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ABSTRACT 

 

This paper focuses on the highly nonlinear rigid-flexible manipulator state estimation using the Extended 

Kalman Filter and the Unscented Kalman Filter. The Hamilton’s principle is used to derive the manipulator 

equations, the Euler-Bernoulli assumption is considered to model the flexible link, and the elastic 

movement is approximated using the assumed modes method. The simulation study compares the 

efficiency of the state estimation quantified by the estimation mean squared error and the time required by 

the filters to converge. 
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1. INTRODUCTION 

 

Rigid-flexible manipulators are a promising 

alternative to rigid-rigid ones due to their greater 

payload to manipulator weight ratio, higher 

operation speed, larger work space, lower energy 

consumption and safer operability. However, they 

exhibit disadvantages of deflection associated with 

structural flexibility and vibration problem [1]. 

Their modeling approaches and their 

control/observation strategies must consider both 

the rigid body and the flexible degrees of freedom 

[2].   

The Hamilton’s principle is one of the most used 

approaches when modeling the flexible 

manipulators. The deformation model of the 

flexible links is usually based on the Euler – 

Bernoulli beam theory, and the elastic degrees of 

freedom are approximated using either the assumed 

mode method or the finite element method. In 

general, only first few vibration modes play a 

significant role in the dynamic equations 

formulation. As actuators, usually DC motors are 

used at the manipulator joints due to their simple 

control scheme. 

Most of the active vibration control strategies 

require the state feedback, and many nonlinear 

observer formulations have been addressed for the 

flexible manipulators. To estimate the elastic 

degrees of freedom and their time derivatives, a 

nonlinear high gain observer has been developed by 

[3], and the sliding mode theory has been 

investigated by [4] to design both a controller and 

an observer for the tip positioning problem. 

Distributed observers have been presented by [5, 6] 

to estimate infinite dimensional states requiring 

only the boundary values measured by sensors. An 

extended state observer was proposed for the 

trajectory tracking control of a flexible-joint robotic 

system by [7], and the Extended Kalman Filter has 

been used by [8] to give an estimate of the 

environmental forces. 

Using the Taylor series expansion, the optimal 

way a linear Kalman filter provide the mean and 

covariance of a linear system state can be extended 

to nonlinear ones. The Extended Kalman Filter 

(EKF) is based on linearizing the nonlinear system 

around the state nominal trajectory [9]. The optimal 

solution to the nonlinear filtering requires the filter 

to give an accurate estimate for all the probability 

distribution function (pdf) moments, and, thus, the 

problem is infinite dimensional [10]. However, 

when the noises corrupting the system are assumed 

to be Gaussian, the mean and covariance are 
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sufficiently describing the state pdf [11]. 

Unfortunately, the EKF requires the nonlinear 

prediction and measurement function jacobians to 

be evaluated repeatedly at each time step [12], and 

this may cause the results to be unreliable and the 

implementation to be difficult. 

A diversion from evaluating the jacobians is 

allowed by the Unscented Kalman Filter (UKF) 

[13]. As an alternative, a small set of points, called 

the sigma-points, are carefully chosen to capture the 

mean and covariance of the state before they 

undergo the system nonlinearities. Once 

transformed, those points are used to evaluate the 

mean and covariance of the state to be estimated. 

Contrarily to the Monte Carlo method, the samples 

are not drawn at random, yet they are 

deterministically selected so that they capture the 

essential information about the state pdf. 

Preceding research paper addressed the nonlinear 

optimal state estimation under parametrice 

uncertianties based on the EKF and the UKF for a 

one-link flexible manipulator [14,15]. Based on 

simplifying assumptions, a linear model of the 

flexible manipulator was targetted by a Model 

Predictive Control scheme associated to a state 

estimation based on Kalman filter in [16]. 

The main contribution of this paper is to compare 

the EKF and the UKF algorithms when used to 

estimate the state of a highly nonlinear 2 Degrees of 

Freedom (2DOF) rigid-flexible manipulator. The 

analyzed motion of the manipulator is fully 

described by the rigid body motion, and the 

vibration motion. Thus the state vector consists of 

the shoulder joint angle, the elbow joint angle, the 

first modal coordinate and their respective time 

derivatives. The flexible link deformation is 

described using the Euler-Bernoulli theory, the 

elastic degree of freedom is approximated using the 

assumed mode method, and the system equations 

are derived using Hamilton’s principle. 

In the next section, the mathematical model for 

the rigid-flexible manipulator is derived, while in 

section 3, the EKF and the UKF principles and 

algorithms are detailed. Simulation results are 

displayed and discussed in section 4, and 

conclusion are outlined in section 5. 

 

2. MATHEMATICAL MODELING OF THE 

RIGID-FLEXIBLE MANIPULATOR 

 

The shoulder and elbow joint angular positions, 

driven by servo motors, are respectively	θ�and	θ�, 

and		L� denotes the length of the rigid link. The 

radius of the rigid hub is	r and the elastic 

displacement is	w�x, t�, where	x is the non 

deformed point location on the flexible link. 

Two reference systems are defined: 

1. An inertial system:	�, �, �� with its �-axis 

aligned with the shoulder servomotor shaft, and 

the	-axis aligned with the home position of the 

rigid manipulator. 

2. A rotating system: (x, y, Z�, as local coordinate 

system, attached to the rigid hub and its		�	-axis 

tangent to the flexible link at the shaft of the 

elbow servomotor. 

 

The two-link rigid-flexible manipulator geometry 

and coordinates are shown in Figure 1. 

 

 
Figure 1: The Two-link Rigid-Flexible Manipulator 

Geometry and Coordinates 

 

The gravity is not considered since the 

manipulator moves in the horizontal plane, and the 

flexible link is assumed to be an Euler–Bernoulli 

beam where the longitudinal deformation is 

neglected. 

Kinematics of the system, relative to the inertial 

system, may be described by the following position 

vector: 

 � � ������ � 
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��� ������� � �� � �� ������ � ���  ! �"#��� � ����� �"#���� � �� � �� �"#��� � ��� � ! ������ � ���� �1� 
 

 

Thus: 

�%� � �&��&' &��&' � (
&��&'&��&' ) � ����%�� � *�� � ��+�%� � �%�, � !% -� 				�	2���%� /*�� � ��+�%� � �%�, � !% -0 cos���� 						� *!+�%� � �%�,-�  2���%�+�%� � �%�,!�"#����			�2� 

 

Including the rigid link and the shoulder 

servomotor and hub inertia	I�	and	I5, with respect to 

the shoulder joint axis, the total kinetic energy of 

the system can be written as: 

6 � 12 7��%�� � 12 78 *�%�� � �%��- � 1298����%�� 							�12: ;<�%�&�=>
? 																																																										�3� 

 

Where	ρ, A and		m5 are, respectively, the mass 

density of the flexible link, its cross section area 

and the elbow hub mass. 

According to the Euler-Bernoulli assumption, the 

potential energy of the system is given by [17]: 

 D � 12: E7� FG�!G��H� &�=>
?  

									�12: I��, '� /G�G�0� &�=>
? 																																							�4� 

 

Where	E and	I are the flexible link Young’s 

modulus and its moment of inertia. 	F�x, t� is given 

for a uniform beam by [18]: 

 IM��, '� � 12;�%��+���  ��, � ;�%������  ��								�5� 
 

Once the kinetic and potential energies of the 

system are explicited, the system equations are 

derived using Hamilton’s principle [19]: 

 : �O6  OD � OP�&'QR
QS � 0																																										�6� 

 

Where	δW is the virtual work done by the joint 

torques	τ� and	τ�, at the shoulder and the elbow 

joints respectively. 

The Hamilton’s principle results on the following 

equations in which a dot denotes the derivative with 

respect to time, and a prime denotes the derivative 

with respect to the spatial variable	�: 

 �7� �98�����Y� � 78+�Y� � �Y�, �12: ;< F�� � ���+�Y� � �Y�, � !Y �� � �� � ���Y�=>
? � 2!!% +�%� � �%�, � !�+�Y� � �Y�,� 2���� � ���Y� cos���� 2���� � ���%��%� sin���� 2���Y�! sin���� ���� � ���%�� sin���� 2��!% +�%� � �%�, sin���� 2��!�%��%� cos���� ���%�! cos���� 12 ����  ��� 2���  2���!′�+�Y� � �Y�, ����  �� � 2���  2���!′!% ′+�%�� �%�,H&�� ]�																																		�7� 

 78+�Y� � �Y�, � : ;< F�� � ���+�Y� � �Y�, � !Y �� � ��=>
? � 2!!% +�%� � �%�, � !�+�Y� � �Y�,� ���� � ���Y� cos���� ���Y�! sin����� ���%���� � �� sin����� ���%��! cos���� 12 ����  �� � 2���  2���!′�+�Y�� �Y�, ����  �� � 2���  2���!′!% ′+�%�� �%�,H&��]�																																													�8� 

 

 ;<�� � ��+�Y� � �Y�, � ;!Y � ;��+�Y� � �Y�, cos���� ;!+�%� � �%�,� � ;���%�� sin����� E7�!````—F12;+�%� � �%�,����� ��� � ;+�%� � �%�,�����  ��H!``� ;+�%� � �%�,��� � ��!`� 0																																																�9� 
 

The assumed modes method is used to 

approximate	w�x, t�. The relative motion of the 

flexible link with respect to the rotating 
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reference	�x, y, Z� system will be written in terms of 

the first modal coordinate	q��t� and the clamped-

free beam’s first mode shape	φ��x� : 
 !��, '� � e��'�f����																																																			�10� 
 

Where : 

 f���� � �"#�g��  h ����g�� 																 �"#i�g�� 			� ��� i�g��																										�11� g � √3.5160�2 																																																																			�12� 
 

And 

 h � �"#�g��� � �"# i�g�������g��� � ��� i�g���																																							�13�	
 

Applying the above mentioned equations of 

motion yelds the following non-linear coupled set 

of ordinnary differential equations: 

 l�e�eY � i�e, e% � � m�e� � n�'�																															�14� 
 

Where	q is the vector of generalised cordinates 

representing the rigid-body and the elastic degrees 

of freedom, and	u�t� is the vector of external forces. 

 e � p�� �� e�qr																																																								�15� 
 n�'� � p]� ]� 0qr																																																				�16� 
 

Matrices	M�q� and	K�q� are respectively the 

mass and the stiffness ones, and the vector	h�q, q% � 
regroups the nonlinear centrifugal and Coriolis 

terms.  

In addition, the shoulder servomotor viscous 

friction coefficient	αw and the flexible link 

structural damping can form a modal damping 

matrix	Hy as [20]: 

 z{ � �|} 00 2~�9�����																																														�17� 
 

Where		ω�is the first elastic mode natural 

frequency, and		ξ� its respective modal damping 

coefficient. Coefficient		m�� is the corresponding 

element of the mass matrix	M�q�. All the matrices 

and vectors, with their numerical values used for 

simulation, are presented in the appendix. 

 

3. THE EXTENDED AND UNSCENTED 

KALMAN FILTERS 

The Extended Kalman Filter (EKF) and the 

Unscented Kalman Filter (UKF) evaluate the 

probability distribution function (pdf) of a random 

variable as it undergoes a nonlinear transformation. 

This section deals with the EKF and UKF 

principles and algorithms. It summarizes the 

prediction/correction estimation steps given the 

additive process and measurements noises 

assumption. 

 

3.1 The Extended Kalman Filter Principle and 

Algorithm 

At each discrete time step, the EKF propagates 

the pdf of a random vector using a linear 

approximation of the nonlinear system around the 

operating point. The Taylor series expansion is 

used, and the jacobians required make the filter 

prohibitively difficult to implement especially when 

the system is of higher order. 

The design of the EKF is based on the following 

continuous-time, nonlinear stochastic system: 

 ��% � ���, n� � �� � i��� � � 																																																														�18� 
 

where	x ∈ �� is the system state,	u ∈ �� the 

input,	y ∈ �w	the output and η ∈ �� and	v ∈ �w 

the process and observation noise functions 

respectively. 

The noises are assumed to be continuous-time, 

white, zero-mean, uncorrelated and have covariance 

matrices	Q ∈ ���� and	R ∈ �w�w respectively. 

  �E�+��'�,+��]�,	� � �O�'  ]�E�+��'�,+��]�,� � �O�'  ]� 																																			�19�		 
 

Where	Ep. q and	δ�. � are, respectively, the 

expected value and the continuous-time impulse 

function. 

To identify the operating point, the state nominal 

trajectory is the state estimate	x? � x�, while the 

nominal trajectories of the process and 

measurement noises are equal to zero as they are 

assumed to be zero-mean signals. The control signal 

is deterministic, and its nominal trajectory is 

assumed to be the control signal itself		u?�t� �u�t�.  
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Linearizing both the prediction and the output 

functions, f�x, u� and	h�x�, around the nominal 

trajectories yields: 

 ���, n� � ���?, n, �?� � G�G��? ��  �?� 															� ���?, n, !?� � �I���  �?�																					�20� 
 i��� � i��?� � GiG��? ��  �?� 										� i��?, �?� � �z���  �?�																														�21� 
 

The EKF equations are then given by [9]: 

 ���0� � Ep��0�q																																																														�22� D�0� � E �+��0�  ���0�,+��0�  ���0�,r� 												�23� ��% � ����, n, �?� � m+�  i���, �?�,																												�24� m � D	�z�r���																																																													�25� D% � �I�D � D�I�r � �  D�z�r����z�D									�26� 
 

Where	P is the covariance of the estimation error. 

 

3.2 The Unscented Kalman Filter Principle and 

Algorithm 

The Unscented Kalman Filter (UKF) uses a 

statistical linearization as an alternative to the 

analytical one used in the EKF algorithm. The 

unscented transform propagates the pdf in a simple 

and effective way and it is accurate up to second 

order in estimating mean and covariance [13]. This 

transformation uses	�2n � 1� selected points, called 

the sigma-points that are deterministically chosen to 

completely capture the true mean and covariance of 

the states. Those points are then propagated through 

the nonlinear prediction and output functions. The 

transformed points are then used to calculate a 

weighted sample mean and covariance. 

We consider the same nonlinear system 

described by (18). The standard UKF state 

estimation algorithm initialise the state, the initial 

error covariance, the process noise and the 

measurement noise covariance matrices as for the 

EKF. 

At each discrete time	k, the sigma-points are 

generated, using the covariance matrix square 

root	+√P,, usually using the Cholesky method, as 

follows: 

 

���� �  ¡¡
¢ ���������� � £�¤ � ¥�£D����¦������  £�¤ � ¥�£D����¦� §̈̈

©r 																					�27� 

Where £Pª���«� is the	i¬5 row of the covariance 

matrix square root defined as	√P√P � P [21]. 

Once, the sigma-points are propagated through 

the prediction nonlinear function, the mean and 

covariance of the predicted state are calculated as 

follows [21]: 

 �%�/����¦� � ������, n����			" � 0⋯2#�																					�28� 
���/��� �°!¦�±

¦²? ��/����¦� 																																																�29� 
D�/��� � ���� 
					�°!¦�±

¦²? *�³/³ 1�¦�  ��³/³ 1- 
																						*��/����¦�  ���/���-r 																															�30� 

 

Where the weight coefficients	w« are given by: 

 

´!? � ¥¥ � #																																!¦ � 12�¥ � #� 				" � 1⋯2# 																																		�31� 
 

The parameter	κ is used to reduce the overall 

estimation error, yet its value must garantee the 

covariance matrix to remain positive definite. It’s 

recommanded value is	3  n if the system is of 

lower order. Otherwise, it’s set to zero. 

The sigma-points are also propagated through the 

nonlinear outut function: 

 ¶�/����¦� � i���/����¦� , n��			" � 0⋯2#																							�32� 
 

And the mean and covariance of predicted output 

are then calculated: 

 

���/��� �°!¦�±
¦²? ¶�/����¦� 																																																�33� 

D��� � �� 

				�°!¦�±
¦²? +¶�/����¦�  ���/���, 

																					�¶�/����¦�  ���/����r																								�34� 
 

The cross-covariance of state and output is 

calculated as: 
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D��� �°!¦�±
¦²? *�³/³ 1�¦�  ��³/³ 1- 

																										�¶�/����¦�  ���/����r																													�35� 
 

Finally, the state and covariance are updated for 

the next discrete time after the Kalman gain is 

evaluated. m� � D���+D���,��																																																									�36� ��� � ���/��� � m�+��  ���/���,																															�37� D� � D�/���  m�D���m�r																																											�38� 
 

 

4. SIMULATION RESULTS 

 

The state variables to estimate are the shoulder 

angle	θ��t�, the elbow angle	θ��t�, the first modal 

coordinate	q��t� and their respective time 

derivatives. 

The system has two inputs which are the 

mechanical shoulder and elbow torques	τ��t� 
and	τ��t�, and three accessible noisy outputs θ��t�,	θ��t�, and	q��t�. 

The EKF and UKF numerical algorithms were 

implemented in Matlab environment, while the 

model simplifying and the jacobians derivation was 

carried out using the Mathematica packages. The 

nonlinearities of the process model requires a 

relatively small time steps for numerical 

integration. It’s been set to	0.001	s, and the 

measurement update frequency of the filters 

coincides with the system discretization sampling 

frequency. 

Table 1: Numerical Parameters of the System 

Rigid link 

Mass m� � 1		m· 

Length �� 	� 	0.5	9 

Inertia 7� 	� 0.0834	m·.9² 

Flexible 

link 

Length �� 	� 	0.5	9 

Mass 

density 

per unit 

length 

;<	 � 	0.15	m·.9�� 

Flexural 

rigidity 
E7� 	� 	1	¤.9� 

Quadratic 

moment 
7	 � 	1.45		10�¸	9¹ 

First 

mode 

damping 

coefficient 

  

~� 	� 0.01	9 

First 

mode 

damping 

coefficient 

ω� � 36.3131	�º&/� 
Elbow hub 

Radius �	 � 0.04	9 

Mass 98 	� 0.5	m·.9² 

Shoulder 

servomotor 

and hub 

Inertia 78 	� 0.002	m·.9² 

Elbow 

servomotor 

Viscous 

friction 

coefficient 

|}� 0.95	¤9. �&��. ��� 

 

Table 1 shows the links, hubs and servomotors 

parameters needed for the numerical simulation, 

and Figure 2 to Figure 4 show respectively the 

control torques used for the simulation and the 

noisy measurement used for the state estimate 

update for the small noise case and for the large 

noise case. 

 

 
Figure 2: Shoulder and Elbow Control Torques 
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Figure 3: Nominal and Noisy measurements for the Small 

Noise Case  

 
Figure 4: Nominal and Noisy measurements for the 

Large Noise Case  

 

For the two cases, the simulations have been 

conducted given the following assumptions: 

 

• Both the process noise and the measurement noise 

are Gaussian, zero-mean, white and with known 

covariance matrices. 

 

• The EKF and the UKF models used for estimation 

are always the same, and they are perfectly equal 

to the truth model. 

 

• The initial state and process/measurement noise 

covariances are the same for both the EKF and 

UKF. 

• The truth model initial state is chosen as : �? � p��? ��? e�? �%�? �%�? e%�?qr� p0q»�� 

While both filters algorithms suppose the 

following initial state: ��? � ��¼? �¼? e��? �¼%? �¼%? e�%�?�r 					� 		 p4 4 0.1 2 2 0.2qr 

• For the UKF algorithm, the weight coefficients 

are:  

½!? � 0																										!¦ � 12# 				" � 1⋯2# 

The parameter	κ was set to zero. 

• The initial error covariance is assumed to be: D�0� � 	��?��?r for the EKF. D�0� � 	10	7»�»  for the UKF. 

 

• The process noise and measurement noise 

covariance matrices are respectiveley given by: � � 0.1	7»�»for the samll noise case. � � 7»�»	 for the large nois case. � � 0.5	¾"º·¿�¿�1,1, 10�¹� for the samll noise 

case. � � ¾"º·¿�¿�1,1, 10�¹� for the large noise case. 

 

• The update period of the simulation is	0.001	�, 
and the simulation time is	2s. 

 

One can notice from the displayed results that 

both the EKF and the UKF state estimates converge 

to the true state. 

According to Figures 5 to 10, the UKF required 

time to converge is lower compared to the EKF one 

either if corrupting noises are assumed to be small 

or large. The prediction function jacobians is 

repeatedly evaluated at each time step which is time 

consuming for the second algorithm. 
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Figure 5: Shoulder Angle Estimation for the Small Noise 

Case Using the EKF 

 

 

 
Figure 6: Elbow Angle Estimation for the Small Noise 

Case Using the EKF 

 

 
Figure 7: Modal Coordinate Estimation for the Small 

Noise Case Using the EKF 

 

 

 
Figure 8: Shoulder Angle Estimation for the Small Noise 

Case Using the UKF 

 

 
Figure 9: Elbow Angle Estimation for the Small Noise 

Case Using the UKF 

 

 
Figure 10: Modal Coordinate Estimation for the Small 

Noise Case Using the UKF 
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Figure 11: Shoulder Angle Estimation for the Large 

Noise Case Using the EKF 

 

 

 
Figure 12: Elbow Angle Estimation for the Large Noise 

Case Using the EKF 

 

 
Figure 13: Modal Coordinate Estimation for the Large 

Noise Case Using the EKF 

 

 

 
Figure 14: Shoulder Angle Estimation for the Large 

Noise Case Using the UKF 

 

 
Figure 15: Elbow Angle Estimation for the Large Noise 

Case Using the UKF 

 

 
Figure 16: Modal Coordinate Estimation for the Large 

Noise Case Using the UKF 

However, and according to Figures 11 to 16, it’s 

clear that large noises make the UKF results less 

accurate, especially when estimating the time 

derivative state variables. 

In order to quantify the filters performance, an 

important measure is the Root Mean Squared Error 

(RMSE). It is calculated for each state variable	�¦ as 

follows: 
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�lÀE��¦� � Á 1¤Â°���¦  �¦��ÃÄ
�²� 																															�39� 

Where	¤Â is the number of samples.  

According to the results, displayed by Table 2 

and Table 3, a clear performance advantage is 

demonstrated for the UKF when estimating the 

shoulder angle, the elbow angle and the modal 

coordinate, while the EKF is more accurate when 

estimating their respective time derivatives. This is 

true either when large or small noises are corrupting 

the system dynamics or the avilable measurements. 

 

Table 2: Root Mean Square Error for Small 

Measurements noise 

 EKF UKF ���'� 0,02512 Å, ÅÅÆÇÈ ���'� 0,01877 Å, ÅÅÆÉÊ e��'�	 9,08194		10�» Ë, ÊÌÆÈÍ		ÈÅ�Ë �%�	�'� 0,01050 Å, ÅÈÅÇÌ �%��'� Å, ÅÅÆÊÌ 0,016215 e%��'�	 Å, ÅÅÇÅÉ 0,01344 

 
Table 3: Root Mean Square Error for Large 

Measurements noise 

 EKF UKF ���'�	 0,13043 Å, ÅÅÆÌÌ ���'� 0,08667 Å, ÅÈÅÍÍ e��'�	 2,95858	10�Î Ç, ÍÍÇÇÊ	ÈÅ�Ì �%�	�'� Å, ÅËÇËÏ 0,22809 �%��'� Å, ÅÏÏÊÅ 0,06881 e%��'�	 Å, ÅÈÇÊÅ 0,81582 

 

5. CONCLUSION 

 

This paper considers the problem of nonlinear 

filtering for the 2 Degrees of Freedom (2DOF) 

Rigid-flexible manipulator state estimation. An 

exact dynamic model of the manipulator moving in 

a horizontal plane is derived using the Hamilton’s 

principle and the assumed modes method 

considering the first elastic mode. 

The paper main contribution is to evaluate the 

ability of the Extended and Unscented Kalman 

filters when used to give a state estimate based on 

the available noisy measurements. The discussion 

concerns both the large and small noises 

assumptions. 

According to the simulation results, the required 

time for the error to converge is lowered with the 

UKF when the process/measurements noises are 

assumed to be small. The EKF is better facing large 

noises. 

The RMSE criterion is used to quantify the 

estimation error. The numerical results demonstrate 

that the UKF outperforms the EKF when estimating 

the shoulder angle, the elbow angle and the modal 

coordinate. The EKF is sensibly more accurate 

when estimating their respective time derivatives. 
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APPENDIX 

 

MODEL MATRICES AND VECTORS 

EXPRESSIONS WITH NUMERICAL VALUES 

The elements of the symmetric mass matrix: 	l�e� � �9¦Ð�¿�¿ 

9�� � 78 �: ;<�� � ���&�=>
? � ;<�����

� 2 /12;<����� � ;<�����0 �������� 7� �98��� 2���"#���� F: ;<f����&�=>
? H e� 9�� � 	0.2370  � 0.0218 cos����  0.08e� sin���� 9�� � 78 �: ;<�� � ���&�=>

? � /12;<����� � ;<�����0 ������� ���"#���� F: ;<f����&�=>
? H e� 9�� � 0.0099  � 0.0109 cos����  0.04e� sin���� 9�¿ � : ;<�� � ��f����&�=>

? � �� F: ;<f����&�=>
? H ������� 9�¿ � 0.0323 � 0.04 cos���� 9�� � 78 �: ;<�� � ���&�=>

?  9�� � 0.0099 9�¿ � : ;<�� � ��f����&�=>
?  9�¿ � 0.0323 9¿¿ � : ;<+f����,�&�=>
?  9¿¿ � 0.1392 

 

The elements of the diagonal stiffness matrix: m�e� � �³¦Ð�¿�¿ ³�� � ³�� � 0 ³¿¿ � : E7� FG��G��H� &�=>
?  ³¿¿ � 183.52 

 

The elements of vector: i�e, e% � � pi¦q¿�� 

i��  Ò/12;<����� � ;<�����0 sin����
� ��������� F: ;<f����&�=>

? H e�Ó�%��
 F2 /12;<����� � ;<�����0 �"#����� 2��������� F: ;<f����&�=>

? He�H�%��%�
 2���"#���� ÒF: ;<f����&�=>

? H e%�Ó +�%� � �%�, i� � �%��� 0.04e� cos����  0.0109 sin����� �%��%��e� cos����� 0.0218 sin����� 0.08+�%� � �%�, sin���� i�� Ò/12;<����� � ;<�����0 sin����
� ��������� F: ;<f����&�=>

? H e�Ó�%�� 

i� � �%���0.04	e� ������� � 0.0109 �"#�����	i¿� F: F;<�� � ��f�̀���f����=>
? 12;<����  �� � 2���  2���f�̀̀ ���f����H &�  78 : ;<�� � ���&�=>

?  ;<�����
 2/12;<����� � ;<�����0 �������  7�  98���� 2���"#���� F: ;<f����&�=>

? He�He�+�%� � �%�,�
� F: ;<f����&�=>

? H e��� sin�θ�� θ�� i¿ � 0.0444	e���%� � �%��� � 0.04�%�� sin���� 
 

The elements of the diagonal damping matrix: 

 z{�e� � �i&¦Ð�¿�¿ i&�� � i&�� � 0.95 i&¿¿ � 0.1010 

 

 

 

 

 

 

 

 

 

 

 

 


