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ABSTRACT 

 
Difference needs in bandwidth allocations have not been accommodated by static bandwidth allocations 
that leads to ineffective bandwidth use. There are several previous researches about bandwidth allocations 
which have been conducted, such as the use of Seasonal Autoregressive Integrated Moving Average 
(SARIMA) method. However, SARIMA method is not able to overcome various kinds of error problems or 
heteroscedasticity. Therefore, this research proposes the application of SARIMA-EGARCH (Exponential 
Generalized Autoregressive Conditional Heteroscedastic) method to generate the more accurate model that 
is able to overcome heteroscedasticity on the needs of bandwidth forecasting. In addition, this research 
compares the result of SARIMA to SARIMA-EGARCH examinations. It shows that SARIMA (1,0,1) 
(3,1,1)7 has 11,38% Mean Absolute Percentage Error (MAPE) and SARIMA-EGARCH (1,0,1)(3,1,1)7(1,1) 
has only 9,20%. The comparison shows that applying EGARCH increase the accuracy to 19,15%. 
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1. INTRODUCTION  

 
Internet has been part of individual and company 

basic needs to support any kind of business process. 
It should not only be reliable, but also able to 
provide adequate access to the users. Forecasting 
bandwidth, a common method to predict bandwidth 
allocation therefore bandwidth allocation became 
more efficient and near to the actual needs.  

Many researchers focused on predicting 
bandwidth using classic statistical technique, one of 
them is Seasonal Autoregressive Moving Average 
(SARIMA).SARIMA can be used to forecast time 
series data contained seasonal effect.  

Dong Peng et al [1] analyzed Hadoop backbone 
data characteristic. In this paper, SARIMA model 
was used to find the best daily data trace for data 
characteristic analysis. The result showed daily data 
trace can be used to determine monthly data trace 
because the characteristic nearly the same. 
Unfortunately, this paper research did not calculate 
the error of SARIMA model when it comes to 
monthly data.  

Another study that applies SARIMA method, 
analyzes sequences of times with season pattern, 
generates the daily bandwidth needs which are 
more flexible and closed to the actual needs [2]. 
The study shows that there were outliers on 
monthly data especially during holidays. By 
applying the model of SARIMA (0,1,1)(0,1,1)7C 
with the addition of outlier detection generate 14% 
of Mean Absolute Percentage Error (MAPE). Even 
though, using outlier detection on data training can 
effect prediction because of data loss during 
replacing or removing outlier.  

Dandan Miao[3], in his paper found that 
Multiplicative SARIMA can be used to model the 
traffic of monthly data trace, but for daily and 
weekly the accuracy decreasing because SARIMA 
treats daily and weekly data as same as monthly 
data. The study also shown that holidays effect the 
accuracy of prediction. More advanced studies 
[4][5][6] also using SARIMA as the main method 
to generate time series model. But, it still not yet 
treat the holidays effect on monthly data. 

The focus of the modeling and forecasting 
bandwidth use in those previous researches is to 
find the right model that represents seasonal data 
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traffics. The seasonal pattern appears due to the low 
or high use of the bandwidth in particular times. For 
example, the numbers of users on Sunday is 
differed from the number of users on Wednesday 
leads to distinguished bandwidth allocations. The 
conditions lead the heteroscedasticity, or a situation 
where there is different error in each forecasting 
result occurs and causes deviation [7] which makes 
the forecasting model not represent the actual data. 

Engle (1982) proposed Autoregressive 
Conditional Heteroscedastic (ARCH) to overcome 
the situation. The method was then developed into 
Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) in 1986 as it as proposed 
by Bollersley. In 1991, GARCH was developed into 
Exponential GARCH (EGARCH) [8]. 

GARCH method has been applied in the previous 
studies, such as the application of GARCH model 
to predict the accurate stock price [9] in which the 
model (2,2) generated <5% MAPE. In [10] 
GARCH and EGARCH methods are compared in 
its application to the property field in the world 
monetary crises. EGARCH models show a better 
performance with lower MAPE value and it coped 
with the asymmetric influences. Empiric study to 
Buy-Back Rates measured structures with 
EGARCH modeling [11] shows that EGARCH 
model generates better results than GARCH model. 
Even though, GARCH and EGARCH, was not able 
to consider seasonal effect on time series data.   

Therefore, based on the previous studies, this 
research aims the application of SARIMA-
EGARCH method to obtain the right model in Wi-
Fi network traffic forecasting in the Department of 
Computer Science and Electronics, Universitas 
Gadjah Mada (UGM). The combination of 
SARIMA-EGARCH method supposed to reduce 
heteroscedacity effect while seasonal effect applied 
on network traffic data. 

2. DATA 

 
The data is inbound bandwidth data in UGM-

Hotspot network at Department of Computer 
Science and Electronics. The Figure 1 displays time 
series plot of inbound data that has 150 data in 
which one datum represents a day.  
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Figure 1: Time Series Plot of Inbound Data 

Time series plot of inbound data indicates up-
and-down peak trends following trend in a certain 
period. It indicates that there is seasonal trend so 
that SARIMA method will be done to the trend of 
the data. 

3. RESEARCH METHODOLOGY 

 

3.1 Seasonal ARIMA (SARIMA) 

 
Seasonal ARIMA (Autoregressive Integrated 

Moving Average) method is the development of 
ARIMA method by adding seasonal effects.  

ARIMA model describe systematic form of time 
series using 3 parameters as follows:  

1) p : autoregressive ( AR-term) order 
2) d : differencing order of stationer time series  
3) q : moving average ( MA-term ) order  

with equation as follows: 

  (1) 
 
where B is backshift operator. This equation will be 
used on Seasonal ARIMA(SARIMA). SARIMA 
consist of two part: non-seasonal (regular part) and 
seasonal part. Therefore, SARIMA can be written 
as follows: 

  (2) 
 

ARIMA method itself is a Box-Jenkins method 
that has the following steps [12]. 

1) Identification 

Identification step is conducted to determine the 
order of all models that maybe used by looking at 
correlogram of Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) of the 
data. 
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2) Parameter Estimation 

This step is conducted to determine the parameter 
in SARIMA (p, d, q)(P, D, Q) which is most 
significantly used.  

3) Diagnostic Checking 

This step is conducted to examine the properness of 
used model so that the best model that mostly 
represents the data is obtained.  

4) Forecasting 

The last step is completed by using selected model 
from the previous step. 

3.2 EGARCH 

 
ARCH is a method proposed by Engle to reduce 

heteroscedasticity. There are two models, mean 
model and variance model. Mean model equation 
for return value is [13]:  

  (3) 

where, rt is the return value at t (day) and εt is 

independent observation from N (0, 2
tσ ).  

A model that follow heteroscedasticity follow 
serial correlation of variance equation bellow: 

 
 (4) 

 
with estimation error, 

 

 (5) 

 
Moreover, ARCH using equation (4) and (5) as 
equation bellow: 

 
 (6) 

 
Generalized ARCH (GARCH) is an ARCH with 

ARMA (1,1). GARCH(p,q) has following equation. 

  (7) 
 

EGARCH as further development of GACRH 
has equation as follows: 

    (8) 

 
EGACRH steps are decsribed bellow:  

1) Heteroscedacity testing 

In this step, residual squared and Q-statistic used to 
determine whether model follow heteroscedasticity 
or not.  

2) Parameter Estimation 

Parameter estimation in EGARCH model will be 
decided using Maximum Likelihood Estimation 
(MLE).   

3) Diagnostic Checking 

In this step, Akaike Info Criterion (AIC) will be 
used. AIC equation is as follows: 

  (9) 
  
where L is the likelihood for an estimated model 
with p parameters. Model wth the smallest AIC 
value consider as the best model.  

3.3 SARIMA-EGARCH 

 
This research combined SARIMA method with 

EGARCH method into SARIMA-EGARCH to 
produce the most suitable model with network 
traffic data. The steps of SARIMA-EGARCH were 
shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Steps of SARIMA-EGARCH  
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STEP 1: IDENTIFICATION 
• Stationarity Test 
• ACF and PACF Calculation 
• Outlier Identification 

 
STEP 2: SARIMA PARAMETER 

ESTIMATION  

STEP 3: SARIMA DIAGNOSTIC CHECKING  
• Chi Square Test 

STEP 4: HETEROSCEDASTICITY TEST 
• Residual Square 

• Q-Statistic 

STEP 5: EGARCH PARAMETER 
ESTIMATION  

STEP 7: FORECASTING 

STEP 6: EGARCH DIAGNOSTIC CHECKING  
• Akaike Information Criterion (AIC) 
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4. SARIMA MODEL FINDING 

 
4.1 Identification 

 
Before doing model identification, first, we 

identify the normality of time series plot using 
Anderson Darling test as it is shown in Figure 3. 
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Figure 3: Probability Plot 

Anderson Darling statistic is a calculation 
method on how far a plot point is from fitted line in 
probability plot [14]. The observation toward 
Figure 3 shows that data tend to be around the 
straight line, but an arch appears and be identified 
as abnormality of data distribution. The tendency of 
abnormal distribution is also shown in Anderson 
Darling statistic with big relative value, i.e. 4.226. 
Value of p-value = 0.005 meant p-value < 5% so 
that H0 is rejected or it can be said that the data 
distribution is abnormal.  

To overcome abnormal distribution of the data, 
we perform differencing process.  The differencing 
process that has been conducted is order 1 regular 
differencing and seasonal differencing. Figure 1 
shows that the plot has certain peak trend so it 
brought out season at 7 lag. Therefore, we perform 
order 1 seasonal differencing with 7 lag. The 
following Figure 4 shows the comparisons between 
regular and order 1 seasonal differencing.   

 

Figure 4: Regular and Seasonal Differencing 

Model identification has been done by looking at 
ACF and PACF plot of the data. ACF and PACF 
plot with order 1 seasonal differencing using 7 lag 
are shown in Figure 5 and Figure 6. 
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Figure 5: ACF with Order 1 Seasonal Differencing 
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Figure 6: PACF with Order 1 Seasonal Differencing 

 
4.2 Parameter Estimation 

 
Based on ACF and PACF with order 1 seasonal 

differencing, the proposed models are displayed as 
follows. 

Table 1: Proposed Models 

No. Proposed Models No. Proposed Models 

1. (1,0,0)(1,1,0)7 9. (1,1,0)(1,1,0)7 
2. (1,0,0)(2,1,0)7 10. (1,1,0)(1,1,1)7 
3. (1,0,0)(3,1,0)7 11. (1,1,0)(2,1,0)7 
4. (1,0,1)(1,1,1)7 12. (1,1,0)(3,1,0)7 
5. (1,0,1)(1,1,1) 7C 13. (1,1,0)(3,1,2)7 
6. (1,0,1)(2,1,2)7 14. (1,1,1)(1,1,0)7 
7. (1,0,1)(3,1,0)7 15. (1,1,1)(2,1,0)7 
8. (1,0,1)(3,1,1)7 16. (1,1,1)(3,1,0)7 

 
4.3 Diagnostic Checking 

 
This procedure is used to examine the properness 

of selected models in Table 1. Diagnostic checking 
method is conducted through examining the 
signification of the models either by using constant 
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or not. The examination has been done using Chi-
Square method. Model (1,0,0)(1,1,0)7 obtains the 
following results. 

Table 2: Example of Diagnostic Checking Results 

Type Coef SE Coef T P 

AR 1 0,5326    0,0720    7,40   0,000 
SAR 7 -0,3115    0,0810   -3,84 0,000 

 
The results show that the P value < α (0,05), it 

means that the model is significant and worth using. 
After going through the checking process, we 
obtain results that show all proposed models on the 
parameter estimation step has already been 
significant. The next checking process is examining 
whether there is any heteroscedasticity symptoms 
in residual model. 

5. EGARCH 

 
5.1 Heteroscedasticity Test 

 
Heteroscedasticity test has been performed with 

Residual Square and Q-statistic method on each 
model. The first model is (1,0,0)(1,1,0)7. 

Table 3: Correlogram of Q-Statistic 

 
The correlogram of residual results using Q-

Statistic methods shown in Table 3 shows that not 
all values Prob > α. It means there are 
autocorrelation symptoms in the residual. 
Furthermore, we did heteroscedasticity test using 
Residual Square.   

 

 

 

 

 

Table 4: Correlogram of Residual Square 

 

From Table 4 above, we find that the values of 
Prob < α so that it can be concluded that there are 
heteroscedasticity symptoms. The following Table 
5 shows the results of overfitting on all selected 
models.  

Table 5: Overfitting Results 
Model Non- 

Auto 
Correl
ation 

Non- 
Hetero
skedas
ticity 

 

Nor
mali

ty 

AIC 

(1,0,0) (1,1,0)7 × × √ 1.403246 
(1,0,0) (2,1,0)7 √ √ √ 1.222809 
(1,0,0) (3,1,0)7 √ √ √ 1.197958 
(1,0,1) (1,1,1)7 × √ √ 1.090783 
(1,0,1) (1,1,1) 7C × × √ 1.073115 
(1,0,1) (2,1,2)7 √ √ √ 0.847227 
(1,0,1)(3,1,0)7 √ √ √ 1.214246 
(1,0,1)(3,1,1)7 √ √ √ 0.891324 
(1,1,0)(1,1,0)7 × × √ 1.638349 
(1,1,0)(1,1,1)7 × × √ 1.289860 
(1,1,0)(2,1,0)7 × × √ 1.436434 
(1,1,0)(3,1,0)7 × × √ 1.419483 
(1,1,0)(3,1,2)7 × × √ 1.144925 
(1,1,1)(1,1,0)7 × × √ 1.354323 
(1,1,1)(2,1,0)7 √ √ √ 1.243339 
(1,1,1)(3,1,0)7 √ × √ 1.214077 

 
Table 5 above obtains 3 models with the smallest 

AIC value, i.e. (1,0,1)(2,1,2) with AIC 0,847227, 
(1,0,1)(3,1,1) with AIC 0, 891324, and  
(1,0,1)(1,1,1)C with AIC 1, 073115. Model 
(1,0,1)(2,1,2) and (1,0,1)(3,1,1) have passed the 
autocorrelation and heteroscedasticity test, but the 
model (1,0,1)(1,1,1)C has autocorrelation and 
heteroscedasticity problem that required further 
treatment. 
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5.2 Parameter Estimation 

 
In addition, EGARCH parameter is added to 

overcome the problem of heteroscedasticity in the 
model. Based on the previous selected models, we 
choose the best EGARCH parameter with the 
smallest AIC value. EGARCH order itself has been 
generated using Maximul Likelihood method. 
Parameter Estimation produces 2 types of 
EGARCH, i.e. (1,0) and (1,1), with coefficient of 
variance equation  as shown in table 6 and 7. 

Table 6: EGARCH (1,0) 
Models ɷ α

 
γ 

(1,0,1) 
(1,1,1)7C 

-1.568795 -1.154560 -1.42342 

(1,0,1) 
(2,1,2)7 

-1.409145 -1.345203 -1.465214 

(1,0,1) 
(3,1,1)7 

-1.482054 -0.582703 -0.780126 

 
Table 7: EGARCH (1,1) 

Models ɷ
 

β
 

α
 

γ 
(1,0,1) 
(1,1,1)7 

C 
-1.025397 0.337330 -0.958339 

-
1.38333

7 

(1,0,1) 
(2,1,2)7 

-1.112856 0.202106 -1.241718 
-

1.52560
5 

(1,0,1) 
(3,1,1)7 

-1.104590 0.289426 -1.248159 
-

1.54310
3 

 
5.3 Diagnostic Checking 

 
Further, we conduct test on the selected models 

using equation (8), and coefficient in table 6 also 7. 
Akaike Information Criterion (AIC) equation (9) 
will be used to determine best model. The test 
results are displayed in Table 8.  

Table 8: AIC Calculation 

Model 

AIC with EGARCH 

Without 
EGARCH 

(1,0) (1,1) 
Max 

Differen
ce  

(1,0,1) 
(1,1,1) 7C  

1.0731 0.8051 0.7569 29,54% 

(1,0,1) 
(2,1,2)7 

0,8472 0.6853 0.6197 26,85 % 

(1,0,1) 
(3,1,1)7 

0.8913 0.9665 0.5195 41,71% 

 
Based on Table 6 above, AIC value of model 

(1,0,1)(3,1,1)7 with EGARCH (1,1) generates AIC 
value 41.71% smaller than the model without 
EGARCH. The smallest AIC value is also on this 
model so that it can be said that the best model is 

the model SARIMA (1,0,1)(3,1,1)7 EGARCH(1,1). 
The final model is as follows: 

 

6. FORECASTING 

 
The last step is evaluation of selected model 

SARIMA(1,0,1)(3,1,1)7 EGARCH(1,1) by 
calculating the model using MAPE standard. 
Forecasting data that used was the inbound 
bandwidth data on May 19, 2016 until June 17, 
2016. The forecasting results can be seen in Figure 
7 as follows. 

 

Figure 7: Forecasting Results 

The MAPE calculation generates value 11.38% 
for SARIMA model (1,0,1)(3,1,1)7 without 
EGARCH and 9.20% for model with EGARCH. It 
can be seen that the addition of EGARCH 
parameter to the SARIMA model generates smaller 
MAPE value by a margin of 19.15% if we 
compared it to SARIMA model without EGARCH. 
This result is also smaller than the error calculation 
results in previous study [2]. 

Despite having MAPE smaller than the model 
without EGARCH, SARIMA-EGARCH models 
still have no fix error variance. From Figure 5, the 
first results show that SARIMA–EGARCH 
forecasting has peak lower than the actual value, 
but the peaks of the third and fourth seasons are 
higher than the actual value. 

7. CONCLUSSION 

 
During this research,  Residual Square test found 

out that there were some indications of 
heteroscedasticity among the residuals. Therefore, 
the method must be applied to overcome the 
heteroscedasticity problems. The use of the 
combined SARIMA-EGARCH method is able to 
reduce the value of AIC and produce smaller 
MAPE than SARIMA model without EGARCH. 
SARIMA-EGACRH model is able to increase 
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forecasting accuracy by reducing the 
heteroscedasticity.  

This research can be challenging for further 
exploration. In addition, autocorrelation symptoms 
are also found in the model examined with Q-
Statistic method.  Bandwidth data has a unique 
characteristic, which can be very low or very high. 
Therefore, outlier, autocorrelation, and 
heteroscedasticity are likely happened. This 
symptomps can be explored in the future research 
to get a better result. 

 
REFRENCES:  

 
[1] Dong Peng, Yuanyuan Qiao, Jie Yang. 

“Analyzing Traffic Characteristic Between  
Backbone Network Based on Hadoop”. 
Proceedings of CCIS 2014.  

[2] Permanasari, Adhistya Erna. Hidayah, 
Indriana. Bustoni, Isna Alfi.  ”Forecasting 
Model for Hotspot Bandwidth Management at 
Department of Electrical Engineering and 
Information Technology UGM”. International 

Journal of Applied Mathematics and 

Statistics. Vol. 53; Issue No.4 , Year 2015. 
ISSN 0973-1377 

[3] Dandan, Miao. Xiaowei, Qin. Weidong, Wang. 
“ The Periodic Data Traffic Modeling Based 
on Multiplicative Seasonal ARIMA Model.”. 
Sixth International Conference on Wireless 

Communications and Signal Processing 

(WCSP). 2014. 
[4] Hanbanchong, Aphichit. Piromsopa,  Krerk. 

“SARIMA Based Network Bandwidth 
Anomaly Detection.” Ninth International 

Joint Conference on Computer Science and 

Software Engineering (JCSSE). 2012. 
[5]  Permanasari, Adhistya Erna. Hidayah, 

Indriana. Bustoni, Isna Alfi. “SARIMA 
(Seasonal ARIMA) Implementation on Time 
Series to Forecast The Number of Malaria 
Incidence.” Proceeding of International 

Conference on Information Technology and 

Electrical Engineering (ICITEE). 201.  
[6] Néstor, González Cabrera. G. Gutiérrez-

Alcaraz. Esteban, Gil. “Load Forecasting 
Assessment Using SARIMA Model and 
Fuzzy Inductive Reasoning.” Proceding of 

IEEE IEEM. 2013. 

[7] Williams, Richard. “Heteroskedasticity”. 
[Online]. Available: 
http://http://www3.nd.edu/~rwilliam/ . 
[Accessed: 30- Jan- 2015]. 

[8] Nursalam. “Pemodelan Exponensial GARCH”. 
Jurnal Sains dan Teknologi UIN Allaudin 

Makasar. Vol 5, No.2, July 2011. ISSN: 
1979-3154  

[9] Annila, Nur. Kritianti, Farida Titik. “Model 
Garch (Generalized Autoregressive 
Conditional Heteroscedasticity) untuk 
Prediksi dan Akurasi Harga Saham Masa 
Depan”. Jurnal E-Proceeding of Management. 

Vol 2 No. 1, April 2015. ISSN:2355-9357 
[10] Widayati, Nur. “Penerapan Model GARCH 

dan Model EGARCH pada Saham Sektor 
Properti Ketika Krisis Ekonomi Dunia”. 
Departemen Statistika Fakultas MIPA, IPB. 
Year 2009.  

[11] Ning.L. “Emipirical Research on Term 
Structure of Buy-Back Rates Based on 
EGARCH Model”. Proceeding of 

International Symposium on Electronic 

Commerce and Security. Volume:1,  
[12] Box, E.P. George, Jenkins. M. Gwilym. ”Time 

Series Analisys Forecating and Control”. New 
Prentice Hall. Year 2004  

[13] Nelson, Daniel B. “Conditional 
Heteroskedasticity in Asset Returns: A New 
Approach”, Econometrica, Vol. 59,347-370. 
Year 1991. 

[14] T. W. Anderson and D. A. Darling, “A test of 
goodness of fit”, J. Amer. Stat. Assn., 49 
765769. 1954 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

 


