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ABSTRACT 

 

Building on a review of cooperation enforcement in mobile ad hoc networks and tag-based cooperation 

literature in [1] and the design of mobility-aware tag-based cooperation enforcement approach [2], this 

article will forward the research by describing the process of building a generic model to test and evaluate 

the proposed approach for tag-based cooperation in mobile environment. The generic model is an agent-

based model. Therefore, this article will begin by introducing agent-based modeling and describing the 

tools that can be used to develop agent-based models and explains the design of agent-based model for tag-

based cooperation in mobile environment. The evaluation of the agent-based model is presented and 

discussed. 

 

Keywords: Agent-Based Modeling, Tag-Based Cooperation, Mobile Environment. 

 

1. INTRODUCTION 

 

In self-organized mobile ad hoc networks 

(MANETs) such as civilian MANETs, each node 

acts as its own authority and may not share 

common goals with other nodes. Moreover, nodes 

in such networks are self-interested and tempted to 

drop others’ packets to preserve of their own 

limited resources e.g. battery power and 

computational capability. Such selfishness and non-

cooperative behavior can make it impossible to 

achieve multi-hop communication and have a 

negative effect on the overall network performance. 

A large number of studies have proposed different 

cooperation enforcement mechanisms for MANETs 

to mitigate the selfishness problem and increase 

cooperation rate between nodes in MANETs [1].  

In [1], we discussed the rationale of 

cooperation enforcement in MANETs and the 

characteristics of a cooperation enforcement model. 

We also reviewed different types of existing 

approaches to cooperation enforcement in 

MANETs and analyze them in order to provide 

justification for moving towards tag-based approach 

in enforcing cooperation between nodes in 

MANETs. Based on our analysis on existing tag-

based approach, we designed mobility-aware tag 

based cooperation [2] that serves as a guideline for 

the work presented in this article. Before we deal 

with the effects of mobile networking on our 

proposed solution, we are interested to investigate 

whether our proposed solution works without any 

interference from network environment. In doing 

this, agent-based modeling is the best choice.  

Agent-based modeling is a method of modeling 

systems that comprise autonomous entities called 

agents who can interact between them and with 

their environment. Each agent has the ability to 

decide its future action locally based on a set of 

interaction rules [3]. Moreover an agent in an agent-

based model is able to make local decisions without 

any centralized mechanism [4] and respond to 

changes in its environment with a goal-directed 

response [5]. In our view, with these characteristics 

of an agent, agent-based modeling is suitable for 

modeling cooperation between mobile agents in a 

decentralized system. In such a system, where there 

is no authority, each mobile agent should be 

autonomous in deciding whether it should 

cooperate or defect with other agents. Moreover, 

each mobile agent has to be responsive to changing 

mobile environment and as its goal is to maximize 

its own payoff, its response should increase its 

payoff. For justification of developing tag-based 

cooperation approach and critical literature review 

of this research area, we would like to refer the 

reader to [1]. 

Agent-based modeling can be used in different 

research areas. For instance, it has been applied to 

investigate petrol station prices [6], land-use and 

land-cover change [7], insect population [8], human 
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pedestrian movement patterns [9], human immune 

systems [10] and computer-aided driving [11]. 

Tools that are available for agent-based models 

development include, but not limited to, Ascape 

[12, 13], MASON [14], Swarm [15] and Repast 

[16].  

As this research involves developing an agent-

based model and a network model that are related to 

each other, the tools for developing both models 

should be selected by considering that they would 

not complicate the transition from agent-based 

model to network model. One way to ensure this is 

to use the same programming language in both 

tools. At this point, we have decided that we will be 

using Java-based JiST/SWANS [17] to implement 

and simulate the network model. Therefore, based 

on this, we have to use an agent-based modeling 

tool that is also Java-based. Ascape, MASON and 

Repast are Java-based while Swarm has Java-based 

and Objective-C versions.  

One of the main aspects of our simulation is the 

mobility of agents. In our simulation, agents will be 

moving based on random waypoint mobility. 

However, random waypoint mobility (RWM) 

model and all other mobility models are not 

available in agent-based modeling tools. Therefore, 

we have to implement RWM model in the selected 

agent-based modeling tool. All four tools 

mentioned above were being considered as they are 

Java-based. They were evaluated in terms of how 

feasible it is to implement random waypoint 

mobility model in each of them. Based on our 

investigation, we found that Repast Simphony 

requires the least effort to implement random 

waypoint mobility model, compared to the other 

three. The architecture of Repast Simphony allows 

agents mobility to be managed at environment level 

instead of agent level. This means that we can 

easily implement RWM model that conforms to the 

RWM model implemented in JiST/SWANS and let 

the simulation environment manages agents’ 

movement based on the inputs fed into the RWM 

model. The architectures of the other three, on the 

other hand, only allow agents movement to be 

managed at agent level. This means that for each 

simulation run, we have to manually input a set of 

location points for each agent and during the 

simulation, each agent would need to refer to the set 

in order to move. Although the location points 

could be generated from external random waypoint 

mobility generator such as BonnMotion [18], we 

would have to do this everytime before we run a 

simulation. Based on this, we think that selecting 

Repast Simphony would save us more time than if 

we select one of the other three. Therefore, Repast 

Simphony will be used for the development of the 

abstract model described in this article. 

 

 

2. DESIGN OF TACME 

 

We develop an agent-based model, TACME, to 

study how the proposed tag-based mechanism 

performs in a mobile environment. TACME is a 

generic model in which agents interact without 

MANET protocol. Thus, this model provides an 

ideal, error-free environment for evaluating the 

performance of tag-based cooperation approach in 

mobile environment. The model inherits the design 

of mobility-aware tag based cooperation (MaTaCo). 

For details on the solution design, methodology and 

analysis criteria, we would like to refer the reader to 

[2]. 

The idea is to ensure that our approach works 

as expected before moving on to implementing it in 

a mobile network simulator. If we implement the 

proposed approach in a mobile network simulator 

without first evaluating it in agent-based model and 

then find out that the approach is not working as 

expected, it would be hard to determine the cause of 

the problem; whether the approach just simply 

would not work or it is affected by MANET 

protocol. By first implementing our approach in 

TACME, at least we would know whether it works 

as expected or not, without involving MANET 

protocol. This section describes the design of 

TACME model in three parts i.e. agent, interaction 

and algorithm. 

 

2.1 Agent 

Agents in TACME model are mobile agents 

that employ the MaTaCo mechanism described in 

[2]. The MaTaCo approach was adapted to use 

distances between agents for measuring tags 

similarity, instead of using received power levels, 

RxPr as in the original MaTaCo approach. This 

section describes the agent component design in 

three parts i.e. tag, strategy and mobility. 

Instead of using the received power, RxPr as 

agents’ tags, we use the real distances between 

transmitting and receiving agents as the basis of 

agents’ tags in TACME model. This is because 

TACME model only captures the mobility of nodes 

and not the networking part of MANETs. 

Moreover, TACME model assumes an ideal, error-

free environment and the simulator knows the 

physical location of all agents. Therefore, we use 

Friis’ free space transmission formula [19] to derive 

the relationship between the received power, RxPr 
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and the distance between transmitting and receiving 

agents, d as follows:  

 

RxPr α 1/d
2
    (1) 

 

and  

 

RxPr
two/

RxPr
one 

α d
2

one/d
2

two   (2) 

 

where:  

 

• d
2

one = distance between transmitting and 

receiving agents for the first successive 

transmission, and  

• d
2

two = distance between transmitting and 

receiving agents for the second successive 

transmission.  

 

Based on this, we modify eq. (1) in [2] as 

follows:  

 

M
rel

Y(X) = 10log10d
2

oneX → Yd
2

 twoX → Y  (3) 

 

Hence, the tags of two agents X and Y are 

similar if eq. (3) satisfies eq. (2) in [2]. Note that 

the mechanism of exchanging tags between agents 

is the same as described in [2]. However, instead of 

recording RxPr
one

and RxPr
two

, in TACME model, 

an agent records d
2
one and d

2
two of its neighbors.  

Each agent in TACME model has two traits of 

strategy, S1 and S2 as described in [2]. The 

movement of agents in TACME model is based on 

random waypoint mobility (RWM) model. RWM 

model is one of the most widely used mobility 

models in MANET simulation [20]. In this mobility 

model, each node selects a random destination 

within the simulation area and a speed v from an 

input range [vmin,vmax] where vmin is the minimum 

speed allowed for the mobile node and vmax is the 

maximum allowable speed. The node then moves 

towards the destination at its selected speed. Once it 

reaches the destination, it stays for a predefined 

pause time. At the end of the pause time, it selects 

another destination and speed and resumes 

movement. The process is repeated until the end of 

simulation time.  

 

2.2 Interaction 

In TACME model, agents play prisoner’s 

dilemma (PD) game with each other. The rationale 

behind the choice of PD game as the scenario is 

that PD game captures the situation of forwarder’s 

dilemma explained in [1]. Similar to forwarder’s 

dilemma, in a PD game, an agent always gets a 

higher score by defecting than cooperating, 

independent of its opponent’s move. Therefore 

defection (D) is the dominant strategy; assuming 

that agents are rational in the sense that they are 

always trying to maximize their payoff, both agent 

would always choose D. However, the dilemma is 

that if they cooperate with each other, their payoff 

would be better than if they both defect. Thus, it is 

in our interest to evaluate whether the MaTaCo 

mechanism can enforce the agents to resist the 

defection and choose to cooperate in a mobile 

environment. Note that a rational agent is an agent 

that has the ability to determine how to achieve its 

preferred outcomes, given the actions of other 

agents [21].  

PD game can be classified as one-shot or 

iterated PD (IPD) game. In IPD game, a pair of 

agents play more than one round of PD game with 

each other. Agents are assumed to recognize each 

other and remember their history of interactions. In 

our work, we assume repeated interactions between 

two agents are rare because of the mobility of 

agents. Moreover, tag-based mechanisms do not 

rely on history of interactions. Therefore, instead of 

using IPD game, we choose one-shot PD game as 

the abstract scenario. 

The payoff is defined according to the 

Prisoner’s Dilemma game. In Prisoner’s dilemma 

game, both players or agents receive a reward 

payoff, R for mutual cooperation and a punishment 

payoff, P for mutual defection. However, when an 

agent plays different move than its opponent, the 

defector receives a temptation to defect payoff, T 

and the cooperator receives a sucker payoff, S. The 

payoffs must comply with these two rules; the 

payoffs ranking T > R > P > S and the restriction 

2R > T + S. The reproduction of agents in TACME 

model follows the learning interpretation of 

reproduction described in [2].  

 

2.3 Algorithm 
We adapt the algorithm described in [2] to 

apply the design of TACME model. The adapted 

algorithm is described in the following steps:  

1. Send first location coordinate to 

neighboring agents.  

2. Measure the distance, d
2
one, of each 

neighbor based on the received first 

coordinates.  

3. Send second coordinate to neighboring 

agents.  

4. Measure the distance, d
2
two, of each 

neighbor based on the received second 

coordinates.  
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5. If the second coordinate of a neighbor is 

not received within a time interval, discard 

the neighbor from neighbors list.  

6. Calculate M
rel

 for each neighbor.  

7. Choose an opponent, i, randomly from the 

neighbor list  

8. Play PD game with the opponent; choose 

S1 if playing with a neighbor with M
rel

 > 0 

, otherwise choose S2.  

9. Calculate payoff.  

10. Compare payoff with a randomly selected 

neighbor, j.  

11. Copy j’s S1 and S2 if j’s payoff is higher 

than own’s payoff.  

12. Reset payoff.  

13. Repeat from step 1 for next generation.  

 

 

3. EVALUATION 
 

This section details the evaluation of our 

mobility-aware tag based approach to enforcement 

of cooperation in mobile environment by means of 

simulation. First it describes the experimental setup 

used to conduct the evaluation. Then the rest of this 

section focuses on the experiments used for the 

evaluation, as well as their analysis and outcomes.  

 

3.1 Description of TACME 
The TACME model is composed of a set of N 

agents that have limited view radius and move 

according to random waypoint mobility model. 

Limited view radius is a representation of limited 

transmission range of a node in MANET. Each 

agent has a set of n neighbors that are moving 

within its view radius. For instance, agent A 

becomes agent B’s neighbor only if it is moving 

within agent B’s view radius. If agent A then moves 

away and exit agent B’s view radius, then agent A is 

no longer a neighbor of agent B. The relationship 

between agent A and B is bidirectional, meaning 

that if A is B’s neighbor, then B is also A’s neighbor 

and vice versa. Furthermore, each agent has two 

strategy bits. One bit indicates whether it will 

cooperate or defect with agents that possess similar 

tag, S1 and another one indicates whether it will 

cooperate or defect with agents that have different 

tags than itself, S2. Both the neighbor list and the 

strategy bits are only known to itself.  

Periodically, each agent sends its first location 

coordinate to its neighbors and calculates the first 

distances between itself and its neighbors. Then, 

each agent sends a second, updated coordinate and 

calculates the updated distances. After that, each 

agent choose a neighbor randomly from its list of 

neighbors. They play a one-shot PD game between 

them. If they have similar tags, both of them play 

S1. Otherwise, both play S2. Each agent receives 

payoff after playing a game. Then, each agent 

selects a random neighbor from its list to compare 

payoffs between them. If the selected neighbor has 

a higher payoff, then the agent copies the 

neighbor’s S1 and S2. Otherwise, the selected 

neighbor copies the agent’s S1 and S2. If their 

payoffs are the same, then nothing is copied.  

 

 

3.2 Baselines for Comparison 
We compare the adapted Mataco approach 

against three baselines:  

• No tag: this baseline allows agents in 

TACME to interact with each other 

without employing any tag-based 

mechanism. Therefore, for this baseline, 

agents just play PD game with their 

neighbors in mobile environment. The 

performance of this baseline justifies 

whether a cooperation enforcement system 

is really needed or not. Good performance 

of this baseline indicates that mobile 

agents can cooperate with each other 

without any cooperation enforcement 

system, and vice versa.  

• RCA: RCA is implemented as described 

in [22] except that interactions between 

agents are contained within their 

neighborhood in order to take into account 

limited view radius of each agent. In the 

original approach, agents can interact with 

any other agents from the population. The 

significance of having RCA as one of the 

baselines is that we can evaluate whether 

using real numbers as tags is enough to 

enforce cooperation in mobile 

environment.  

• HE: HE is implemented as explained in 

[23]. However, similar to RCA, limited 

view radius characteristic of each agent is 

taken into account. For similar reason as 

RCA, by having HE as one of the 

baselines, we can determine whether using 

lists of neighbors as tags can enforce 

cooperation between mobile agents. 

 

 

3.3 Performance Metrics 
We use two metrics to assess the performance 

of the adapted MaTaCo against the baselines 

outlined before.  
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• Percentage of conditional cooperators: 

the percentage of conditional cooperators 

is the percentage of agents that cooperates 

with other agents that have similar tags 

and choose to defect when playing against 

agents with different tags. It indicates 

whether agents discriminate when 

cooperating. Cooperation enforcement 

aims at increasing the percentage.  

• Cooperation rate: for a given agent, the 

cooperation rate is the number of times 

that an agent cooperates over the number 

of times that the agent plays PD game. It 

indicates the probability of an agent 

cooperates when interacting with other 

agents. Cooperation enforcement aims at 

increasing the rate.  

As the simulation involves many agents, we 

use a collective metric which is the average 

cooperation rate (ACR) per agent. The percentage 

of conditional cooperators in the population at a 

given time is also used to monitor the ongoing 

performance. Better performance in terms of the 

metrics outlined is critical to a tag-based 

cooperation enforcement approach. The metrics 

represent the degree to which the main goal of 

increasing cooperation is met.  

 

 

3.4 Simulation Hardware and Software 
The evaluation environment consisted of the 

implementation of the adapted MaTaCo approach 

within the Repast Simphony simulator. Repast 

Simphony 2.0 package for Windows was used. A 

machine with Intel Core 2 Duo processor with a 

clock speed of 2.4 GHz and 3 GB of memory was 

utilized. Windows XP SP2 was installed on the 

machine. The Eclipse Compiler for Java (ECJ) in 

Eclipse SDK version 3.6.1 with Java Runtime 

Environment (JRE) version 1.6.0.22 was utilized by 

Repast Simphony. 

 

 

3.5 Experimental Parameters  
The general parameters, listed in Table 1 were 

used in the simulation, unless specified otherwise. 

The values of the parameters were chosen such that 

they emulate a scenario of civilian MANET. The 

values of population size, area size and view radius 

follow the suggestion by [24]. Therefore the 

justification for the choices is similar to what have 

been discussed by them. 50 agents were placed in 

an area of 1000m by 1000m. This represents the 

center of a city at a time when it is not busy. Each 

agent has a view radius of 250m which conforms to 

the radio range value of an off-the-shelf wireless 

interface device [24]. All agents move according to 

the RWM model with speeds uniformly distributed 

from 0m/s to 10m/s and each has a pause time of 30 

seconds. The speed represents a range of users that 

are staying at fixed locations, walking, cycling and 

also driving slowly while the pause time represents 

users that are stopping at certain locations such as a 

pedestrian who is stopping at a shop for a quick buy 

or a car driver who is stopping at a junction. We 

used the values suggested by [23] to define PD 

payoffs where T = 1.9, R = 1, and P = 0.0001. 

However, instead of using S = P, we define S = 0 to 

enforce T > R > P > S. This is to ensure the payoffs 

comply with the rules of a PD game.  

 

Table 1: General parameters of the simulation. 

All experiments used the values stated in this table, 

unless specified otherwise. 

 

Parameter Value 

Population 

size 

50 agents 

Minimum 

speed 

0m/s 

Maximum 

speed 

10m/s 

Pause time 30s 

Simulation 

time 

1100s 

Area width 1000m 

Area length 1000m 

View radius 250m 

Interaction 

start time 

100s 

Interaction 

end time 

1000s 

Conditional 

cooperators 

50% 

Unconditional 

defectors 

50% 
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Payoff T = 1.9, 

 R = 1, 

 P = 0.0001 

 S = 0 

 

Each simulation ran for 1100 seconds of 

simulated time. Interactions between agents started 

at 100 seconds and ended at 1000 seconds. 

Therefore, interactions between agents lasted for 

900 seconds in each simulation. The chosen 

simulation and interaction time give agents 

adequate time to potentially travel the whole 

simulation area and interact and compare their 

payoffs between them, respectively. In addition, the 

first and last 100 seconds of the simulation gave 

agents time to move to random positions before 

starting to interact and prevented the interactions 

from sudden halt due to the end of the simulation 

respectively. The population started with 50 percent 

conditional cooperators and 50 percent 

unconditional defectors. This is to ensure that there 

is no bias towards either cooperative environment 

or selfish environment at the start of simulation. A 

conditional cooperator has S1 = C and S2 = D, 

meaning that it only cooperates with agents that 

have similar tags. An unconditional defector or 

selfish agent, on the other hand, has S1 = D and S2 

= D. The results were averaged over ten runs, each 

with a different seed. The seed value influences the 

placement and movement of agents in the 

simulation.  

 

 

3.6 Performance over Time 
This experiment evaluates the performance of 

the adapted MaTaCo in comparison to the baselines 

described before, over time. Figure 1 and 2 show 

the average cooperation rate and the percentage of 

conditional cooperators, respectively, over time for 

the adapted MaTaCo, No-tag, RCA and HE.  

We observe that if mobile agents play one-shot 

PD games without tag mechanism, as in No-tag 

case, the average cooperation rate and the 

percentage of conditional cooperators decrease to 

zero over time. This justifies the need of a 

cooperation enforcement system such as a tag-

based system to promote cooperation.  

Existing tag-based models such as RCA and 

HE are not capable of promoting cooperation 

between mobile agents, as shown in the figures. 

The results indicate that they could only delay the 

population from reaching total defection. The 

adapted MaTaCo, however, increases the average 

cooperation rate and the percentage of conditional 

cooperators over time. Conditional cooperators 

increases from 50% at the start of simulation to 

80% at the end of simulation, while the average 

cooperation rate rises from 0.44 to 0.73. This shows 

that the adapted MaTaCo is capable of promoting 

cooperation between agents in mobile environment. 

The reason it performs better than RCA and HE is 

that it takes into account the mobility of agents in 

enforcing cooperation, thus makes it responsive and 

adaptive to changing mobile environment. RCA 

and HE, on the other hand, were not targeting to 

enforce cooperation in mobile environment.  

 

Figure 1 Average Cooperation Rate Over Time 
 

 
Figure 2 Percentage Of Conditional Cooperators Over 

Time 

 

 

3.7 Impact of Mobility 
This experiment evaluates the impact of 

varying agents’ speeds on the performance of the 

adapted MaTaCo in comparison to the baselines. 

Table 2 lists the maximum speed settings used in 

four scenarios. In scenario 1, the speed is uniformly 

distributed between 0 to 5m/s which represents a 

range of users that are staying at fixed locations, 

walking or cycling. In scenario 2, the speed is 
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uniformly distributed between 0 to 10m/s which 

represents a range of users that are staying at fixed 

locations, walking, cycling or driving at maximum 

36km/h. In scenario 3, the speed is uniformly 

distributed between 0 to 15m/s which represents a 

range of users that are staying at fixed locations, 

walking, cycling or driving at maximum 54km/h. 

Finally in scenario 4, the speed is uniformly 

distributed between 0 to 20m/s which represents a 

range of users that are staying at fixed locations, 

walking, cycling or driving at maximum 72km/h.  

The average cooperation rate, and the 

percentage of conditional cooperators at the end of 

simulation of the adapted MaTaCo are compared 

with the implementation of No-tag, RCA and HE. It 

is expected that the adapted MaTaCo will achieve 

higher average cooperation rate and percentage of 

conditional cooperators, as it takes into account 

agents’ mobility in enforcing cooperation. Figure 3 

illustrates the average cooperation rate achieved for 

a maximum speed of 5 m/s, 10 m/s, 15 m/s, and 20 

m/s for the adapted MaTaCo, No-tag, RCA and HE. 

It shows that the adapted MaTaCo achieves a 

higher average cooperation rate than the baselines. 

As maximum speed increases, the average 

cooperation rate of the adapted MaTaCo drops 

slightly. This is due to the increase in variation of 

agents’ speeds which decreases the probability of 

finding agents with similar tags. However, the 

adapted MaTaCo still perform very well compared 

to the baselines.  

Figure 4 shows the percentage of conditional 

cooperators at the end of simulation. The 

population starts with 50% selfish agents and 50% 

conditional cooperators. Therefore, at the end of 

simulation, the adapted MaTaCo increases the 

percentage of conditional cooperators in the 

population by 24 to 37% depending on the 

maximum speed setting. No-tag, RCA and HE, on 

the other hand, decrease the percentage of 

conditional cooperators in the population in each of 

the maximum speed setting. This is expected as the 

approaches were not designed for mobile 

environment.  

The results also show that even in low mobility 

environment i.e. 5 m/s maximum speed, No-tag, 

RCA and HE are not capable of increasing the 

percentage of conditional cooperators in the 

population. The adapted MaTaCo, on the other 

hand, increases the percentage even in high 

mobility environment i.e. 20 m/s maximum speed. 

Therefore, we expect that the adapted MaTaCo will 

outperform No-tag, RCA and HE in all scenarios 

described in the next sections as the scenarios are 

fixed at 10 m/s maximum speed.  

 
Table 2: Maximum Speed Setting 

 

Scenario Maximum speed (m/s) 

1 5 

2 10 

3 15 

4 20 

 

 

 
Figure 3 Average Cooperation Rate With Respect To 

Agents’ Maximum Speed 

 

 
Figure 4 Percentage Of Conditional Cooperators At The 

End Of Simulation With Respect To Agents’ Maximum 

Speed 

 

3.8 Impact of Selfish Agents 
This experiment evaluates the adapted 

MaTaCo’s performance in comparison to the 

baselines, under varying number of selfish agents at 

the start of simulation. Table 3 lists the settings 

used for selfish agents percentage at the start of 

population in four scenarios. Figure 5 and 6 

illustrate the average cooperation rate and the 

percentage of conditional cooperators at the end of 

simulation, respectively, for a percentage of selfish 

agents of 10%, 20%, 30%, and 40%. As shown in 

experiment 3.6, the baselines do not perform well 

in that scenario. Intuitively, a higher percentage of 
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selfish agents than 50% at the start of simulation 

would further degrade the baselines’ performance. 

Therefore, in this experiment, we chose the values 

ranging from 10% to 40% selfish agents in order to 

provide a bias towards cooperative environment 

and evaluate whether it will have any effect on the 

baselines and also our approach.  

Both figures show that the baselines do not 

promote higher cooperation even when there is only 

10% selfish agents at the start of simulation. The 

average cooperation rate and the percentage of 

conditional cooperators increase only if agents 

employ the adapted MaTaCo. With an increasing 

percentage of selfish agents, both the average 

cooperation rate and the percentage of conditional 

cooperators decrease. The average cooperation rate 

has a higher decrease rate than the percentage of 

conditional cooperators due to low cooperation rate 

at the early of simulation. With respect to the 

adapted MaTaCo, the percentage of conditional 

cooperators can reach 100% in 900 seconds if the 

population starts with 10% or 20% selfish agents. 

This shows that the adapted MaTaCo has the 

capability to enforce full cooperation in a 

population of mobile agents. The higher the 

percentage of selfish agents at the start of 

population, the longer the time is needed for the 

adapted MaTaCo to enforce full cooperation.  

 
Table 3: Percentage Of Selfish Agents Setting 

 

Scenario  Selfish agents (% of population)  

1 10 

2 20 

3 30 

4 40 

 

 
Figure 5 Average Cooperation Rate With Respect To 

Percentage Of Selfish Agents At The Start Of Simulation 

 
Figure 6 Percentage Of Conditional Cooperators At The 

End Of Simulation With Respect To Percentage Of 

Selfish Agents At The Start Of Simulation 

 

 

3.9 Impact of Population Size 
This experiment evaluates the impact of total 

number of agents on the average cooperation rate 

and the percentage of conditional cooperators. 

Table 4 lists the population size and corresponding 

area size settings used in four scenarios. Figure 7  

and 8 show the average cooperation rate and the 

percentage of conditional cooperators at the end of 

simulation, respectively, for a population size of 

100, 200, 300, and 400 agents. The simulation area 

size is changed accordingly to keep the population 

density fixed at 20000m2/agent (which is as same 

as the population density for 50 agents in an 1000m 

x 1000m area). For instance, a population of 400 

agents with a density of 20000m2/agent requires an 

area of 8000000m2 which equals to approximately 

2828m by 2828m square area. The aim of this 

experiment is to evaluate the approaches in large 

population. However, due to limitations of the 

machine used in terms of its processing capacity, 

this experiment could only support up to a 

maximum of 400 agents without consuming more 

time than was available.  

It is observed that in each population size, the 

adapted MaTaCo increases the percentage of 

conditional cooperators. Hence, the average 

cooperation rate of the population increases. Both 

the average cooperation rate and the conditional 

cooperators percentage of the adapted MaTaCo do 

not decrease significantly as the population grows. 

This is because of the fact that the maximum speed 

is fixed at 10 m/s in each case, thus the probability 

of an agent finding other agents with similar tags 

does not change significantly between the cases. 

 

 

 

 

 

 
Table 4: Parameter Setting 
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Scenario Population 

size 

Area size 

(m x m) 

1 100 1414m x 1414m 

2 200 2000m x 2000m 

3 300 2449m x 2449m 

4 400 2828m x 2828m 

 

 
Figure 7 Average Cooperation Rate With Respect To 

Number Of Agents 

 

 
Figure 8 Percentage Of Conditional Cooperators At The 

End Of Simulation 

 

 

3.10  Impact of Population Density 
This experiment evaluates the average 

cooperation rate and the percentage of conditional 

cooperators, when population density varies. Table 

5 lists the population density and corresponding 

area size settings used in four scenarios. Figure 9 

and 10 show the average cooperation rate and the 

percentage of conditional cooperators at the end of 

simulation, respectively, for a population density of 

10000, 20000, 30000, and 40000 m
2
/agent. The 

values were chosen such that they do not exceed the 

view area of an agent. The view area is defined by 

πr
2
 where r is the agent’s view radius. As each 

agent’s view radius is defined as 250m throughout 

the simulation, therefore the view area of each 

agent is approximately 196350m
2
 of circle area 

which is always larger than the chosen population 

density values. This is important in order to keep 

the degree of population partitioning as low as 

possible, so that it would not affect the evaluation. 

The simulation area size is changed accordingly to 

keep the population size fixed at 50 agents. For 

instance, a population of 50 agents with a density of 

10000m
2
/agent requires an area of 500000m

2
 which 

equals to approximately 707m by 707m square 

area.  

It is observed that both the rate and the 

percentage decrease as network density decreases. 

This is due to the fact that each agent’s view radius 

is limited to 250 m. Thus, as the area size increases 

which in turn decreases the network density, the 

probability of an agent finding neighbors decreases 

as each agent has a larger area to move around. 

With a decreasing probability of an agent finding 

neighbors, the probabilities of an agent finding 

other agents with similar tags and an agent has a 

neighbor to compare its payoff with also decrease. 

  
Table 5: Population Density Setting 

 

Scenario Population density 

(m
2
/agent) 

Area size 

(m x m) 

1 10000 707m x 

707m 

2 20000 1000m x 

1000m 

3 30000 1225m x 

1225m 

4 40000 1414m x 

1414m 

 

 
Figure 9 Average Cooperation Rate With Respect To 

Population Density 
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Figure 10 Percentage Of Conditional Cooperators At 

The End Of Simulation With Respect To Population 

Density 

 

4. CONCLUSION 
 

We have presented the development of 

TACME, a mobile environment model for tag-

based cooperation. The agent-based modeling 

technique and tool used for TACME development 

were discussed. In this model, there was no radio 

communication involved. Therefore, the MaTaCo 

approach was adapted to use distances between 

agents for measuring tags similarity, instead of 

using received power levels, RxPr as in the original 

MaTaCo approach. The relationship between the 

distance between two agents and the received 

power level was derived from Friis’ free space 

transmission formula. Agents in TACME played 

PD games between them as TACME generalized a 

packet forwarding session in a MANET as a PD 

game.  

We also presented the evaluation of the 

adapted MaTaCo in TACME, in comparison to the 

No-tag, RCA and HE approaches. A set of 

experiments that assess the performance of the 

adapted MaTaCo in terms of promoting higher 

cooperation than the baselines under varying 

conditions, was outlined. Overall, the adapted 

MaTaCo outperformed the baselines under all 

tested conditions. The adapted MaTaCo increased 

the average cooperation rate and the percentage of 

conditional cooperators under varying number of 

selfish agents, speed of agents, population size and 

population density. The baselines, on the other 

hand, decreased the rate and the percentage under 

the varying conditions. This shows that by enabling 

the nodes to be aware of neighboring nodes’ 

mobility and location, as implemented in our 

proposed algorithm, they can increase the 

cooperation rate between them.  
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