
Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

928

 TOWARDS AN AUTOMATIC EVALUATION OF UML

CLASS DIAGRAMS BY MEASURING GRAPH SIMILARITY

1
ANAS OUTAIR,

 2
MARIAM TANANA,

3
ABDELOUAHID LYHYAOUI

1
National School of Applied Science, Tangier, MOROCCO

E-mail:
1
anas.outair@gmail.com,

2
mariam.tanana@hotmail.fr, 3

lyhyaoui@gmail.com

ABSTRACT

We discuss in this article, the problem of analyzing the student's productions during the construction of a

UML class diagram from textual specifications. The main objective is to propose a method for evaluating

the diagrams built by students in an automatic way. To reach this goal, we have to analyze student

productions, and we study the work related to processing, matching, similarity measure and comparison of

several UML graphs. From this study, we adopted a method based on the comparison and matching

components of several UML diagrams. This proposal is applied to assess the UML class diagrams and

focuses on the structural and semantic aspects of the UML graph to match

Keywords: Learner assessment, UML class diagram, UML graphs matching, similarity measure.

1. INTRODUCTION

The learning assessments occupy a very important

place in the education. The knowledge acquired by

the students can be tested by the teacher in the form

of a:

• Formative assessment or diagnostic testing is a

range of formal and informal assessment

procedures employed by teachers during the

learning process in order to modify teaching and

learning activities to improve student attainment

[19];

• Summative assessment is commonly used to

refer to assessment of educational faculty with

the object of measuring all teachers on the same

criteria to determine the level of their

performance [20].

Bloom's taxonomy identifies three main learning

domains: cognitive, affective and psychomotor. The

cognitive domain describes the knowledge and the

development of the intellectual abilities and skills

(knowledge and know-how), the affective domain

describes the aptitudes or self-management skills,

and the psychomotor domain describes the physical

and motor abilities. In what follows, we are

interested in the cognitive domain since it is the

most requested at the time of the establishment of

learning objectives in the educational system [21].

UML is one of the most important courses in

higher education, and modeling Object Oriented

which aims to understand the models of design

concepts in the different phases of the software

development cycle [1]. In the UML class diagram,

the implementation of case studies is necessary for

a good understanding of the basic notions of the

UML design and modeling. The students have to

conceive these case studies. The teacher’s work will

consist at evaluating the obtained results. It is a

tedious task because the correction of an UML class

diagram created by a student is difficult to

understand, especially if there are several possible

solutions. Since UML does not provide the

methodology for modeling, the students have

difficulties during the construction of a class

diagram [2]. When students construct an UML

diagram, which has several solutions, it might be

presented in different ways and point of views. The

main objective of this thesis is to propose a method

for automatic analysis of diagrams of the learner in

the modeling business environment conducted by

students.

This method should be independent for

educational needs, to ensure some generic so that

the results can be used to produce synchronous

feedback for Human Learning. To meet this goal,

we want to investigate existing learning

environments for modeling and analysis of student

productions and finally the relating works on

transformation, matching and similarity measure.

From this study, we adopted the principle to design

a tool based on the comparison and matching

components of several diagrams.

 This article is organized into seven parts. The

second section describes an example model

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

929

containing a teacher’s class diagram and a student’s

class diagram. The third section represents the

difference between the diagrams. The fourth section

describes the representation of UML class diagram

in UML graph. The fifth part concerns related

techniques of matching. The sixth section describes

the proposed method for comparing and measure

similarity of UML graph.

2. UML CLASS DIAGRAM EXAMPLES

In the UML courses, class diagrams are often

modeled by students from text specifications. Next,

the teacher has to assess these diagrams by

comparing them by reference diagrams; this

comparison can deduce two problems?

• The same semantics but they are

structurally different.

• The same structure but they differ

semantically.

Otherwise, we may be confronted with several

possible solutions. To work around this problem,

we have to compare the class diagram student’s

with several references of class diagrams.

Thereafter, we illustrate an example from a case

study on “Library management”.

Figure 1 class diagram reference (teacher's correction).

Figure 2 class diagram of the student.

For this paper, we will use a single

reference diagram of the teacher (figure 1) that we

will compare to those students (figure 2).

3. EXTRACTING DIFFERENCE

DIAGRAMS BETWEEN

The differences that we built from a

manual comparison of student's diagram with a

reference diagram for the exercise of our case

study. The differences are grouped into eight

categories:

Omission of an element: the student has

omitted an element of the teacher class diagram;

Adding the element: The student added in

this diagram an element that is not represented in

the teacher class diagram. Transfer of an element:

an element has been moved. For example an

attribute of class "A" in the teacher class diagram is

displaced by the student to the class "B";

 Duplication of an element: an element of

the teacher class diagram is shown in the class

diagram of the student by several elements of the

same type;

Fusion of elements: several elements of

the same type are represented in the student class

diagram by a single element;

Reversing the direction of a relationship:

the sense of a relationship (inheritance, aggregation

or composition) was reversed by the student.

The detected differences of modeling and

representation are significant (Figure1 and

Figure2). Class “Librarian” is not represented, nor

its association relationships with class “library” and

class “member”. Association class is not

represented, nor do its attributes, its operations and

its association relationships with class “Library”

and ‘Librarian’. A composition relationship

connects the classes "Library" and "Document"

instead of an aggregation relationship, and its

orientation is reversed. An association relationship

"registered" is inserted between the classes

"Member" and "Library", while it should be

inserted to connect the class "Member" with the

class "Librarian". The direction of the inheritance

relationship between the classes "Document" and

"Book" is reversed. The multiplicity of the

association end "0..2" of the class "Book" is

replaced by "1..*".

The differences were developed from a

manual comparison; several differences have been

found in class, attribute, method, relationship,

orientation relationships and multiplicities. The

differences can be expressed as insertion, omission,

inversion and replacement. The student’s class

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

930

diagram is incomplete; he omitted to represent

some elements of the diagram. These omissions are

for instance the absence of a class which implies

that the attributes, operations and relations that

connect them to other classes in the diagram are

also absents. It may be that the student has omitted

to represent attribute inherited by subclasses of the

super class, then these classes will also be

incomplete. However, the insertion of an element or

relationship in the diagram constructed by the

student refers to the fact that he did not respect the

case study, or that he made a mistake. Table 1

illustrates an example of general differences

between the teacher’s class diagrams and the

student’s class diagram.

Table 1: The differences between two class diagrams

Differences

noted by the

teacher

Feedback

Omission
{Librarian}

Omission of class
and elements

associated with this

class

Omission {works

(Librarian �

Library)}

Omission

{registered

(Librarian �
Member)}

Omission

{Borrow}

Omission of

association

Omission {do
(Librarian �

Borrow)}
class and elements
associated with this

association class
Omission {know
(Library �

Borrow)}

{ have (Library �

Document) }
REVERSE

{ have (Document

� Library) }

Reversing the

direction of a
aggregation

relationship

{ Dictionary

�Document}
REVERSE

{ Document�

Dictionary) }

Reversing the

direction of a
generalization

relationship

Those differences have been done

manually, if we want to do it automatically or semi-

automatically, it will be difficult with the graphic

form of these diagrams. Thereafter, we would like

to represent it in an easier and handle able format.

Indeed, the class diagrams contain several links

between classes and each class has several

attributes or operations. Links can be of different

types (combination of inheritance, aggregation,

composition and simple association) and be labeled

differently (role, multiplicity, and navigability) [3].

We have shown in this section that the solution

produced by the student does not automatically

infer whether the student develops the correct or

erroneous constructions in relation to the case study

requested. The use of a valid solution or several

solutions defined by a teacher's necessary for a

system to be able to automatically analyze student

productions. Oversights and errors that the student

commits are identified from a diagram constructed.

At a more general level, the problem of comparison

of several different models created by students has

been studied outside of a learning environment.

This problem is similar to a model matching

process, which is why we present the model

matching problem and the classical approaches that

have been developed to treat it.

4. UML CLASS DIAGRAMS INTO AN UML

GRAPH

We have described some differences between

two UML class diagrams analyzed during the

design of a case study. In the discussed learning

environment, the models developed by students

during a modeling activity are class diagrams

graphics. In this section, we examine some possible

representations of the UML class diagram. We

propose a graphical representation of this case

study. Then we focus on how UML class diagrams

can be represented as graphs in particular to be

saved and analyzed by computer systems.

4.1 Definition of graph matching

We present the representation of the class

diagram of the case study “library management”.

Based on the extract of the meta- model, we can

transform a class diagram to an UML graph where

all the elements and their direct links are made

explicit by means of vertices and edges [4].

Figure 3 Meta-model of class diagram

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

931

The meta-model in Figure 3 shown the

representation of the majority of elements (class,

associations, attributes, and operation for

association) is vertices of the graph. Edges are

inheritances, and relationships between various

elements. A class (vertex) has attributes (vertices)

that can be typed by classes. Associations (vertices)

have association ends (vertices) which can be typed

by classes (vertices). Vertices and edges are

characterized by labels representing their attributes

and operations (name, visibility, type), their

association ends (role, multiplicity, type of

association, navigability).This representation is

semantically equivalent with the class diagram, and

naturally meets the requirements described in the

UML meta-model [5].

4.2 Meta-model of class diagram

The Figure 4 shows the UML graph of library

management. The graph representation clearly

expresses links of their elements and of their

characteristics in the UML diagrams. Each edge

connects several nodes and has a direction. Vertices

and edges are characterized by labels representing

their attributes and operations (name, visibility,

type), their association ends (role, multiplicity, type

of association, navigability). This representation is

semantically equivalent with the class diagram, and

naturally meets the requirements described in the

UML meta-model.

Figure 4: Representation of class diagram in the form of

an UML graph

The figure 4 shows a part of the class diagram

modeled for the case study "Library Management".

A graph is represented as XML Metadata

Interchange (XMI) [4]. The nodes are elements

UML classes, attributes, operations and association

relations that compose it. The inheritance

relationships related to their parent classes. The

association ends are connected either by association

relations or related classes.

We presented an UML class diagram into a

graph. In the next section, we will now interest in

the methods of comparison and similarity of

graphs.µ

5. MATCHING METHOD

We present in this section, the definitions

of the matching method in the context of graphs.

The choice of a technique or set of techniques for

matching problem can share approaches and criteria

[6]. We present several dimensions and

classifications to clearly define key concepts,

characteristics and criteria used in the graph

matching techniques. Finally we end with some

special matching approaches combining several

techniques.

5.1 Definition of graph matching

Graph matching plays a central role in

solving correspondence problems in computer

vision. Graph matching problems that incorporate

pair-wise constraints can be cast as a quadratic

assignment problem [7]. Matching graph labeled is

finding semantic correspondences between two

graphs [8]. The matching can be considered as an

operation or an operator which takes two graphs as

input and produces a mapping between the

elements of two graphs corresponds semantically to

each other [9]. The graph matching problems

consisting in mapping the vertices of two graphs,

the objective being to compare the objects modeled

by graphs.

5.2 Matching method and result

The inputs of our matching method are

UML graphs; we will assess similarities and

comparisons to provide as output an alignment and

differences between these inputs. This matching

method is adapted to the level of analysis UML

graphs and their development in the context of

learning of object-oriented modeling. It compares

and matches the structure of several UML graphs

inputted by focusing on numerous descriptive

dimensions of UML elements and their

organization in UML class diagrams. We defined in

the figure 5 the matching method that takes as input

UML class diagrams and returns a mapping and

differences syntactic, structural and semantic

between the student's diagram and teacher’s

diagram in output.

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

932

Figure 5: Comparison and matching

The matching result may associate one or more

elements of the first UML graph to one or more of

the other UML graph, and vice versa. Cardinality

relationships between paired elements are

introduced to describe the matching products.

Cardinality relationships correspond to four

scenarios:

1: 1 (one element associated with an element) ;

1: n (an element associated with n elements);

n: 1 (n elements associated with an element);

m: n (m elements associated with n elements).

The comparison of several elements is based

on the evaluation of their similarities and their

differences. Measuring the similarity of two

elements is to identify commonalities thus the

distance measure between two elements is the

identification of the differences. So the distance and

similarity are two concepts that refer to a common

goal. The calculation of the distance or similarity of

two graph structures allows you to find the best of

vertices of a graph, that is to say the one that

preserves the most characteristic vertices and edges

[10].

In the next section, we will present the similarity

measure and comparison.

6. SIMILARITY MEASURE AND

COMPARISON

We studied the existing approaches of the

parameterized distance measurement depending on

the type of graph to match for different graph

matching problems. This measure of similarity

between two UML graphs is based on their

common characteristics throughout all their

characteristics, to calculate the similarity of each

vertices and arcs [11].We recall that a graph is a

data structure used in particular to model objects in

terms of components (called vertices) and binary

relations between components (called arcs). A multi

digraph is a directed graph which is permitted to

have multiple arcs, i.e., arcs with the same source

and target nodes. A multi digraph G is an ordered

pair G= (V, A) with:

V is a set of vertices. A multi set of

ordered pairs of vertices called directed

edges, arcs or arrows.

A labeled multi digraph G is a multi graph

with labeled vertices and arcs. A labeled graph is a

directed graph such that vertices and edges are

associated with labels. Without loss of generality,

we shall assume that every vertex and edge is

associated with at least one label: if some vertices

(resp. edges) have no label, one can add an extra

anonymous label that is associated with every

vertex (resp. edge) [19]. More formally, given a

finite set of vertex labels LV , and a finite set of

edge labels LE, a labeled graph will be defined by a

triple G =(V, RV , RE) such that:

V is a finite set of vertices. RV ⊂ V x LV is

the relation that associates vertices with labels, i.e.,

RV is the set of couples (vi , l) such that vertex vi

has label l. RE ⊂ V x V x LE is the relation that

associates edges with labels, i.e., RE is the set of

triples (vi , vj , l) such that edge (vi , vj) has label l.

Note that from this edge relation RE, one can define

the set E of edges [12].

The similarity of two graphs G and G 'with

respect to a mapping m vertices and arc is defined

by:

The function f weighted characteristics of

graphs G and G '. The split function calculates the

set of m bursts. The function g weights these bursts.

The two functions f and g are customizable to the

needs of the application. The maximum similarity

sim (G, G ') of two graphs G and G' is the best

pairing of vertices and m arcs.

6.1 UML graph elements

Our approach are matching and detecting

differences between two UML graphs. In this case

we have to detect the elements in the first UML

graph that have a corresponding element in the

second one [13], [14], [15].

The UML graph elements are depicted in

Figure 6.An UML graph is shown in the form of a

tree where the root is a Model type contains several

elements. Elements have a specific ElementType

and can refer to other Elements modeled by the

Reference class. Elements might also contain

several Attributes, for example an element in a

class diagram are: classes, operations, attributes

and parameters....

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

933

 An Attribute features name and value pairs.

For example a class has an Attribute ’visibility’

with values ’public’, ’private’ or ‘protected’. An

Element can be composed of sub elements, for

examples classes contain attributes and operations

and operations contain parameters. An association

features two association ends that both have a

Reference referring to a class element [16].

Figure 6: UML graph elements

6.2 UML graph elements

The similarity measure of two elements of the

same type is performed by a function of

configurable similarity calculating a similarity

score, positive and returns a value between 0 and 1,

with a set of criteria including internal and external

structures and types of the compared pair elements.

Each value calculated on a weighted criterion. If

criteria have a high weight, there will be an increase

on the total measuring similarity. The total

similarity value is calculated by the following

formula [17]:

• and are the elements to be compared;

• C is the set of criteria;

• gives the weight of criteria c ;

• is the compare function for criteria

c.

The calculation of the similarity measure is an

NP-hard problem. The combinatorial explosion

makes the methods fully investigated. The

algorithms of the measure we have just presented is

incomplete but can be easily adapted to many

calculations of similarity measure and distance. We

present these two algorithms in order of increasing

complexity. Greedy algorithm: non-deterministic

polynomial weakly. It returns a locally optimal

matching and can be run several times to return the

best match found. It starts from an empty matching

and iteratively adds pairs of vertices selected from

the group of candidates until the addition of any

other couple cannot increase the similarity. At each

stage, the couple to be added is selected randomly

from all couples is increasing most similarity. An

algorithm is based on a reactive Tabu local search

to improve a current solution exploring its

neighborhood. Starting from an initial pairing, a

local research explores the search space by moving

from neighbor neighbor until the optimal solution.

The neighbor that maximizes the similarity is

always selected first. A Tabu list is used to store the

last k moves made to prohibit reverse movements

in k iterations and so do not stay around a local

maximum still achieving the same movements.

Besides the similarity function the threshold

defines the minimum similarity value to consider

two elements as similar. Actual criteria, weights

and the threshold for comparing elements of classes

are shown in table 2. The complete table with the

criteria for comparing class diagrams can be found

in [18]. The similarity of string attributes is

calculated by using the text comparing algorithm

LCS. The ratio of similar or matched operations

and attributes can be easily calculated by counting

the sub elements that already match or summing up

their similarity values. For the generalization or

package criteria the matching of the referenced

elements has to be considered.

Table 2: Criteria for comparing class elements

7. CONCLUSION

This paper focused of methods and techniques

on UML class diagrams, namely matching graph

and similarity measures. The graph matching

problem is complex and can be approached from

various techniques and algorithms. It is apparent

that the use of a single technique is not satisfactory

to meet the matching problem of graphs. The use of

several techniques and several matching increases

the calculations and therefore the time to produce

Element

Type

threshold Criterion weight

Class 0,5

Similarity of the class
names

Ratio of similar or

matched operations
Ratio of similar or

matched attributes

0,4
0,3

0,3

Association 0,5

Similarity of the

association end

1

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

934

alignment, but requires thinking about how they

will be combined and configured. The main

entrances of graph matching systems are directed

acyclic graphs whose alignment of the components

will be identified. Auxiliary data in addition to the

graphs will facilitate the matching process by

clarifying semantic graphs and allow in some cases

to remove ambiguities and to direct or accelerate

the process. Correspondence of the proposed

alignment by a matched graph system focused on

the similarities and usually qualified by a semantic

equivalence relation or a real score between 0 and

1. The semantic relationships are more advanced in

the semantic matching techniques. In the studied

techniques, we note that the matching problem is

difficult to treat automatically by the system. The

intervention of a human operator may be required.

In addition, the result produced is processed by a

domain expert to check its relevance. The

approaches proposed in the area are mostly semi-

automatic. As future work, information Measure of

similarity, such as inheritance, should be treated,

and results in the future article should be studied

using more case studies.

REFRENCES:

[1] OMG, OMG Unified Modeling Language

Specification, Version 1.5, Object Management

Group, Inc., Framingham, MA, , March 2003,

<http://www.omg.org>.

[2] Object Management Group, Unified Modeling

Language™, 2009, UML® Resource Page,

http://www.uml.org/.

[3] P. Bottoni, M. Minas, “Workshop on Graph

Transformation and Visual Modeling

Techniques”, Springer-Verlag: Proceedings of

the First International Conference on Graph

Transformation, London, UK, 2002, pp. 445–

449.

[4] A. Outair, A. Lyhyaoui, and M.Tanana,

“Towards an Automatic Evaluation of UML

Class Diagrams by Graph Transformation”,

International Journal of Computer

Applications, Vol. 95, No. 21, 2014.

[5] Object Management Group, Catalog of OMG

Modeling and Metadata Specifications - XML

Metadata Interchange (XMI®), 2009,

http://www.omg.org/spec/XMI/2.5.1/PDF.

[6] E. Rahm and P. A. Bernstein, “A survey of

approaches to automatic schema matching”, The

international Very Large DataBases Journal

(VLDB Journal) Springer Berlin / Heidelberg,

Vol. 10, No 4, 2001, pp. 334-350.

[7] H.-H. Do and Rahm E., “Matching Large

Schemas: Approaches and Evaluation”, In: the

Journal on Information Systems, Vol. 32, No 6,

2007, pp. 857-885.

[8] E. M. Loiola, N. M. De Abreu, P. O.

Boaventura, P. Hahn, and T. M. Querido, “A

Survey for the Quadratic Assignment Problem”,

European Journal of Operational Research,

2007.

[9] S. Sorlin, C. Solnon and J.-M. Jolion, “A

Generic Graph Distance Measure Based on

Multivalent Matchings”, In: Applied Graph

Theory in Computer Vision and Pattern

Recognition, 2007, pp. 151–182.

[10] S. Sorlin, and C. Solnon, "Reactive tabu search

for measuring graph similarity. Graph-Based

Representations in Pattern Recognition”.

Springer Berlin Heidelberg, 2005, pp. 172-182.

[11] S. Sorlin, “Measure the similarity of graphs”,

Laboratory for Computer Science Thesis in

the Image and Information Systems,

University Claude Bernard Lyon 1 (France),

2006, pp. 142.

[12] Diestel and Reinhard, “Graph Theory”,

Springer; 2nd edition, ISBN 0-387-98976-5,

February 18, 2000.

[13] H.-H. Do, S. Melnik and Rahm E.,

“Comparison of Schema Matching evaluations”,

In: Web, Web-Services, and Database Systems,

NODe 2002 Web and Database-Related

Workshops, Springer Berlin / Heidelberg,

Erfurt, Germany, October 7-10 2002, Revised

Papers,LNCS 2593, 2003, pp. 221-237.

[14] Dirk Ohst, Michael Welle, and Udo Kelter,

“Differences between Versions of UML

Diagrams”, In ESEC/FSE’03, Helsinki, Finland,

September 1-5, 2003.

[15] Jungkyu Rho and Chisu Wu. “An Efficient

Version Model of Software Diagrams”, In Proc.

5th Asia-Pacific Software Engineering Conf, in

Taipei,Taiwan, ROC. IEEE Computer Society,

2-4 December, 1998.

[16] Albert Z¨undorf, J¨org Wadsack, and Ingo

Rockel. “Merging Graph-Like Object

Structures”. In Andre van der Hoek, editor,

Tenth International Workshop on Software

Configuration Management (SCM-10) New

Practices, New Challenges, and New

Boundaries, Toronto, Canada (ICSE workshop),

May 14-15, 2001, http://www.ics.uci.edu/

andre/ scm10/.

[17] Marcus Alanen and Ivan Porres. “Difference

and Union of Models”, TUCS - Turku Centre

Journal of Theoretical and Applied Information Technology
28th February 2017. Vol.95. No 4

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

935

for Computer Science, April 2003, Technical

Report 527.

[18] Kelter, U., Wehren, J., & Niere, J. (2005). “A

Generic Difference Algorithm for UML

Models”, Software Engineering, Vol. 64, No

105-116, 2005, pp. 4-9.

[19] Cowie, Bronwen, and B. Bell, A model of

formative assessment in science

education. Assessment in Education: Principles,

Policy & Practice, vol. 6, no 1, p. 101-116,

1999.

[20] C. Hadji, L’évaluation démystifiée. ESF, 2

édition. Pages 126, 1999.

[21] Bloom, Taxonomy of educational objectives:

The classification of educational goals.

Handbook I, cognitive domain. Longman, New

York, 1956.

