
Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6788

 USING MODIFIED BAT ALGORITHM TO TRAIN NEURAL
NETWORKS FOR SPAM DETECTION

1 AMAN JANTAN, 2WAHEED A. H. M. GHANEM, 3SANAA A. A. GHALEB
1, 2 School of Computer Sciences, Universiti Sains Malaysia (USM), Penang, Malaysia

2 Faculty of Engineering & Faculty of Education-Saber, University of Aden, Aden, Yemen

3Center for Instructional Technology and Multimedia, Universiti Sains Malaysia

E-mail: 1aman@cs.usm.my, 2waheed.ghanem@gmail.com, 3saag15_sim002@student.usm.my

ABSTRACT

Nowadays a monumental amount of spam and junk email clutter email inboxes and storage facilities. Spam
email has a significant negative impact on individuals and organizations alike, and is a serious waste of
resources, time and effort. The task of filtering spam or junk e-mail is complex and very difficult to solve.
Hence, learning-based filtering is considered an important method for detecting spam emails as the filtering
technique requires training to epitomize the knowledge that can be used for detecting the spam. Thus,
Artificial Neural Networks are being relied on to create a learning based filter. In this article, we
particularly propose the Feedforward Neural Network (FFNN) for identification of e-mail spam; the
weights and biases of this network model are set to optimum using a new modified bat algorithm (EBAT).
Experiments and results based mainly on two datasets (SPAMBASE and UK-2011 WEBSPAM datasets)
show that the developed FFNN model trained by EBAT achieves high generalization performance
compared to other optimization methods.
Keywords: Artificial Intelligent (AI), Swarm Intelligence (SI), Feed-forward Neural Network (FFNN), Bat

Algorithm (BAT), Spam Email, Spam Detection.

1. INTRODUCTION

It is a common occurrence for a user to receive
heaps of emails daily of which 92% are spam [1].
This includes advertisements for a variety of
merchandise and services, such as pharmaceuticals,
electronics, software, jewelry, stocks, gambling,
loans, pornography, phishing, and malicious
attempts [2]. Not only does the spam consume
users’ time by forcing them to identify unwelcomed
messages, but also wastes mailbox space and
network bandwidth. Therefore, spam detection is
posing a tremendous prerequisite and challenge at
the same time to individuals as well as
organizations.

In brief, spam can be defined as irrelevant or
unsolicited messages sent in a large volume over
the internet that negatively affects networks
bandwidth, servers storage, user time and
productivity [3]-[6]. In the internet context,
spammers usually exploit several applications
including email systems, social network platforms,
web blogs, web forums and search engines [7]. The
email spam is often used for advertising products
and services typically related to adult entertainment,

quick money and other attractive merchandises [8].
In a single affiliate program, it is estimated that,
spammer revenue could top one million dollars per
month [9]. Hence, statistics show that there is a
general consensus towards criminalizing commerc-
ial spam.

Moreover, the percentage of spam containing
malicious contents have recently increased
compared to the one advertising legitimate products
and services [10]. Several attacks, such as phishing,
cross-site scripting, cross-site request forgery and
malware infection utilize email spam as part of their
attack vectors [11].

Email spam is the focus of this paper since it is
the most common form of spam. Even with
overlooking the complexity of spam detection, it is
founded on the assumption that the spam’s content
differs from that of a legitimate email in ways that
can be quantified. However, the detection accuracy
is affected by several factors including the
subjective nature of spam, obfuscation, language
issues, processing overhead and message delay, and
the irregular cost of filtering errors [12].

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6789

Broadly, two approaches are used for spam
detection; rule-based filtering and learning-based
filtering. In rules-based filtering, various parts of
the messages such as header, content and source
address are inspected in order to create patterns and
populate the detection database. Received email
messages are analyzed against these rules, and if a
pattern matches any of the detection policies, then
the message is classified as a spam. This approach
requires a large number of rules to be affective.
Moreover, rule-based filter could be evaded by
forging the source of email and/or disguising the
mail content [5] [12].

On the other side, learning-based filter is trained
to excerpt the knowledge that can be used to detect
the spam. This requires a large email dataset with
both spam and legitimate ones. Most of these filters
use Machines Learning (ML) algorithms such as
Naive Bayes Classifier [13], Support Vector
Machines [14] and Artificial Neural Networks
[3].In addition, several ML techniques are merged
together for a more accurate detection [15]-[17].
For instance, Artificial Neural Network (ANN) is a
commonly used technique as it produces accurate
classification results [6] [15] [16] [18] [19]. ANNs
are inspired by the biological neural systems. The
most popular and applied type of ANNs is the
Feedforward Neural Network (FFNN).

FFNN model requires a considerable time for
parameter selection and training [20] which has
incentivized researchers to look for ways to
optimize the process. Conventionally, FFNN
networks are optimized by gradient based
techniques such as Backpropagation algorithm.
However, gradient based techniques are infamous
of suffering some major setbacks namely slow
convergence, high dependency on the initial
parameters and the high probability of trapping in
local minima [21]. Therefore, many researchers
have proposed more stochastic methods for training
FFNNs that are based on generating a number of
random solutions for any given problem. The
nature-inspired metaheuristic algorithms are an
example of stochastic methods that are becoming
more popular in training neural networks. In this
category the following algorithms fall: Genetic
Algorithm (GA) [18], Differential Evolution (DE)
[22], Ant Colony Optimization (ACO) [23], Particle
Swarm Optimization (PSO) [24], and Bat algorithm
[25].

In order to optimize the performance of
identifying spam the authors in [18] suggested
training FFNN networks with Genetic Algorithm.
The results have been promising as the hybridized

method has outperformed the traditional FFNN
neural network.

In this article, we develop a FFNN neural
network model that is being trained with our new
enhanced bat algorithm based Optimization
(EBAT) [26], which was previously developed for
identifying e-mail spam. EBAT is a recently
developed metaheuristic algorithm inspired by the
bat natural process. In this work, FFNN is trained
using EBAT based on two different spam datasets
and compared with other FFNNs trained with the
common metaheuristic algorithms: ACO, BAT, DE,
GA and PSO.

This article is organized as follows: Section 2
gives a broad description of feed-forward artificial
(FFNN) Neural Networks, the enhanced bat
algorithm (EBAT), EBAT for training feed-forward
neural network, and in finally the datasets that used
to evaluate the FFNN-EBAT approach; Section 3
exposes the experiments and analyzes the results
obtained; and finally, Section 4 introduces the
conclusions.

2. MATERIALS AND METHODS

2.1 Feed-Forward Artificial Neural Networks

An ANN comprises of an arrangement of
preparing Unites Figure 1, otherwise called
counterfeit neurons or nodes, which are
interconnected with each other [27, 28]. Yield of
the ith artificial neuron can be depicted by Equation
(1). Each simulated neuron gets inputs (signals)
either from the earth or from different ANs. To
each info (flag), xi is related a weight, wij to
reinforce or drain the information flag. The ANs
processes the net info flag, and uses an initiation
work fi, to figure the yield flag, ith given the net
information. Where , yi is the yield of the neuron,
xi is the ith input to the neuron, wij is the association
weight between the neuron and info xi, ɵi is the
limit (or inclination) of the neuron, and fi is the
neuron actuation work. For the most part, the
neuron initiation work is a nonlinear capacity, for
example, a heaviside work, a sigmoid capacity, a
Gaussian capacity, and so forth.

 (1)

Figure 1: The Processing Unit (Neuron)

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6790

Feed-forward neural networks have been widely
used, with two layers of the FFNNs (Fig. 2).
Actually, FFNNs with two layers are the most
popular neural network in practical applications
such as approximate functions [29, 30, 31], and it is
suitable for classifications of nonlinearly separable
patterns [32, 33]. It has been proven that two layer
FNNs can approximate any continuous and
discontinuous function.

Figure 2: A Two-Layered Feed-forward Neural Network

Structure

Figure 2. Demonstrates a FFNN with two layers
(one input, one hidden, and one output layer),
where the number of input neurons is equal to n,
the number of hidden neurons is equal to h, and the
number of output neurons is m. The most vital
undertakings that ought to be centered on, when
utilizing FFNNs include: First, to obtain an
improvement in the method of finding a
combination of weights and biases which provide
the minimum error for a FFNN. Second errand is to
locate an appropriate structure for a FFNN. Last
errand is to utilize an evolutionary algorithm to
adjust the parameters of a gradient-based learning
algorithm, such as the learning rate and momentum
[21]. According to [21, 31, 34], the convergence of
the BP algorithm is highly dependent on the initial
values of weights, biases, and its parameters. These
parameters incorporate learning rate and
momentum. In the literature, utilizing novel
heuristic optimization methods or evolutionary
algorithms is a popular solution to enhance the
problems of BP-based learning algorithms.

2.2 The Enhanced Bat Algorithm

This section presents the Enhanced BAT (EBAT)
algorithm, which depends on the standard BA as
introduced in the previous work [25, 26]. The
standard bat algorithm has the ability to exploit the
search space, however, it also at times falls into the
trap of local optima, which affects its performance

with respect to global search. In order to avoid
trapping into local optima in BA, there is a need to
increase the diversity of the search.

The fundamental thought behind the algorithm
we introduce in this article is to augment the BA
with a very effective operator. This operator is a set
of random based modifications that aim to increase
the diversity of BA and allow for more mutations in
the inspected solutions within the BA search, and
hence jump out of potential local optima traps. In
other words, the BA’s ability to exploit solutions in
the local neighborhood is backed with the ability to
explore new areas in the search space. The
difference between EBAT and BA is that the added
mutation operator is used to improve the original
BA generating a new solution for each bat. In the
light of this rule, an exploitation and exploration
are two important crucial characteristics in the
design of an effective optimization algorithm [35,
36, 37].

A minor change to the proposed algorithm is that
we use fixed loudness A instead of various
loudness . Similar to BA, each bat in EBAT is
defined by its position , velocity vi, the emission
pulse rate and the fixed loudness in a d-
dimensional search space. The new solutions and
velocities at time step t are given by equations
(2), (3) and (4). The main improvement to the
proposed algorithm is to add the mutation operator
in order to increase the diversity of the population
to improve the search efficiency and speed up the
convergence to the optimal value.

 (2)

 (3)

 (4)
 (5)

 (6)

The proposed algorithm is similar to the standard
BA on the side of local search: a new solution is
first obtained by a local random walk from the best
available solution (Eq. 5).The generation of this
first solution is subject to the condition that a
random real number drawn from a uniform
distribution is larger than the pulse rate parameter.

The new mutation operator in the EBAT
algorithm offers a new pair of tuning parameters,
Limit1 and Limit2, based on the previous researches
[35-38]. The research [38] was based on the
hybridization of the harmony search algorithm with
the standard bat algorithm. In the mutation operator

Input Unites

Hidden Unites

Output Unites

O1

Om

X1

Xn

S1

Sh

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6791

stage, if a random value is less than the value of
Limit1, then a solution is randomly chosen from
the population of NP as shown in Eq. 8.

 (7)

 (8)

Where the r (1, 2… NP);
Further, if a random value is less than Limit2,

more mutation is introduced into the elements of
the current solution, drawing the search back to a
better position with respect to the best and worst
solutions recorded so far. This mutation proves
very useful in case the BA component traps in a
local optimum that is far from the actual global one.
The modification of the mutation operator is
formulated in Equations (9) and (10).

 (9)

 (10)

In the equations above, is a new solution of
the tth iteration; is the random solution selected
by Eq. (8); and variables and represent
the worst and best solutions ever found,
respectively. Otherwise, the randomization rule
intends to add population diversity, it helps the
mutation operator to explore the search space very
efficiently, leading to increase the probability of
finding the global optimal solution. Therefore, the
randomization rule generates a new value for the ith
element in the individual as illustrated in Eq. 11.

 (11)

The introduced mutation maintains the attractive
features of the original bat algorithm, especially in
terms of fast convergence, while allowing the
algorithm to make use of more mutation towards a
better diversity. Based on the aforementioned
analyses, the pseudocode of the EBAT algorithm is
shown in Algorithm 1.

Algorithm 1
Begin
Step 1: Initialization

Set the generation counter 𝑡 = 1; Initialize the
population of NP bats P randomly where each
bat corresponds to a potential solution for the
given problem; define loudness 𝐴, pulse
frequency 𝑓𝑖 and the initial velocities v𝑖 ; set
pulse rate 𝑟 , parameter Limit1 and limit2.

Step 2: evaluate the all the elements population by
objective function f(x) and select the best and worst
solution of population NP.
Step 3: While the termination criterion is not satisfied or
(t < MaxGeneration) do
For i = 1 to NP (all bat) do

 Generate a new solution by adjusting frequency, and
updating velocity and location/solution by:

If (rand > 𝑟) then
 Select a solution among the best solutions ;
 Generate a local solution around the selected
 best solution by:

End if
If (rand <Limit1) then
 ;
 Where the vr (1, 2, …, NP)
 If (rand <Limit2) then
 Update the solution by Eq. (10),
 ;
 Else
 Update the solution by Eq. (11);
 ;
 End if
Else

End if
Evaluate the solution by objective function
f(x), and select the solution which is has best fitness
among the .
Generate a new solution by flying randomly
If (rand <𝐴) and (𝑥𝑖 <𝑓 (𝑥∗)
 Accept the new solution;
End if
Update the best and worst parameter.
Rank the bats and find the current best solution .
 t = t + 1;
Step4: End while
Step 5: Post-processing the results and visualization.
End

2.3 EBAT For Training Feed-Forward Neural
Networks

In the last years, many of the researchers have
used a heuristic algorithm in order to train the feed
forward neural networks. And replaced the
traditional algorithm with the heuristic algorithm,
which showed better results than the traditional
algorithm. There are three methods of using a
heuristic algorithm for training FFNNs, these
methods are as follows:

1. It is utilized for finding a combination of
weights and biases which provide the
minimum error for an FFNN.

2. It is utilized to find a proper structure for an
FFNN in a particular problem.

3. It is utilized to use an evolutionary algorithm to
tune the parameters of a gradient-based
learning algorithm, such as the learning rate
and momentum.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6792

When utilizing artificial neural networks, the first
step which must be carried out, is to determine the
fixed structure for the neural Network, which will
be trained by the training algorithm. The main
objective of this algorithm is to find the appropriate
values for all connection weights and biases, in
order to reduce error rate in FFNNs. Besides this it
is possible that a training algorithm is applied to an
FFNN to determine the best structure for a certain
problem. Which is made by manipulating the
connections between neurons, the number of hidden
layers, and the number of hidden neurons in each
layer of the FFNN.

2.3.1 The Two-Layered Feed-Forward Neural Network

In this article, our work is based on training an
artificial neural network, to find the appropriate
values for all weights and biases in FFNNs. The
algorithms used in this work are ACO, BAT, DE,
EBAT, GA, and PSO. These mechanisms are called
FFNN-ACO, FFNN-BAT, FFNN-DE, FFNN-
EBAT, FFNN-GA, and FFNN-PSO, respectively.
ACO, BAT, DE, EBAT, GA, and PSO are used to
find a combination of weights and biases which
yield the minimum error for the FFNN.

The structure of the FFNN is fixed; with two
layered structures. Suppose that the input layer has
n neurons; the hidden layer has h hidden neurons
and the output layer has m output neurons. Figure 2
shows the structure of a two layered feed-forward
neural network. According to the figure, a
corresponding fitness function was given.

Assuming that the hidden transfer function is
sigmoid function, and the output transfer function is
a linear activation function. The Fitness function
using the error of the FFNN should be defined to
evaluate fitness in FFNN-ACO, FFNN-BAT,
FFNN-DE, FFNN-EBAT, FFNN-GA, and FFNN-
PSO. An encoding strategy should be defined to
encode the weights and biases of the FFNN for the
agents of FFNN-ACO, FFNN-BAT, FFNN-DE,
FFNN-EBAT, FFNN-GA, and FFNN-PSO. These
elements are described below:

2.3.2 Fitness Function

We follow the same manner that used in [21, 31]
in order to calculate the fitness function. From
figure 2, we have seen that FFNNs with two layers
contain one input, one hidden, and one output layer;
the number of input neurons is equal to (n), the
number of hidden neurons is equal to (h), and the
number of output neurons is (m). The output of the
ith hidden node is calculated as follows:

 (12)
Where , ,

n is the number of the input neurons , is the
connection weight from the ith node in the input
layer to the jth node in the hidden layer, is the
bias (threshold) of the jth hidden node, and is the
ith input. After calculating outputs of the hidden
neurons, the final output can be defined as follows:

 (13)

Where , ,is the connection
weight from the jth hidden node to the kth output
node and is the bias (threshold) of the kth output
node. Finally, the learning error (fitness function)
is calculated as follows:

 (14)

 (15)

Where is the number of training samples,
is the desired output of the jth input unit when the kth
training sample is used, and is the actual output
of the ith input unit when the kth training sample is
used.

Figure 3: FFNN With A 2-2-1 Structure

Therefore, the fitness function of the ith training

sample can be defined as follows:
Fitness (xi) = E (xi) (16)

2.3.3 Encoding Strategy

Is a strategy used to represent the weights and
biases of the FFNN [21, 31], we use it to represent
the weights and biases for agents of the six
algorithms FFNN-ACO, FFNN-BAT, FFNN-DE,
FFNN-EBAT, FFNN-GA, and FFNN-PSO. For
this, each agent represents all the weights and
biases of the FFNNs structure. There are three
strategies for representing the weights and biases of
FFNNs for every agent in evolutionary algorithms
(EA). Those strategies are the vector, matrix, and
binary encoding strategies. In vector encoding,
every agent is encoded as a vector to train an

 1

1

2

3

5

4

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6793

FFNN, in matrix encoding, every agent is encoded
as a matrix. In binary encoding, agents are encoded
as binary bits.

In this article, we use the matrix encoding
strategy because, this strategy is very suitable for
the training processes of neural networks, also, the
encoding strategy makes it easy to execute
decoding for neural networks [21, 31]. As example,
we execute encoding strategy for the FFNN on
Figure 3, which is appears as follows:

Agent (;; i) = [w1, b1, w2, b2] (22)

 w1= , b1= , w2= , b2= (23)

Where w1 is the weight matrix for the hidden
layer, b1 is the bias matrix for the hidden layer, w2

and b2 are the weight & bias, respectively, for
output layer.

2.4 Datasets

In this article, the proposed FFNN-EBAT is
evaluated in the identification of spam email using
two different datasets: the SPAM dataset and the
UK-2011 WEBSPAM dataset. The first dataset is
obtained from the University of California at Irvine
(UCI) Machine Learning Repository [39]. This
dataset contains 57 features and 4601 instances of
which approximately 39.4% are spam emails. The
grouping of features in this set of data has been
based on the frequency of some selected words and
special characters in the e-mails. The second
dataset, UK-2011, consist of 3766 instances with 11
features. Each example in the data is labeled as
Ham or Spam. The data include 1768 ham emails
and 1998 spam emails. The percentage of spam
emails form approximately 53% of the emails,
which makes the data imbalanced and therefore
more challenging. The full description of the
features can be found in [40].

3. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we layout the experimental setup
through which we have evaluated the proposed
algorithm, FFNN-EBAT. Following the usual
methodology in the metaheuristic literature, we
expose the algorithm to two datasets related to
spam email, which are described in the previous
section 2.4, and compare the performance of the
algorithm with other known and published
metaheuristic techniques. In this work, we have
implemented six sets of experiments (three for each
dataset), comparing the performance of the
proposed algorithm with different number of

neurons in the hidden layer of the trained network.
One experiment uses the same number of input
neurons in the hidden layer, the second experiment
uses (number of input neurons * 2 + 1) neurons for
the hidden layer, while the last experiment uses
(number of input neurons * 4 + 1) neurons in the
hidden layer.

All the experiments were conducted on a laptop
with an Intel® Core™ i5-2430 CPU @ 2.40 GHz,
and equipped with 8 GB of RAM. Our
implementations of the algorithms were compiled
using MATLAB R2009b (V7.9.0.529) running
under Windows 7 Home premium SP1.The
software implementation of the proposed FFNN-
EBat algorithm was based on the implementation of
EBat in [26]. In all experiments, the population size
NP was set to 50. The maximum number of
generations was 50. To mitigate the impact of
randomness in individual runs, we report the results
over a 10 implementation runs for each algorithm
on each dataset.

The proposed FFNN-EBAT algorithm inherits a
set of control parameters from its underpinning
algorithm, BA, and introduces a couple of random
control parameters. The set of FFNN-EBAT’S
parameters include the loudness, which was set to
0.95, pulse rate, which was set to 0.1, and the new
limit1 and Limit2 parameters, which were set to 0.8
and 0.5, respectively. These are the default
parameter values in all our experiments. The choice
of the control parameters is very important for the
performance of the optimization metaheuristic and
can vary with different applications. The
parameters of all methods used in this work are
presented below:
 ACO: The ACO method involves many
parameters, which were set as follows: pheromone
update constant Q = 20, local pheromone decay
 rate ql = 0.5, global pheromone decay rate qg =
0.9, exploration constant q0 = 1, pheromone
sensitivity s = 1, visibility sensitivity b = 5, and
initial pheromone value s0 = 1E-6.
 GA: This method uses the roulette wheel in the
selection phase, while in the crossover phase it uses
a single point with probability of one and the
mutation probability is equal to 0.01.
 DE: This method is based on two parameters,
the area crossover constant CR = 0.5 and the
weighting factor F = 0.5.
 PSO: the population size in this method is also
set to 50, inertial constant = 0.3, cognitive constant
= 1, and social constant for swarm interaction = 1.

3.1 Experiment 1: Performance analysis of the
proposed approach (FFNN-EBAT) against five
other methods with the SPAMBASE email dataset.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6794

In this experiment, we compare our approach
with the other five approaches, against the Spam
email dataset, which has been mentioned in section
2.4. The experiments in this section involve three
sets of results, corresponding to three experiments
based on diversity in the number of neurons in the
hidden layer (57, 115, and 229) for each approach.
We compare FFNN-ACO, FFNN-BAT, FFNN-DE,
FFNN-GA, FFNN-PSO, and FFNN-EBAT based
on the best, mean, median, and standard deviation
of the Mean Square Error (MSE) for training
samples (Spam Email Dataset) over 10 independent
runs. The criterion for finishing the training process
is to complete the maximum number of iterations
(equal to 50 in this article) and the population size
is 50. The experimental results for Spam Email
Dataset are listed in Table 1. The best results are
indicated in bold type.

We first show a representative sample of the
convergence plots of FFNN-ACO, FFNN-BAT,
FFNN-DE, FFNN-GA, FFNN-PSO, and FFNN-
EBAT in Fig. 4a–c, before discussing the results in
Table 1. These figures show the best Mean Square
Error (MSE) values found by each compared
approach for all training samples, per search
iteration, over the 50 maximum generations. Figure
4a shows the results reached by the six approaches
when applied to Spam Email dataset with 57
neurons in the hidden layer. We can observe from
the figure that FFNN-EBAT is significantly
superior to the other approaches over the process of
optimization in terms of both convergence speed
and final result, while the FFNN-GA approach
performs the second best outperforming the FFNN-
BAT approach on this dataset.

Figure 4b shows the results achieved by all the
approaches against Spam Email Dataset with 115
neurons in the hidden layer. The FFNN-EBAT
approach shows a notable better convergence and
final result in this dataset as well. The rate of
convergence in the case of FFNN-GA and FFNN-
BAT is similar overall, but there is a significant
difference in the final result. From the figure, the
FFNN-EBAT obviously outperforms the other
approaches.

Finally, Fig. 4c depicts the results obtained from
applying Spam Email Dataset with 229 neurons in
the hidden layer to the six approaches. FFNN-
EBAT in this experiment shows again a very fast
convergence to a superior final optimum and
outperforms the other approaches. The FFNN-BAT
approach performs the second best after FFNN-
EBAT on this dataset

(a)

(b)

(c)

Figure 4: Convergence Curves Of All Approaches Based
On Averages Of MSE For All Training Samples Over 10
Independent Runs Against SPAMBASE Dataset. (A), (B),
And (C) Are The Convergence Curves For Fnns With S =

57, 115, And 229, Respectively.

From Table 1, it can be seen that the FNN-EBAT
performs better than the FFNN-ACO, FFNN-BAT,
FFNN-DE, FFNN-GA, and FFNN-PSO for the
mean, median, and standard deviation of MSE. The
results of these statistical variables prove that FNN-
EBAT has the best ability to avoid local minima.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6795

FFNN-GA has better results in terms of the best
MSE when the number of neurons in the hidden
layer is 57, while FFNN-BAT records best MSE
when the number of hidden layer neurons is 229.
Overall, the results show that FNN-EBAT is more
accurate than other approaches.

Table 1: Best, Median, Standard Deviation, And Mean Of
MSE For All Training Samples Over 10 Independent

Runs For Six Approaches Against SPAMBASE Dataset.

No. of neurons in hidden layer = 57

Alg. Best Median Mean Std. dev.

ACO 6.07E-01 6.89E-01 6.93E-01 7.00E-02

BAT 4.78E-01 5.10E-01 5.29E-01 5.30E-02

DE 5.26E-01 6.23E-01 6.10E-01 4.86E-02

GA 4.48E-01 5.71E-01 5.44E-01 6.50E-02

PSO 5.82E-01 6.27E-01 6.12E-01 2.38E-02

EBAT 4.49E-01 4.52E-01 4.51E-01 1.47E-03

No. of neurons in hidden layer = 115

Alg. Best Median Mean Std. dev.

ACO 5.26E-01 6.48E-01 6.34E-01 6.22E-02

BAT 3.64E-01 4.72E-01 4.83E-01 1.07E-01

DE 5.18E-01 5.59E-01 5.59E-01 3.87E-02

GA 3.64E-01 4.61E-01 4.64E-01 8.73E-02

PSO 4.72E-01 5.36E-01 5.45E-01 5.19E-02

EBAT 3.27E-01 4.52E-01 4.27E-01 5.61E-02

No. of neurons in hidden layer = 229

Alg. Best Median Mean Std. dev.

ACO 6.48E-01 7.47E-01 7.43E-01 6.26E-02

BAT 4.43E-01 5.70E-01 5.25E-01 6.78E-02

DE 6.44E-01 6.56E-01 6.53E-01 6.07E-03

GA 5.71E-01 5.90E-01 5.90E-01 1.38E-02

PSO 6.24E-01 6.47E-01 6.54E-01 2.94E-02

EBAT 4.52E-01 4.52E-01 4.53E-01 1.36E-03

3.2 Experiment 2: Performance analysis of the
proposed approach (FFNN-EBAT) against five
approaches with the UK-2011 WEBSPAM dataset

In this experiment, we compare our approach

with the other five approaches against the UK-2011
WEBSPAM dataset, which has been mentioned in
section 2.4. The experiments in this section
encompass three sets of results, similar to the
experiments presented in the previous section. The
results correspond to three experiments based on
different number of neurons in the hidden layer (11,

23, and 45) for each approach. The comparisons in
this experiment are the same as those in the
experiment 1. The only differences between the two
are the used dataset and the number of neurons in
the hidden layer.

Figure 5a shows the results reached by the six
approaches when applied to UK-2011 WEBSPAM
dataset with 11 neurons in the hidden layer. We can
observe from the figure that FFNN-EBAT is
significantly superior to the other approaches over
the process of optimization in terms of both
convergence speed and final result, while the
FFNN-BAT approach performs the second best
after our approach on this dataset.

Figure 5b-c shows sample convergence plots of
the same set of experiments described previously,
with 23 and 45 neurons in the hidden layer,
respectively. The convergence plots in both figures
show that FFNN-EBAT has a superior performance
to all other approaches in terms of fast convergence
towards its final optimal value. These figures
confirm that FFNN-EBAT seemingly has the best
convergence rate for the FNNs with various number
of neurons in the hidden layer.

(a)

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6796

(b)

(c)

Figure 5: Convergence Curves Of All Approaches Based
On Averages Of MSE For All Training Samples Over 10
Independent Runs In UK-2011 WEBSPAM. (A), (B), And
(C) Are The Convergence Curves For Fnns With S = 11,

23, And 45, Respectively

Table 2 shows the results for best, median,

standard deviation, and mean of MSE for training
samples over 10 independent runs. There are three
sets of results, each corresponding to a different
number of neurons in the hidden layer of the neural
network (i.e. 11, 23, and 45). These results were
obtained from experimenting against the UK-2011
WEBSPAM dataset. We can see from Table 2 and
Figure 5 that our approach, FFNN-EBAT,
outperforms the other approaches. The statistical
variables from the three experiments proves that
FNN-EBAT has the best ability to avoid local
minima and the most optimum results, leading to a
better accuracy of neural network classification.

Furthermore, we can see that in all the six
experiment results, FNN-ACO does not record a
good performance because of the slow searching
process of the ACO algorithm, which affects FNN-
ACO exploitation ability. Learning algorithms for
FNNs need not only strong exploration ability but

also precise exploitation ability. As also shown
from the results, FFNN-DE and FFNN-PSO
perform better than FNN-ACO due to the more
precise exploitation ability of DE and PSO, but they
are still suffering from the problem of trapping in
local minima. This deficiency means that FFNN-
DE and FNN-PSO have unstable performance. The
results obtained by FNN-EBAT prove that it has
both strong exploitation and good exploration
abilities. In other words, the strengths of the EBAT
algorithm have been successfully utilized, giving
outstanding performance in training FNNs. In
particular, FNN-EBAT is capable of solving the
problem of trapping in local minima and gives fast
convergence speed.

Table 2: Best, Median, Standard Deviation, And Mean Of
MSE For All Training Samples Over 10 Independent
Runs For Six Approaches In UK-2011 WEBSPAM

Dataset.

No. of neurons in hidden layer = 11

Alg. Best Median Mean Std. dev.

ACO 5.82E-01 6.17E-01 6.34E-01 4.44E-02

BAT 4.89E-01 4.89E-01 4.96E-01 9.12E-03

DE 5.04E-01 5.46E-01 5.42E-01 2.58E-02

GA 4.93E-01 5.08E-01 5.07E-01 1.18E-02

PSO 5.46E-01 5.60E-01 5.64E-01 1.78E-02

EBAT 4.76E-01 4.84E-01 4.83E-01 3.87E-03

No. of neurons in hidden layer = 23

Alg. Best Median Mean Std. dev.

ACO 6.79E-01 7.39E-01 7.28E-01 4.64E-02

BAT 4.84E-01 5.89E-01 6.10E-01 1.13E-01

DE 5.95E-01 6.34E-01 6.39E-01 3.55E-02

GA 4.91E-01 5.70E-01 5.51E-01 3.55E-02

PSO 5.96E-01 6.24E-01 6.53E-01 5.50E-02

EBAT 4.82E-01 4.83E-01 4.84E-01 1.81E-03

No. of neurons in hidden layer = 45

Alg. Best Median Mean Std. dev.

ACO 7.77E-01 8.03E-01 8.02E-01 1.66E-02

BAT 5.76E-01 6.44E-01 6.51E-01 6.43E-02

DE 6.80E-01 6.98E-01 6.99E-01 1.29E-02

GA 5.97E-01 6.67E-01 6.65E-01 6.03E-02

PSO 6.48E-01 7.29E-01 7.27E-01 5.64E-02

EBAT 4.79E-01 4.84E-01 4.83E-01 2.50E-03

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6797

4. CONCLUSION

The main contribution in this article is the use of
a recent meta-heuristic algorithm called EBAT,
which was developed from the original bat
algorithm, in training feedforward neural networks
for spam detection. The new developed approach
FFNN-EBAT was applied to classify emails into
normal or spam or junk e-mail based on a number
of content-related features. The FFNN-EBAT
algorithm was evaluated and compared with other
neural networks trained by ant-colony optimization
algorithm, bat algorithm, differential evolution
algorithm, genetic algorithm, and particle swarm
optimization. The experiments have shown that
FFNN-EBAT has better quality results than the
other training algorithms. In future works, we plan
to verify the performance of the EBAT algorithm
with other neural network types, and investigate its
effectiveness with other spam email datasets.

5. ACKNOWLEDGMENTS

This research work was funded by the
Fundamental Research Grant Scheme (FRGS) for
"Content-Based Analysis Framework for Better
Email Forensic and Cyber Investigation”
[203/PKOMP/6711426]. The research was also
partially supported by Universiti Sains Malaysia
under USM Fellowship [APEX(308/AIPS/415401)]
from Institute of Postgraduate Studies, Universiti
Sains Malaysia.

REFRENCES:

[1] D. DeBarr, H. Wechsler, Spam detection
using random boost, Pattern Recogn. Lett.
Vol.33 (10), 2012, pp.1237–1244.

[2] S. Heron, Technologies for spam detection,
Netw. Secur. 2009 (1), 2009, 11–15.

[3] Guzella, Thiago S., and Walmir M. Caminhas.
"A review of machine learning approaches to
spam filtering." Expert Systems with
Applications Vol.36, no. 7, 2009, pp.10206-
10222.

[4] Rao, Justin M., and David H. Reiley. "The
economics of spam." The Journal of
Economic Perspectives Vol.26, no. 3, 2012,
pp.87-110.

[5] Stern, H., et al. “A Survey of Modern Spam
Tools”. CiteSeer, 2008.

[6] Su, Mu-Chun, Hsu-Hsun Lo, and Fu-Hau Hsu.
"A neural tree and its application to spam e-
mail detection." Expert Systems with

Applications Vol.37, no. 12, 2010, pp.7976-
7985.

[7] Kanich, Chris, Nicholas Weaver, Damon
McCoy, Tristan Halvorson, Christian
Kreibich, Kirill Levchenko, Vern Paxson,
Geoffrey M. Voelker, and Stefan Savage.
"Show Me the Money: Characterizing Spam-
advertised Revenue." In USENIX Security
Symposium, 2011, pp. 15-15.

[8] Cranor, Lorrie Faith, and Brian A. LaMacchia.
"Spam!." Communications of the ACM 41,
no. 8, 1998, pp.74-83.

[9] Stone-Gross, Brett, Thorsten Holz, Gianluca
Stringhini, and Giovanni Vigna. "The
Underground Economy of Spam: A
Botmaster's Perspective of Coordinating
Large-Scale Spam Campaigns." LEET 11,
2011, pp. 4-4.

[10] Gudkova, Darya, Tatiana Kulikova, Katerina
Kalimanova, and Daria Bronnikova.
"Kaspersky security bulletin." Spam Evolution
(2013).

[11] Faris, Hossam, Khalid Jaradat, Malek Al-
Zewairi, and Omar Adwan. "Improving
knowledge based spam detection methods:
The effect of malicious related features in
imbalance data distribution." International
Journal of Communications, Network and
System Sciences 8, no. 5 (2015): 118.

[12] PéRez-DíAz, Noemí, David Ruano-OrdáS,
Florentino Fdez-Riverola, and José R.
MéNdez. "SDAI: An integral evaluation
methodology for content-based spam filtering
models." Expert Systems with Applications
39, no. 16 (2012): 12487-12500.

[13] Song, Yang, Aleksander Kołcz, and C. Lee
Giles. "Better Naive Bayes classification for
high‐precision spam detection." Software:
Practice and Experience 39, no. 11 (2009):
1003-1024.

[14] Amayri, Ola, and Nizar Bouguila. "A study of
spam filtering using support vector machines."
Artificial Intelligence Review 34, no. 1
(2010): 73-108.

[15] Zmyślony M, Krawczyk B, Woźniak M.
Combined classifiers with neural fuser for
spam detection. In International Joint
Conference CISIS’12-ICEUTE´ 12-SOCO´ 12
Special Sessions 2013 (pp. 245-252). Springer
Berlin Heidelberg.

[16] Manjusha K, Kumar R. Spam mail
classification using combined approach of
bayesian and neural network. InComputational
Intelligence and Communication Networks

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6798

(CICN), 2010 International Conference on
2010 Nov 26 (pp. 145-149). IEEE.

[17] Idris, Ismaila, Ali Selamat, Ngoc Thanh
Nguyen, Sigeru Omatu, Ondrej Krejcar,
Kamil Kuca, and Marek Penhaker. "A
combined negative selection algorithm–
particle swarm optimization for an email spam
detection system." Engineering Applications
of Artificial Intelligence 39, 2015, pp. 33-44.

[18] Arram, Anas, Hisham Mousa, and Anzida
Zainal. "Spam detection using hybrid
Artificial Neural Network and Genetic
algorithm." In Intelligent Systems Design and
Applications (ISDA), 2013 13th International
Conference on, IEEE, 2013, pp. 336-340.

[19] Xu, Hao, and Bo Yu. "Automatic thesaurus
construction for spam filtering using revised
back propagation neural network." Expert
Systems with Applications 37, no. 1, 2010,
pp.18-23.

[20] Yu, Bo, and Zong-ben Xu. "A comparative
study for content-based dynamic spam
classification using four machine learning
algorithms." Knowledge-Based Systems 21,
no. 4, 2008, pp.355-362.

[21] Ghanem, Waheed A.H.M., and Aman Jantan.
"Using hybrid artificial bee colony algorithm
and particle swarm optimization for training
feed-forward neural networks." Journal of
Theoretical & Applied Information
Technology 67, no. 3, 2014, pp.664-674.

[22] Idris, Ismaila, Ali Selamat, and Sigeru Omatu.
"Hybrid email spam detection model with
negative selection algorithm and differential
evolution." Engineering Applications of
Artificial Intelligence 28, 2014, pp. 97-110.

[23] El-Alfy ES. Discovering classification rules
for email spam filtering with an ant colony
optimization algorithm. In Evolutionary
Computation, 2009. CEC'09. IEEE Congress
on 2009 May 18, pp. 1778-1783.

[24] Idris, Ismaila, and Ali Selamat. "Improved
email spam detection model with negative
selection algorithm and particle swarm
optimization." Applied Soft Computing 22,
2014, pp.11-27.

[25] Natarajan, Arulanand, S. Subramanian, and K.
Premalatha. "A comparative study of cuckoo
search and bat algorithm for Bloom filter
optimisation in spam filtering." International
Journal of Bio-Inspired Computation 4, no. 2,
2012, pp.89-99.

[26] Ghanem, Waheed A.H.M., and Aman Jantan.
"An enhanced Bat algorithm with mutation
operator for numerical optimization
problems." Neural Computing and
Applications, 2017, pp.1-35.

[27] Yao, Xin. "Evolving artificial neural
networks." Proceedings of the IEEE 87, no. 9
(1999): 1423-1447.

[28] Hornik, Kurt, Maxwell Stinchcombe, and
Halbert White. "Multilayer feedforward
networks are universal approximators." Neural
networks 2, no. 5 (1989): 359-366.

[29] K. Homik, M. Stinchcombe, H. White,
Multilayer feed-forward networks are
universal approximators, Neural Networks 2
(1989) 359–366. [30]B. Malakooti, Y. Zhou,
Approximating polynomial functions by
feed-forward artificial neural network:
capacity analysis and design, Appl. Math.
Comput. 90, 1998, pp.27–52.

[31] SA Mirjalili, SZ Mohd Hashim. "Training
feed-forward neural networks using hybrid
particle swarm optimization and gravitational
search algorithm." Applied Mathematics and
Computation 218.22, 2012, pp.11125-11137.

[32] C. Lin, Cheng-Hung, C. Lee, A self-adaptive
quantum radial basis function network for
classification applications, in: IEEE
International Joint Conference on Neural
Networks, 2004, pp. 3263–3268.

[33] Isa, Nor Ashidi Mat, and Wan Mohd Fahmi
Wan Mamat. "Clustered-hybrid multilayer
perceptron network for pattern recognition
application." Applied Soft Computing 11, no.
1, 2011, pp.1457-1466.

[34] J.R. Zhang, J. Zhang, T.M. Lock, M.R. Lyu, A
hybrid particle swarm optimization–back-
propagation algorithm for feed-forward
neural network training, Appl. Math.
Comput. 128, 2007, pp.1026–1037.

[35] Ghanem, Waheed A.H.M., and Aman Jantan.
"Hybridizing artificial bee colony with
monarch butterfly optimization for numerical
optimization problems." Neural Computing
and Applications, 2016, pp.1-19.

[36] Ghanem, Waheed A.H.M., and Aman Jantan.
“Hybridizing Bat Algorithm with Modified
Pitch-Adjustment Operator for Numerical
Optimization Problems”, Modeling,
Simulation, and Optimization Book Series,
Springer International Publishing AG, 2018.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6799

[37] Ghanem, Waheed A.H.M., and Aman Jantan.
“A Novel Hybrid Artificial Bee Colony with
Monarch Butterfly Optimization for Global
Optimization Problems”, Modeling,
Simulation, and Optimization Book Series,
Springer International Publishing AG, 2018.

[38] Wang, Gaige, and Lihong Guo. "A novel hybrid
bat algorithm with harmony search for global
numerical optimization." Journal of Applied
Mathematics 2013.

[39] Lichman, M. (2013) UCI Machine Learning
Repository.

[40] Fdez-Glez, Jorge, David Ruano-Ordás, Rosalía
Laza, José Ramon Méndez, Reyes Pavón, and
Florentino Fdez-Riverola. (2016) "WSF2: A
novel framework for filtering web spam."
Scientific Programming 2016: 1.

