

the form of text written in simple and correct

English. Once the associated and needed

information is analyzed and extracted, the designed

system draws the various UML diagrams such as

sequence, class and activity diagrams.

 The authors in [16]formalize use cases as

instances of a Meta model. However, the Meta

model instance has to be manually provided by the

user directly which require extensive user efforts.

Another approach [17] introduced an approach to

derive use-case and class diagrams from an event

table. Their approach completely depends on the

availability of a comprehensive event table which is

built from the system requirements. The authors

in[18] proposed an approach to generate use case

diagrams from software requirements. This

approach does not deal with textual requirements

directly. It depends on other models to obtain the

use case features using combination of two

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1184

technologies: Recursive Object Model (ROM) and

Expert Comparable Contextual (ECC) Models.

Another paper [19] proposed an approach called

computer automated use case diagram generator

(CAUse) which can generate the use case diagrams

from a text written using a special language called

ADD. Furthermore, [20]proposed a semi-automated

approach which can generate use case diagram

from textual user requirements written in the Arabic

language. This approach relies on the use of an

Arabic NLP tool called MADA+TOKAN to parse

the Arabic statements of the textual user

requirements in order to obtain the necessary

information needed to determine the potential

actors and use cases.

3. THE ARCHITECTURE OF PROPOSED

APPROACH FOR USE CASE DIAGRAM

SYSTEM

 Generating use case models in less time and

effort is an important requirement [21]. In order to

satisfy such requirement, we have to provide some

robust solutions. Therefore, we provide a helpful

framework which has a sound ability to assist the

software analysts and engineers via reading the

given system requirements in plain text and then

extract the actors, use cases, and relationships

which are the basic elements of use case models.

Our proposed approach incorporates the capability

of automatically generating accurate and complete

use case diagrams. We also provide an integrated

development environment for user interaction and

efficient input of system requirements and output of

use case diagrams.

 In the context of this research, the user is

expected to input the business scenario in the form

of paragraphs of text written in English which is

related to the business domain. Once the input text

is segmented into sentences, the lexical analysis of

these sentences is performed in order to generate

the lexicons [22] by concatenating the input

characters. Then, syntax analysis is performed on

word level to recognize the word category [23]. All

available lexicons are categorized into nouns,

adverbs, pronouns, adjectives, prepositions, articles,

conjunctions, etc. Nouns in system requirements

can be identified as actors, and verbs can be

identified as use cases. A relationship is an

association between the actor and its use cases.

Relationships can be derived from sentence

boundary or based on some exceptions.

 Our proposed automated system for use case

diagrams generation has the ability to draw use case

diagrams after analyzing the text scenario provided

by the user. As shown in Figure 1, our proposed

system extracts the necessary information and

draws the use case diagrams using the following

modules: Text Acquisition, Text Segmentation,

Text Tokenization, Part of Speech Tagging,

Grammatical and spelling error Detection,

Stemming, Knowledge Extraction, and finally, The

Generation of Use Case Diagrams.

Figure 1: The Architecture of the Proposed Automated

System

3.1 Text Acquisition

 This module provides the capability of acquiring

the business scenario in the form of paragraphs of

English Language text. This module allows the

user to write the business scenario in the designated

area or import the scenario as a text file.

3.2 Text Segmentation

 This module of the proposed framework

performs morphological analysis on the natural

language text to determine the boundaries of each

sentence and split the text into sentences. Usually,

each sentence must be terminated with a period. As

an example, our segmentation module splits the

following text: "User can send invitation to connect

and admin can grant invitation. Also, they can send

multimedia and receive multimedia." into a set of

sentences as presented below.

1) User can send invitation to connect and

admin can grant invitation

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1185

2) Also, they can send multimedia and

receive multimedia

3.3 Text Tokenization

 This module is the implementation of the

tokenization (lexical) phase where the lexicons,

tokens or symbols are generated. As an example,

the proposed tokenization module can break up the

sentence "I like computer information systems

department" into a set of lexicons, tokens or

symbols as follows:< I >< like >< computer ><

information><systems><department>. This module

uses String.Split() method to break up the given

text into tokens. It important to mention, that our

proposed system can handle the complexity which

may result from using compound words that

contain commas or periods such as "Dr. Malek".

Our tokenization module has to recognize that the

period in "Dr. Malek" does not terminate the

sentence. Figure 2 shows an example of text

tokenization process.

Figure 2: The Text Tokenization Process

3.4 Part of Speech (POS) Tagging

 This module of the designed framework

categorizes the tokens into various classes (Part Of

Speech (POS) Tags) based on its definition and

context [3]. The token scan is classified as verbs,

helping nouns, pronouns, proper noun, noun phrase,

modal verbs, verb phrase, adverbs, adjectives,

prepositions, prepositional phrase and conjunctions,

Article, etc based on predefined rules for

categorization which was adopted by Word Net

2.1[24, 25]. This set of rules is defined based on the

Standard English grammatical rules which are

called parts of speech conventions. For example,

the POS analysis of the sentence "She ran to the

school quickly" is as follows: {She/Pronoun,

ran/Verb, to/preposition, the/Article, school/Noun,

quickly/adverb}.

3.5 Grammatical and Spelling Error Detection

 This module is responsible for detecting

grammatical and spelling errors in the English text.

It informs the user if there are any errors exist via

showing error messages on the screen. Our

proposed system provides the capability of

detecting grammatical errors using probabilistic

parsing [26]. Also, we use a dictionary lookup

technique [27] to detect the spelling errors in every

single token of the input text and to confirm its

existence in the dictionary. As an example, the

proposed module can detect the spelling error of the

word “senid” in the following sentence: "John can

senid and receive multimedia". As a result, the

system will display a message as portrayed in

Figure 3.

Figure 3:Spelling Errors Detection

 Furthermore, this system ignores numbers, dates,

Web and email addresses, and mixed alpha-numeric

strings (e.g. “20MHz”).

3.6 Stemming

 In our approach, we use the Porter stemming

algorithm (or ‘Porter stemmer’) in order to remove

the commoner morphological and inflexional

endings from words written in the English

language[28]. This algorithm utilizes suffix

stripping in order to stem both verbs and nouns.

This module can change some parts of the verb

(phase to phase) to get the root (verb stem). On the

other hand, we use this algorithm to eliminate all

non-word tokens like punctuations, plural suffixes

of nouns (e.g. s, es, and ies) in order to convert

actor names from plural to singular. We have to

mention, that despite the fact that there are many

stemming algorithms exist in the literature, we

decided to use this stemmer because it works well

with our algorithm and offers excellent results. As

an example, the proposed module can stem the

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1186

words “uses” and "purchases" in the sentence

"Customer uses website to make purchases

online" to be "use" and "purchase", respectively.

3.7 Knowledge Extraction

 The required use case diagram features are

extracted in this module according to the given

rules. Basically, this module classifies the noun

phrases as actors, and then adds it to the actor's data

set, and the verb phrases as use cases and add it to

the use cases data set. Then, it determines the

relations for each actor with its use cases. As

mentioned earlier, out proposed system has the

capability of performing a complete of analysis of

the given scenarios which contain cohesive devices.

Our system can deal with reference, comparing and

additive cohesive devices such as: pronouns,

"equally", "similarly", "same as", "also", "plus",

"moreover", "furthermore", "besides",

"additionally" and "as well as".

3.7.1 Rule 1: Identify actors

• A common noun may indicate an actor
type.

• A proper noun may indicate an actor.

• If a consecutive noun exists and the last

noun is not included within the following

set of words: [number, no, code, date,

type, volume, birth, id, address, name],

then the consecutive noun may be an actor
(e.g., Company staff).

• Ignore every proper noun such as

(Location name, Person name, etc.).

3.7.2 Rule 2: Identify use cases

• The main verbs may indicate a use

case type.

• The transitive verbs may indicate a

use case type.

• If a noun follows a verb such as

"verb+ noun" then may indicate a use

case type (e.g., Generate diagram).

• Ignore every verb included in the

following list {include, involve,

consist of, contain}.

3.7.3 Rule 3: Identify relationships

(Associations)

 The Association between the actor and the

use case can be derived from sentence

boundary or based on some exceptions. Let

� � 	 ���, ��, … , �	
 be the set of all actors.

Each actor is related with none, some, or, all

use-cases. The use-case is denoted by	�.
Certain use cases can be added to or deleted

from the last actor �	.

 For convenience, we define � to be a set of

those certain use-cases, where � � 	 �1, … . , �
.
 To pave the way of such relationship we

need to recall some mathematical structure of

the set theory as follows.

• ��	 � �� if and only if for all ��� ∈

	��	 ↔ �	 ∈ 	���.

• �� ∪ �� � ��: � ∈ ��	��	�	 ∈ ���.

• �� ∪ � � ��: � ∈ ��	��	�	 ∈ �
.
• ⋃ 	�� � ��: � ∈ ��	 ��	!�"#	"	 ∈�

�$�

�1, … , %
�.

• ⋃ �� � ��: � ∈ ��	 ��	!�"#	"	 ∈	
�$�

�1, … , �
�.

 To this end, we can make a clear

correspondence of some relationships between

actors as follows:

a. Comparing cohesive device such as:

i. Similarly, and equally (e.g. ��	and ��are

equally) can be formulated as. �� � ��		.
ii. Same as:

1. “��is same as
j

A ” can be formulated

as 	�� � ��		.

2. “ iA is same as before”, can be

formulated as �� � ��&�		.

3. “�� is same as all the above actors”,

can formulated as ⋃ 	��
�
�$� .

4. “ iA is same as all the below actors”,

can be formulated as: ⋃ 	��
	
�$� .

5. “��		is same as �� and ��”, can be

formulated as �� � �� ∪ ��.
b. Backwards reference cohesive device,

Pronoun, can be formulated as �	 ∪	�.

c. Additive cohesive devices such as “also”,

“plus”, “moreover”, “furthermore”,

“besides”, “additionally” and “as well as”

combined with backward reference

devices, Pronouns, can be formulated as

�	 ∪ 	�.

 Demonstrating this process, we provide the

following simple scenario: " User can send

invitation to connect and admin can grant

invitation. Also, they can send multimedia and

receive multimedia". The knowledge in this

scenario can be extracted as follows.

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1187

Step 1. According to Rule 1:

User and Admin indicate Actors. And we

donate them by �� and �� respectively.

Step 2. According to Rule 2:

send invitation, connect, grant invitation,

send multimedia and receive multimedia

indicate use cases. Consider �� � send

invitation, �� �connect, �' � grant

invitation, �(� send multimedia and

�) � receive multimedia.

Step 3. According Rule 3:

i. User (��) has relations with a

set of use cases: {send

invitation, connect}.

ii. Admin (��) has relation with

only one use case: {grant

invitation}

iii. � is a set of additional use

cases: {send multimedia,

receive multimedia}.

 In mathematical sense, �� � ���, ��	
,
�� � ��'
, and � � ��(, �)
 .

Step 4. Finally, according to Part b and c of Rule

3, there exist one additive cohesive

device which is Also, and one backward

cohesive device (pronoun) which is they.

The latest cohesive device refers to both

User and Admin, Therefore, sending

multimedia and receiving multimedia

are use cases of both and as well.

In mathematical sense.

�� � ���, ��
 ∪ � � ���, ��, �(, �)

and

�� � ��'
 ∪ � � ��', �(, �)
.

 Equivalently,

i. User has relations with the

following use cases: {send

invitation, connect, send

multimedia, receive multimedia}.

ii. Admin has relations with the

following use cases: {grant

invitation, send multimedia,

receive multimedia}.

3.8 Generate Use Case Diagrams

 This is the last module which finally uses use

case diagram symbols to draw use case diagrams

according to the extracted information which are

supplied by the previous modules. Figure 4 shows

an example of use case scenario, and the

corresponding use case diagram is shown in Figure

5. The example scenario is as follows:

Scenario: User A and User B can equally connect

to Wi-Fi direct and search available users. User A

can send invitation to connect and user B can grant

invitation. Also, they can send multimedia and

receive multimedia such as message, audio, video,

and file. User A is same as User B can terminate

connection.

Figure 4: An example of use case scenario

 As shown in the above figure, when the user

clicks generate UC button, the system draws the

use case diagram according to the extracted

information which are supplied by the previous

modules as portrayed in the Figure 5.

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1188

Figure 5: An example of generated Use case diagram

4. EXPERIMENTAL EVALUATION

 Experiments were performed using 50

documents contain natural language requirements

specification in English with ranges between 50 and

300 words in size. with the number of words per

sentence range from 5 to 29 words. Table 1 shows

the number of documents used per experiment and

the size of the range of word count in these

document.

Table 1: Details of case studies

Case

Study

Number of

Documents

Range Size

(word)
1 10 50-100

2 10 101- 150

3 10 151-200

4 10 201-250

5 10 251-300

 Two performance measurements, recall and

precision, were selected to evaluate our system

performance. Both measurements were originally

developed for evaluating information retrieval

systems [29]. It is important to mention, that these

measurements have been recently widely used for

evaluating information extraction systems [30].

 In the context of this research, we rely on the

definitions of recall and precision measurements

which are stated in[31],where Recall (R)

measurement refers to the amount of the correct

information which is returned by our system. This

correct information is then compared with the

answer keys produced by human analysts. The

following formula is used to calculate recall:

*#+,-- �
./0112/3

.�24

Precision(P) shows the accuracy of the system in

terms of the percentage of the correct information

generated by our system. The following formula is

used to calculate precision:

5�#!!%�� �
./0112/3

.�24 6 .�	/0112/3

 Table 2 reports the scores of the system on the

fifty documents based on five categories. Scores for

each category are given in one row and the last row

shows the overall scores of the system. The overall

performance of the system was 96% recall and 84%

precision.

Table 2: Evaluation results

Case

Study

Recall Precision

1 100 94

2 96 85

3 96 83

4 95 80

5 94 80

Overall 96% 84%

5. CONCLUSION

 The automation of structured IE from natural

language text using NLP may still be considered a

relatively new field. Few research efforts have

attempted to generate use case diagrams

automatically via applying NLP techniques to

extract knowledge from user requirements written

in English. Also, the capability of analyzing and

understanding the user requirements text as a

semantic unit to infer more linguistic features such

as cohesive devices remains a major challenge.

 In this research, we have developed a system

which can read and perform a complete analysis of

the user requirements given in the form of English

language text. It can also generate use case

diagrams automatically. Our system uses NLP

techniques such as tokenization and POS tagging to

parse the system specifications based on predefined

set of syntactic heuristics rules. Furthermore, our

proposed system incorporates the capability of

analyzing and understanding the input scenario as a

semantic unit to infer important linguistic features

such as reference, comparing and additive cohesive

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1189

devices. Also, we provided an elegant GUI for

entering the user requirements scenario and

showing the generated diagrams.

6. LIMITATIONS AND FUTURE WORK

 Our system can generate only self-contained

concrete use cases which constitutes a complete

flow of events. It does not have the capability to

reuse other existing use cases via include, extend

and generalize relationships. Therefore, we aim to

provide this capability to reuse the existing use

cases in order to reduce the efforts required to

define the use cases in the system. On the other

hand, we aim to extend our system to have more

semantic analysis to infer more linguistic features

and to improve the system performance.

REFERNCES:

[1] S. Geetha, and G. A. Mala, “Automatic

Relational Schema Extraction from Natural

Language Requirements Specification Text,”

Middle-East Journal of Scientific Research,

vol. 21, no. 3, pp. 525-532, 2014.

[2] B. Manaris, “Natural language processing: A

human-computer interaction perspective,”

Advances in Computers, vol. 47, pp. 1-66,

1998.

[3] E. S. Btoush, and M. M. Hammad,

“Generating ER Diagrams from Requirement

Specifications Based On Natural Language

Processing,” International Journal of

Database Theory and Application, vol. 8, no.

2, pp. 61-70, 2015.

[4] F. Hogenboom, F. Frasincar, and U. Kaymak,

“An overview of approaches to extract

information from natural language corpora,”

Information Foraging Lab, pp. 69-70, 2010.

[5] I. Jacobson, Object-oriented software

engineering: a use case driven approach:

Pearson Education India, 1993.

[6] M. I. Muhairat, and R. E. Al-Qutaish, “An

approach to derive the use case diagrams from

an event table,” in Proceedings of the 8th

WSEAS Int. Conference on Software

Engineering, Parallel and Distributed Systems,

Cambridge, United Kingdom, 2009.

[7] L. L. Constantine, and L. A. Lockwood,

"Structure and style in use cases for user

interface design," Object modeling and user

interface design, M. v. Harmelan, ed., pp.

245-280, Boston: Addison-Wesley, 2001.

[8] W. Boggs, and M. Boggs, Mastering UML

with rational rose 2002, 1 ed.: Sybex, 2002.

[9] J. Rumbaugh, I. Jacobson, and G. Booch,

Unified Modeling Language Reference

Manual: The Pearson Higher Education, 2004.

[10] I. S. Bajwa, and M. A. Choudhary, “Natural

language processing based automated system

for uml diagrams generation,” in The 18th

Saudi National Computer Conf. on computer

science (NCC18). Riyadh, Saudi Arabia: The

Saudi Computer Society (SCS), Riyadh, Saudi

Arabia, 2006, pp. 1-6.

[11] S. K. Shinde, V. Bhojane, and P. Mahajan,

“Nlp based object oriented analysis and design

from requirement specification,” International

Journal of Computer Applications (IJAIS),

vol. 47, no. 21, 2012.

[12] M. Ilieva, and O. Ormandjieva, “Models

derived from automatically analyzed textual

user requirements,” in Fourth International

Conference on Software Engineering

Research, Management and Applications

(SERA'06), 2006, pp. 13-21.

[13] G. Fliedl, C. Kop, H. C. Mayr, A. Salbrechter,

J. Vöhringer, G. Weber, and C. Winkler,

“Deriving static and dynamic concepts from

software requirements using sophisticated

tagging,” Data & Knowledge Engineering,

vol. 61, no. 3, pp. 433-448, 2007.

[14] A. M. Tjoa, and L. Berger, “Transformation of

requirement specifications expressed in

natural language into an EER model,” in

International Conference on Conceptual

Modeling, Texas, USA, 1993, pp. 206-217.

[15] F. Gomez, C. Segami, and C. Delaune, “A

system for the semiautomatic generation of

ER models from natural language

specifications,” Data & Knowledge

Engineering, vol. 29, no. 1, pp. 57-81, 1999.

[16] M. I. Muhairat, R. E. Qutaish, and A. A.

Abdelqader, “UML diagrams generator: A

new case tool to construct the use-case and

class diagrams from an event table,” Journal

of Computer Science, vol. 6, no. 3, pp. 253,

2010.

[17] J. J. Gutiérrez, C. Nebut, M. J. Escalona, M.

Mejías, and I. M. Ramos, “Visualization of

use cases through automatically generated

activity diagrams,” in International

Conference on Model Driven Engineering

Languages and Systems, Toulouse, France,

2008, pp. 83-96.

[18] S. M. Seresht, and O. Ormandjieva,

“Automated assistance for use cases elicitation

from user requirements text,” in Proceedings

of the 11th Workshop on Requirements

Engineering (WER 2008), 2008, pp. 128-139.

Journal of Theoretical and Applied Information Technology
15th March 2017. Vol.95. No 5

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1190

[19] C. Cayaba, J. A. Rodil, and N. R. Lim,

“CAUse: Computer Automated Use Case

Diagram Generator,” pp. 1-4, 2006.

[20] N. Arman, “Using MADA+ TOKAN to

Generate Use Case Models from Arabic User

Requirements in a Semi-Automated

Approach,” in The 7th International

Conference on Information Technology,

Jordan, 2015.

[21] M. M. Kirmani, and A. Wahid, “Revised Use

Case Point (Re-UCP) Model for Software

Effort Estimation,” International Journal of

Advanced Computer Science and

Applications, vol. 6, no. 3, pp. 65-71, 2015.

[22] L. R. Tang, and R. J. Mooney, “Using

multiple clause constructors in inductive logic

programming for semantic parsing,” in

European Conference on Machine Learning,

Freiburg, Germany, 2001, pp. 466-477.

[23] I. Androutsopoulos, G. D. Ritchie, and P.

Thanisch, “Natural language interfaces to

databases–an introduction,” Natural language

engineering, vol. 1, no. 01, pp. 29-81, 1995.

[24] G. A. Miller, R. Beckwith, C. Fellbaum, D.

Gross, and K. J. Miller, “Introduction to

WordNet: An on-line lexical database,”

International journal of lexicography, vol. 3,

no. 4, pp. 235-244, 1990.

[25] G. A. Miller, "WordNet2.1,"

http://wordnet.princeton.edu/, 2006.

[26] J. Wagner, J. Foster, and J. van Genabith,

“Detecting grammatical errors using

probabilistic parsing,” in Workshop on

Interfaces of Intelligent Computer-Assisted

Language Learning, 2006, pp. 1-25.

[27] F. J. Damerau, “A technique for computer

detection and correction of spelling errors,”

Communications of the ACM, vol. 7, no. 3, pp.

171-176, 1964.

[28] F. Yamout, R. Demachkieh, G. Hamdan, and

R. Sabra, “Further Enhancement to the

Porter’s Stemming Algorithm,” Ulm,

September 21, 2004, pp. 7, 2004.

[29] C. v. Rijsbergen, “Information Retrieval,”

Butterworths, London, 1979.

[30] R. Grishman, and B. Sundheim, “Message

Understanding Conference-6: A Brief

History,” in International Conference on

Computational Linguistics, 1996, pp. 466-471.

[31] H. Harmain, and R. Gaizauskas, “CM-Builder:

A natural language-based CASE tool for

object-oriented analysis,” Automated Software

Engineering, vol. 10, no. 2, pp. 157-181,

2003.

