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ABSTRACT 

 

In this paper, a design of Sliding Mode Observer (SMO) of a class of biochemical processes is proposed. 

Indeed, nonlinear observers for the estimation of the substances are presented and the estimation of non-

measured states in waste water treatment process is addressed. The proposed observers are very successful 

in accurately estimating states variables. Specifically, sliding mode observer has been investigated for this 

class of nonlinear systems. Moreover, they are very easy to implement and to calibrate in order to estimate 

non measurable state. The sliding mode observer is compared with High Gain Observer (HGO) and 

Extended Kalman Filter (EKF). The performance of the sliding mode observer is illustrated through 

numerical simulations. The simulation results for the bioreactor application demonstrate the effectiveness 

of the proposed observer.  

Keywords: Sliding mode observer, biochemical process, nonlinear systems, wastewater treatment, High 

gain, EKF. 

 

1. INTRODUCTION  

 

 In the field of biochemical research, there has 

been a growing interest on biotechnological 

processes. These processes require high 

performance control techniques due to increased 

demands on productivity, product quality and 

environmental responsibility. Most of the chemical 

processes are inherently nonlinear and a variety of 

nonlinear control design strategy has been 

proposed. However, the application of computer 

control algorithms for biotechnological process 

suffers from the difficulty of modeling the growth 

kinetics of microorganisms and the lack of reliable, 

sterilizable and robust sensors for the online 

measurements of process key variables such as 

biomass, substrate and product concentrations [1,2]. 

The non-measurable variables in a bioreactor are 

obtained using indirect techniques [1]. Some of 

these approaches involved batchwise analyses 

which are done manually. Therefore, these 

techniques are time consuming, require a lot of 

manpower and many results in very expensive 

solutions as far as the measurements of very 

specific compounds are concerned [1,3]. 

One way to avoid these problems is to use 

estimation strategies. The state estimation of 

nonlinear systems has been an active field of 

research in the last few decades. The works in 

[1,2,3,4,5,6,7] presented some fundamental results 

on state estimation of systems via state 

transformation and nonlinear observer. 

In [2], a high-gain observer has been proposed for a 

general class of single output systems that is 

uniformly observable. The approach was 

generalized to a more general class of nonlinear 

systems in [3] and [4]. Indeed, in [4], a constant 

gain observer is proposed for a special class of 

nonlinear systems that does not require the 

nonlinear transformation. 

Many of these strategies, which are interested to 

estimate non-measurable states and disturbances for 

partially known systems, are based on the Extended 

Kalman Filter (EKF) and variations theorem [18, 

22]. The EKF is an extension of the linear Kalman 

filter to the case where the system is described in 

the state space by a nonlinear differential equation. 

Its design is based on a local linearization system 

around a reference trajectory [18].  

Variants like EKF constant gain were designed to 

avoid long calculations related to updating the state 

estimates and covariance matrices. 

Some other works are based on High Gain 

Observers (HGO) [4,17,19,24]. This observer gives 

a fast exponential response as desired by increasing 
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the variableψ . But, we have difficulty of obtaining 

a triangular structure even in the case where such a 

structure is theoretically accessible by a coordinate 

transformation. And, sensibility in the noise of 

measure if the gain is chosen too large. 

In the modern industry, the development of new 

techniques to get online estimates of the uncertainty 

terms in chemical reactors has been advanced. 

Indeed, as presented in [5, 6] a Sliding Mode 

Observers (SMO) are designed for a class of 

nonlinear uncertain continuous and discrete-time 

systems. 

Intense progress was made in the field of observers 

of nonlinear system [5, 6, 12, 13]. More preferably, 

Farza and al,[10,11] had successfully developed a 

simple nonlinear observer for online estimation of 

the reaction rates in chemical or biochemical 

reactors. 

These techniques use filtering and calorimetric 

balances. The advantage of these approaches is 

their easy computational implementation. In the 

spirit of calorimetric balances, another kind of 

observer structures can be used is the sliding mode 

observers. 

SMO are robust observers which estimate the state 

of nonlinear systems. They are well suited for these 

systems. The main advantages of SMO, over a 

linear observer such as Luenberger observer, is that 

SMO can be made considerably more robust to 

parametric uncertainty, external disturbances and 

noisy measurements [8]. 

 In this paper, a sliding mode observer is 

proposed for a biotechnological system. This work 

is based on [13]. Indeed, this observer is used to 

estimate the xenobiotic substratum in a biochemical 

reaction. The main contribution is the design of this 

observer and comparing it to others in order to 

show his excellent global properties. To ensure a 

suitable basis for comparison, different cases are 

designed (with and without perturbation, adding 

noise measurement…) and verified with the same 

test imposed by the biochemical reaction in the 

system. This observer aroused a lot of interest 

thanks to his adaptation to a real time use and its 

capacity to realize good performances. 

This work is organized as follows. In the next 

section, the class of bioprocesses to be studied is 

discussed and a precise statement of the problem is 

presented. Section III presents the mathematical 

model. Then, in section IV we give the design of 

robust nonlinear observer which is a sliding mode 

observer. Section VI presents a comparative study 

between SMO and HGO. In the end, we finish by 

given conclusion to the work. 

2. SYSTEM DESCRIPTION 

 

Bioreactors are generally regarded as containers 

which are used to synthesize products by means of 

biochemical reactions in a bioreactor; 

microorganisms use available nutrients for growth, 

biomass maintenances, and products formation. 

In biotechnology, the mathematical modeling of 

a process is a delicate stage requiring numerous 

experiments before ending a reliable model. Indeed, 

we model the dynamics of a biological process 

from the equations’ balance sheets materials 

established for every macroscopic element of the 

biological reaction (biomass, substratum, 

product…). 

The general equation of the evolution of each of 

these elements, on an interval of definite time, is 

given by: 

      Variation = ± Conversion + Food (Supply) – 

Racking 

The conversion can be: 

*a speed of production (case of the biomass) 

*a speed of consumption (case of the substratum) 

The supply and the racking are relative to the 

product to be treated. 

Concerning the studied process of purge of 

effluent, it is essential to integrate into the modeling 

following both microbial types of interactions: 

1- The competition: it is a conflict between the 

various sorts of microorganisms for the 

consumption of the nourishing elements and their 

proliferation in the available living space. This 

phenomenon is generally modeled by the model of 

Monod [24].  

Furthermore, it is bound to a limitation of growth 

by the substratum, so, the growth rate of the 

biomass ( )tcη  is: 

 

max

( )
( )

( )

l
c c

s l

S t
t

k S t
η η=

+
 

 

With ks : constant of Michaelis-Menten, 

corresponds to the microorganisms’ affinity for the 

limiting substratum Sl( t ). 

(1) 
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maxcη :  Specific maximal rate of growth. 

 

 2-The activation / inhibition: in culture of a unique 

microorganism, an excess of substratum is 

translated by an inhibition of the microbial growth. 

This type of interaction is modeled by Haldane’s 

model [24]:  

 

max 2

( )
( )

( )
( )

l
c c

s l

I

S t
t

S t
k S t

k

η η=
+ +

 

With: 

 kI : constant of inhibition,  Sl(t) : limiting 

substratum 

 

 

The process which is the object of this study is an 

experimental unit of waste water treatment fed with 

continuous mode; in fact, it is about a bioreactor 

containing a natural mixed population of 

concentratio ( )bc t and fed by an effluent 

containing two substratum carbon: the energy 

substratum of concentration ( )ne t and the 

xenobiotic substratum of concentration ( )xs t . 

 

In the next section, the mathematical model to 

describe the reaction in bioreactor is presented. 

 

3.   MATHEMATICAL MODEL   

 

The dynamics of the treatment process of waters of 

a bi-polluting effluent (xenobiotic and energy 

substratum), in the case of a homogeneous reactor 

with supply and permanent racking thus constant 

volume, are modeled by the system of following 

differential equations: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

c t t c t D t c tcb b b

e t V t c t D t e t D t e tn e a nb

s t V t c t D t s t D t s tx s a xb

η= −

= − + −

= − + −

&

&

&

 

 

Where:  

- ( )bc t : Concentration of the biomass (g/l). 

- ( )xs t : Concentration of xenobiotic 

substratum (g/l). 

- ( )ne t : Concentration of energy substratum 

(g/l). 

- ( )c tη : the specific speed of growth of the 

biomass. 

- Vs (t): the specific speed of degradation of 

the xenobiotic substratum (h-1). 
- Ve(t) : the specific speed of degradation of 

the energy substratum (h-1). 

- D(t) : rate of dilution : report between the 

flow of supply and the constant volume. 

 

Generally, the speed of degradation in substratum 
are expressed according to the efficiencies on 

conversion of the (xenobiotic / energy) substratum 

in biomass by: (xenobiotic in biomass /c sβ  ; 

energetic in biomass : /c eβ ): they can be defines as 

follows: 

 

/

( )
( ) e

e

c e

t
V t

η
β

=  

/

( )
( ) s

s

c s

t
V t

η
β

=  

Where ( )s tη (respectively ( )e tη ) is the specific 

rate of growth of microorganisms resulting from the 

conversion of the xenobiotic substratum 

(respectively energy) in biomass. 

 
3.1. Modeling of the kinetics of growth and 

degradation 

Competition for the mixture bi-substratum 

It is a conflict between the various constituents of 

the microorganism for the consumption of the 

nourishing elements and their reproduction in the 

available living space. This phenomenon is 

modeled, generally, by the model of Monod [24]. 
Indeed, the theory of Monod was spread to include 

the cases where several substratum in limiting 

concentration are present during the growth of a 

single type of microorganism. Three hypotheses are 

presented to describe the effect of a culture on the 

specific rate of growth. We limit ourselves in our 
study to this hypothesis. 

 

Activation / Inhibition in a mixture bi- 

substratum: 

In a culture in an only microorganism, to have a 

substratum in excess is translated by an inhibitive 
effect of the microbial growth. This phenomenon is 

modeled by the equation of Haldane [24] given by 

(2). 

 

The consideration of the crossed effects effects of 

the substratum ( )xs t  and ( )ne t on the evolution of 

(2) 

(4) 

(3) 
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the specific rates of growth ( )s tη and ( )e tη is given 

by the model of Generalized Monod [24]: 

( )
( )

( ) ( )

( )
( )

( ) ( )

s txts sm
k s t a e ts x e n

e tnte em
k e t a e te n s n

η η

η η

=
+ +

=
+ +

 

 

Where 

- smη  and  emη : specific rates of maximum 

growth. 

-  ks, ke : parameters of Michaelis-Menten 

allow to take into account the effect of  

limitation of growth. 

- ae : constant to model the inhibitive effect 

of the energy substratum ( )ne t on the  

consumption of the xenobiotic substratum 

( )xs t . 

- as : constant to model the inhibitive effect 

of the xenobiotic substratum ( )xs t  on the 

consumption of the energy substratum 

( )ne t , in theory:  ae=1/as 

 

This modeling allows introducing the inhibitive 

effect of the presence of a substratum on the 

degradation of the other present substratum into the 

environment of culture. 

 

In conclusion, by taking into account the structure 

of ( )tsη  and ( )teη  so defined, we obtain the 

expression of the specific rate of growth ( )tcη  from 

the mixed population: 

 

( ) ( ) ( )t t tc e sη η η= +  

 

The kinetics parameters of the system are 

recapitulated in what follows [18,24]: 

 

 

 

 

 

TABLE 1: KINETIC PROCESS PARAMETERS 

 

We applied a rate of variable dilution of the shape: 

 

2
( ) sin( )D t D D tn s

Ts

π
= +  

With: 

- Dn : the nominal amplitude of D(t). 

- 30%D Ds n= : the amplitude of the 

sinusoidal sequence added in Dn . 

Curves above show the evolution of the measures 

of the concentrations of the substratum as well as 

that of the rate of dilution D(t): 
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Time,h

X
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S
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D
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      Figure 1: Evolution of the measures in biomass, in    

      xenobiotic substratum, in energy substratum and 

the rate of dilution. 
 

 

 

 

 

Description Parameters Values 

Maximum rate of growth 

(1/h) 

ηsm 

ηem 

0.1 

0.2 

Parameters of  

inhibition/activation 

as 

ae 

0.1 

10 

Efficiency on conversion 

(g/l) 

βc/s 

βc/e 

 

0.7 

0.2 

Constant of Michaelis-

Menten (g/l) 

Ks 

Ke 

1.5 

1 

(5) 

(6) 

(7) 
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4. PROBLEM FORMULATION: SLIDING 

MODE OBSERVER STRUCTURE 

For general nonlinear system, a sliding mode 

observer is used to handle part of the nonlinearity 

of the system. This party briefly summary the 

sliding mode observer for a class of nonlinear 

systems in a special canonical observable form, 

which is studied by Farza[11, 13]. 

 
The system equations on the substratum and the 

biomass are given as the following [3, 10]: 

 

( ) ( ). ( ) ( ). ( )
1 1 1

( ) ( ). ( ) ( ). ( ) ( ). ( )
2 1 2

( ) ( ). ( ) ( ). ( ) ( ). ( )
3 1 3

x t t x t D t x tc

x t V t x t D t e t D t x te a

x t V t x t D t s t D t x ts a

η= −

= − + −

= − + −







&

&

&

  

The system is written on the following form: 

( , ) ( )

1 1

2

x F u x t

x
y Cx x

x

ϕ= +

= = =
 
  
 

&

 

 

With 

1
( )

1 2

2
3

T
x x x

x x

=

=
 

( ) ( )
1

D t U t u= =  

 

*We have   ; 1, ...,
nk kx R k q∈ =  

 as a result  
1 21

n
x R R∈ =  

           and  2 12
n

x R R∈ =  

... ; 2, 211 2
q

p n n n n n p qq k k
= ≥ ≥ ≥ = ⇒ = =∑ =

 

 
Our objective consists in designing state observers 

for system (8).So, we assume the followings: 

 

A1) each function ( , ), 1, ..., 1
k

F u x k q= −  satisfies 

the following rank condition: 

( ( , )) , ;
11

k
F n

rank u x n x R u U
kk

x

∂
= ∀ ∈ ∀ ∈++∂

 

Moreover , 0a b∃ >  such that for all 

{1, ..., 1}, , ,
n

k q x R u U∈ − ∀ ∈ ∀ ∈  

2 2
( ( , )) ( , )

1 11 1

k k
F FT

a I u x u x b In nk kk kx x

∂ ∂
≤ ≤+ ++ +∂ ∂

 

 

where
1knI

+
 is the 1 1( )*( )k kn n+ + identity matrix. 

 

A2) For 1 1k q≤ ≤ −  the function 

1 1 1
( , , ..., , )

k k k k
x F u x x x

+ +
a  is one to one 

from 1kn
R +  into kn

R  . 

A3) the function ( )tϕ  is uniformly bounded 

by 0δ > , 

when 0ϕ =  , system (9) is identical to that 

considered in [15] and it characterizes a subclass of 

locally U-uniformly observable systems. 

 

Observers’ equations  
We have: 

( )
1

1( ) ( ) ; ( )
2

2( )
3

c t xb
x

X t e t x Y tn
x

s t xx

= = =

  
   
           

 

 

Proceeding as in [13], one can show that observer 

can be written as follows: 

 

         
1 1 1ˆ ˆ ˆ( , ) ( , ) ( )x F u x u x K xψψδ γ+ − −= − ∆& %

                    
1

2

ˆ

ˆ
ˆ ˆ     , 1, ,

ˆ

kn k n

q

x

x
x R x R k q

x

 
 
 = ∈ ∀ ∈ =
 
 
  

L
M

 
 

with 

 * ( , )u xδ is the diagonal matrix: 

1( , )
( , ) ,

21

F u x
u x diag In

x
δ

 
 
  

∂
=

∂
                      

  Or we have  

   

' 1 1
1

( , ) ;
2'

32

x F F
F u x

xxx

∂ ∂
= =

∂∂

 
 
 
 

 ;    

( , )u xδ is left invertible (assumption (A1)),  

( , )u xδ+
 its left inverse: 

              1( , ) ( .)T Tu xδ δ δ δ+ −=  

* γ is the unique solution of the algebraic Lyapunov 

equation: 

(9) 

(8) 

(10) 

(12) 

(11) 

(13) 
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                  0T TA A C Cγ γ γ+ + − =            (14) 

 

where A  is
1 1

n n
q q
×  square matrix : 

0   I
2

0    0
A =

 
 
 

 

 

and C  is 1 1
n n

q
× matrix with 0

1
n denoting the 

1 1
n n×  null matrix :  

                    ,0 , ,0
1 1 1

C In n n
 
  

= L                  (15)                   

 

γ  is symmetric positive definite. 

* ψ∆ is the block diagonal matrix defined by: 

 

1 1 1 2 21

1 1 1
, , , ,

n n nq
diag I I I diag I Iψ ψ ψ ψ−

   
∆ = =   

   
L

 (16)                            

where 0ψ >  is a real number. 

 

* u and x are respectively the input and the 

unknown trajectory of system (8) where ˆx x x= −%  

 
Sliding mode observer 

Consider the following expression of ( )K x% : 

1
( ) ( ) ( )

T T
K x C sign x C Csign xα α= =% % %  

where 0α >  is a real number and ‘sign’ is the 

usual sign function with  

1
( )

1

( )      

1
(

1

sign x

sign x

signe xn

=

 
 
 
 
 
 

%

% M

%

 

 

Such discontinuity makes the stability problem not 

well posed since the Lyapunov method used 

throughout the proof is not valid. In order to 

overcome these difficulties, one shall use 

continuous functions which have similar properties 

that those of the sign function. This approach is 

widely used when implementing SMO. Indeed, 

we use: 

( ) ( )
T

K x C CTanh xα=% %    

where Tanh denotes the hyperbolic tangent 

function. 

 

Finally, the sliding mode observer, for the classes 

of the nonlinear systems, can spell under the shape: 

 
1 1ˆ ˆ ˆ ˆ( , ) ( ) ( )Tx F u x x C Csign x xψδ γ αψ

+ − −= − ∆ −&  

 

with: 

;0 ;0 ; ;0
* * *1 1 2 1 3 1

1   0    0
;0

* 0   1    01 1 2

C In n n n n n nq

In n n

 
 
  

   
   

   

=

= =

L

 

1 1 2, , ,
1 1 1

1 2,
2 2 2 2

T
qTC C I C I C Iq n q n q n

T
C I C I

γ  
  

 
  

− =

=

L

 

5.      SIMULATION RESULTS      

In order to illustrate the performance of the 

observer, numerical simulations were carried out by 

considering the following values for the parameters 

involved in the bioreactors model described in 

section 2 (Table1). 

SMO without perturbation 
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                    Figure. 2. Estimation in biomass.       

Legend: ....... estimated,          actual.   
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                    Figure.3. Estimation in energy substratum 

              Legend: ....... estimated,            actual. 

  (17) 

(18) 

(20) 

(19) 
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Figure.4. Estimation in xenobiotic substratum 

      Legend: ....... estimated,             actual 

         
    SMO with perturbation 
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Fig. 5. Estimation in biomass with perturbation 

Legend: ....... estimated,           actual. 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 
Figure.6. Estimation in energy substratum with 

perturbation. 

Legend:  .......   estimated,           actual. 
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Figure.7.Estimation in xenobiotic substratum with 

perturbation. 

 Legend:  .......   estimated,            actual. 

 

 

SMO are based on a transformation to a 

canonical form and successive estimation of the 

state vector. 

The SMO is a technique that is supported by the 

theory of variable structure systems. This method 

possesses robustness over other methods for 

nonlinear dynamic systems that’s why this observer 

was extended to n
th

 order and multi-output systems. 

The results can be considered acceptable as they 

show fast convergence in all states and a 

respectable behavior as well. 

 

The SMO have to be large enough to ensure 

robustness of the estimation of xenobiotic 

substance and the observer will convergence 

asymptotically. Further, to test the efficiency of the 

SMO, it is compared to the EKF and HGO. 

 

Further, to test the efficiency of the SMO, it is 

compared to the EKF and HGO. 

 

5.1. Extended Kalman Filter : EKF  
The filter is given by:  

 
1ˆ ˆ ˆ ˆ( ) ( ( ), ) ( ) ( ( ), ) ( )( ( ) ( ( ), ))Tx t f x t t t x t t R t y t g x t t−= + −& D h

 

ˆ ˆ( ) ( ( ), ) ( ) ( ) ( ( ), ) ( )

1ˆ ˆ( ) ( ( ), ) ( ( ), ) ( )

Tt x t t t t x t t Q t

Tt x t t R x t t t

= Φ + Φ +
−−

&D D D

D h h D

 

 

where  

( ( ), )
( ( ), )

( )

( ( ), )
( ( ), )

( )

f x t t
x t t

x t

g x t t
x t t

x t

∂
Φ =

∂
∂=

∂
h

 

                     

(21) 
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 The results obtained by applying the EKF were 

obtained with the numerical values of the 

parameters of synthetic data in the table 2[18]. 

 
TABLE 2: SYNTHESIS PARAMETERS OF THE EKF 

Description Parameters Values  

The covariance of 

the noise EKF 

Q(t) diag{0.03,0.1,0.01} 

The covariance of 
the noise EKF 

R(t) diag{0.0122,0.00122} 
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Figure. 8. Estimation in xenobiotic substratum 

 

The EKF observer provides recursive optimal state 

estimation for the system of waste water treatment 

but it’s not very efficient and so the robustness and 

precision are reduced. For application of this 

observer, there is a lag (error of estimation is very 

large; ˆx x x= −% ) between the real substratum and 

its estimate. 

 

5.2. High gain observer structure   
For general nonlinear system, a high gain observer 

is used to handle part of the nonlinearity of the 

system by choosing a sufficiently large value of a 

given design parameter [19]. 

 

The system is written on the following form: 

( , )

11

2

x F u x

x
y Cx x

x


        

=

= = =

&

 

                                    

     

2( ) ;    ;    ( )
1 1 2 3 1

  avec 
11 2

Tx x x x x D t u

q
p n n n n nq k k

= = =

= ≥ ≥ ≥ =∑ =L

                                   

 

So, 2 1 2  
1 2

p n n q= = ≥ = → =  

   

We have  ; 1,...,
nk kx R k q∈ =  

 as a result 1 2 2 11 2  and  
n n

x R R x R R∈ = ∈ =  

 

The proposed observer is the following one: 

 
1 1 1ˆ ˆ ˆ ˆ( , ) ( , ) ;Tx F u x u x C Cx x x xψδ γψ

+ − −= − ∆ = −& % %  

 

( , )u xδ is left invertible (assumption (A1)), 

( , )u xδ+
 its left inverse. γ , ψ∆ , C and ˆ( , )u xδ+

are 

given above. 
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Figure.9. Estimation in xenobiotic substratum 

Legend:  .......   estimated,            actual. 

 

Simulation results carried out a system of waste 

water treatment have been reported. These 

simulations showed the good capabilities of the 

designed high gain observer in providing good 

estimates for the non-measurable states. High gain 

observer addressed is a suitable nonlinear observer 

which can estimate non-measurable states. 

The simulation results confirm that HGO and SMO 

have stronger parameter ability than the EKF. So, 

we can consider that SMO and HGO, compared to 

EKF, are the main solution to the system in order to 

increase its robustness and improve dynamic 

performance. But we can see that SMO can have 

more effectiveness than HGO and to confirm this, 

we have done a comparative study more precious. 

 

The experimental evaluation of the HGO and SMO 

is shown as regards: 

*Observer performance and the mean square error, 

*Sensitivity to perturbation and noise measure, 

*Convergence and algorithm complexity… 

(22) 

(23) 
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6.     COMPARATIVE STUDY: SMO AND HGO       

Following the simulation using the new technique 

(SMO) to that studied (HGO), the estimation in 

biomass is presented in figure (10), whereas the 

estimation in energy substratum is viewed in figure 

(11) and the estimation in xenobiotic substratum is 

displayed in figure (12). 
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Figure.10. Estimation in biomass 
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Figure. 11. Estimation in energy substratum 
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Figure.12. Estimation in xenobiotic substratum 

The Mean Square Error (MSE Mean Square Error) 

is the arithmetic mean of the squared differences 

between forecasts and observations. However, 

RMSE is the Root Mean Square Error. 

 

In this section, we will look at a more accurate and 

precise comparison of the SMO and HGO to show 

the best. For this, we proceeded to make a summary 

table containing the values of the MSE and RMSE 

and we did the calculation in two cases: in case of 

disturbance of equations of state and in case of 

addition of noise of measure. The results are given 

in tables’ bellows: 

 

 

 

 

 

 

 

 

Energy 

substratum  

 
HGO 

 
SMO 

 

MSE 

 

RMSE 

 

MSE 

 

RMSE 

Undisturbed, 
without 

measurement 

noise 

1.9913.10-15 4.462.10-8 1.5047.10-15 3.879.10-8 

Adding 

disturbance 
1.5421.10-15 3.9269.10-8 1.5662.10-15 3.9575.10-8 

Addition of noise 

of measure 
1.9782.10-13 4.4477.10-7 2.6345.10-15 5.1328.10-8 

Biomass  

 
HGO 

 
SMO 

 

MSE 

 

RMSE 

 

MSE 

 

RMSE 

Undisturbed, 
without 

measurement 

noise 

2.5154.10-16 1.586.10-8 3.7034.10-16 1.9244.10-8 

Adding 

disturbance 
4.3242.10-16 2.0795.10-8 3.9034.10-16 1.9757.10-8 

Addition of noise 

of measure 5.5069.10-14 2.3467.10-7 5.0268.10-14 2.2421.10-7 

Xénobiotic 
substratum 

 
HGO 

 
SMO 

 

MSE 

 

RMSE 

 

MSE 

 

RMSE 

Undisturbed, 
without 

measurement 

noise 

2.7865.10-12 1.6693.10-6 1.2143.10-15 3.4847.10-8 

Adding 
disturbance 

4.3242.10-16 2.0795.10-8 2.5980.10-15 5.0971.10-8 

Addition of 

noise of 
measure 

1.5799.10-4 0.0126 1.1733.10-8 1.0832.10-4 
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COMMENT 

The nonlinear observers that we presented all show 

their ability to reconstruct the evolution of the 

concentration of elements biochemical. Given the 

strong nonlinearity characterizing the dynamics of 

pollution control process (degradation bi-

substratum, coupling due to the inhibition / 

activation), we can be satisfied with the behavior of 

these observers. But, some comparative remarks are 

necessary. 

 

We see that the convergence of SMO is fast 

enough, it was more a good estimate of the variable 

( )s tx  compared to the results for the previous two 

observers (especially EKF), the evolution of the 

estimated values of the concentration of substrates 

( )c t
b

, ( )e tn  and ( )s tx  has a relatively smooth 

appearance. 

 

The SMO has shown a good ability to reconstruct 

the xenobiotic substratum concentration (we're 

going to regulate) and that assuring a low square 

error compared to that of HGO in the case of 

disturbance of state equations or adding noise of 

measure.  

The convergence of both observers SMO and HGO 

is very satisfactory compared to the EKF. In fact, 

the speed of the estimated variables is relatively 

smooth compared to the previous observer (EKF). 

 

The energy substratum being measured, the 

influence of ( )s tx  through its filtered value is 

negligible due to the weak inhibition of ( )teη  by 

the substratum ( )s tx . In conclusion, we can notice 

that the SMO has very good capacity of filtering of 

noise of measure. 

 

7.      CONCLUSION 

In this paper, a sliding mode observer for a class of 

nonlinear systems in a special canonical observable 

form was proposed and it was compared with EKF 

and HGO. 

 

This observer provides a good solution to estimate 

state parameters in the studied biochemical system. 

The obtained simulation results show good 

performances.  

 

The implementation of the EKF involves 

significant numerical complexity compared to the 

SMO and HGO. 

 

As an estimator for the states of system of waste 

water treatment, the Kalman filter does not perform 

as well as the HGO and the SMO. Also, SMO is 

very efficient than HGO because it gives most 

important results. The robustness of the SMO is 

more guaranteed. The sensitivity to addition noise 

of measure and perturbation are also guaranteed. 

 

Finally, the SMO is considered the most convenient 

one compared to the EKF and HGO. It is more 

available and much simpler to implement in order 

that the dynamic performances can be more 

guaranteed. 
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