
Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7069 

 

 

ABSTRACT 
 

This paper proposed a hybrid data deduplication technique in cloud computing, that combines different types 
of data deduplications for satisfying different demands and requirements. The hybrid data deduplication 
consists of two different hybrid subsystems, each hybrid subsystem contains a file level deduplication and 
chunk level deduplication. The file level deduplication shows better execution time for deduplication 
redundant files. And, chunk level deduplication for detecting duplicated chunks among files at the data. The 
subsystems are: hybrid file variable size chunk level deduplication (FVCD), and hybrid file fix size chunk 
level deduplication (FFCD). The FVCD satisfies the requirements of users and applications that required 
better effectivity in reducing the size of data. While, the FFCD provides lower execution time. And, it can be 
tuned by changing its chunk’s size. Where, increasing the chunk’s size reduces the execution time. But, it 
decreases the effectivity of reducing the size of data. 
 
Keywords:  Data Deduplication, Cloud Computing, Cloud Storage

 
1. INTRODUCTION 
 

The data deduplication is intelligent 
compression technique that aims to remove the 
redundant copies of data and replace it with 
references to original data. The data deduplication 
is considered intelligent compression method. 
Since, it removes the redundant content among the 
files at the data, not only the repeated content at the 
same file. And so, the data deduplication reduces 
the expenses of storage and management of large 
volume and diverse types of data [1,2]. On the other 
hand, the cloud computing provides processing and 
storage resources for massive processing and 
storage, the resources of cloud computing are pool 
of virtualized resources that contains different types 
of resources and divided into more than a cloud type 
and different kinds of critical entities [3,4,5]. The 
resource virtualization model (RVM) provides an 
essential contribution in enhancing the availability 
of the cloud, that it models the critical entities and 
the resources inside each entity. The RVM model 
has algorithms eases the convergence and 
maintainability of the cloud that they can categorize 
the resources of the cloud and maintaining variation 
of resources at real time [5]. 

 

The services of cloud computing can be categorized 
into three categories that are: infrastructure as a 
service (IaaS), platform as a service (PaaS), and 
software as a service (SaaS). The IaaS provides 
virtualized resources that enable the clients for 
building their own physical environment for 
running and deploying their applications and for 
storage of their data. For example, amazon web 
services (AWS) leases different kinds of virtual 
servers for the clients [3,4,6]. The PaaS provides a 
platform that provides a set of services for the users 
to run and deploy their applications. For example, 
Google provides the platform Google Apps that 
enables the corporations to set up communication 
and interaction services for their employees.  
Finally, the SaaS provides applications over the 
cloud for the users that provides certain functions 
for the users through their web browsers. For 
example, the QuickBooks provides accounting 
services for the corporations [4,7,8]. 

The data deduplication and cloud computing can 
work together for reducing the expenses of: storage, 
processing, and transmission of data. Because, the 
data deduplication removes the redundant copies of 
data, among the data of clients at the cloud. And, 
among the data of the applications that are deployed 
at the cloud. Consequently, the data deduplication 

HYBRID DATA DEDUPLICATION TECHNIQUE IN 
CLOUD COMPUTING FOR CLOUD STORAGE 

 

HESHAM ABUSAIMEH 1, OMAR ISAID 2 
1Associate Professor of Computer Science, Middle East University, Amman, 11831 Jordan.  

habusaimeh@meu.edu.jo, hesham@abusaimeh.com 
2 Developer at Damacsoft, Amman, Jordan. 

 
E-mail:  1habusaimeh@meu.edu.jo, hesham@abusaimeh.com, 2omar.isaid@damacsoft.com   



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7070 

 

in cloud computing minimizes the cost of cloud 
services on the clients, and maximizes the revenues 
of cloud services provider. And so, nowadays data 
deduplication in cloud computing became hot topic 
and has received increasing attention from the 
researchers and industries [1,9].  

The data deduplication has different categorization, 
that each categorization represents certain criteria at 
the data deduplication. First, the data deduplication 
can be categorized into post process and in-line data 
deduplication. At the post process data 
deduplication, the data is stored at the storage 
devices before the data deduplication. While, at the 
in-line data deduplication the data is stored in lining 
space for deduplication. And, after finishing the 
deduplication the data can be stored at the storage 
devices. Second, the source and target data 
deduplication, at the source data deduplication the 
redundant data are removed at the file system of the 
client. While, at the target type the data are 
generated at the client side and the data 
deduplication occurs at the servers of the server 
side. Finally, the most common categorization, is 
dividing the data into: file level, fix size chunk 
level, and variable size chunk level deduplication 
[1,10].  

The file level data deduplication removes the 
redundant files at the data, and the chunk level 
deduplication divides the files into chunks and 
remove the redundant chunks. At the file level 
deduplication, a hash value is calculated for each 
file. The hash value is calculated using hash 
algorithm like: secure hash algorithm (SHA) and 
message digest five (MD5). And, the hash value is 
used for uniquely identification of the file at the 
system. And so, the data deduplication can seek for 
redundant files and replace it with references for 
original files. Although, the file level deduplication 
utilizes less memory space and consumes less 
execution time than the chunk level deduplication, 
the chunk level deduplication has better effectivity 
in reducing the size of data. Moreover, the file level 
deduplication cannot detect the incremental 
changes at the same file, where if two files differ 
only in few bytes the file level deduplication 
considers these files are completely different files 
[1,2].    

The data deduplication constructs an index that 
contains the necessary information for seeking the 
duplicated file or chunk, at file level deduplication 
the index consists mainly of hash values of the files 
that already stored at the system. But, at chunk level 
deduplication the hash value of a file must reference 

the hash values of the chunks that belongs to this 
file [1,2].  

The chunk level deduplication raised for provide 
better effectivity in reducing the size of data than 
file level deduplication. The chunk level 
deduplication aims for detecting the redundant 
chunks among different files at the data. The chunk 
level deduplication divides recent file into chunks, 
and calculates the hash value of each chunk. After 
that it compares the hash value of each chunk with 
hash values of chunks of the files that already stored 
at the system [1,10].  

At the beginning fix size chunk level deduplication 
is used. And, later on it is replaced with variable 
size chunk level deduplication. Since, fix size 
chunk level deduplication suffers from the shifting 
problem, which reduces its effectiveness in 
reducing the size of data. The variable size chunk 
level deduplication uses more complex algorithms 
in dividing the files into chunks for avoiding the 
shifting problem. Although, variable size chunk 
level deduplication has better effectivity in reducing 
the size of data, it utilizes more memory and higher 
execution time than file level and fix size chunk 
level deduplication [1,10].  

The file level and chunk level deduplication show 
differences in: effectivity of reducing the size of 
data, execution time of data deduplication, and 
memory utilization. The file level data 
deduplication is effective in removing redundant 
copies of files. And, the chunk level deduplication 
shows better effectivity in reducing the size of data, 
when the files at the data are related to each other. 
But, it consumes higher size of memory, requires 
longer execution time, and requires higher 
processing power. The variable size chunk level 
deduplication has better effectivity in reducing the 
data size from fix size chunk level deduplication. 
Nevertheless, fix size chunk level deduplication 
consumes lower resources and execution time for 
data deduplication [1,10,11].  

This paper proposed a hybrid data deduplication in 
cloud computing, that is powerful data 
deduplication method contains different types of 
data deduplication to satisfy the requirements of 
storage large volume and diverse types of data that 
belongs to different types of clients and 
applications. The proposed hybrid data 
deduplication contains two different hybrid 
subsystems, the hybrid file variable size chunk level 
data deduplication (FVCD), and hybrid file fix size 
chunk level data deduplication (FFCD). Each 
hybrid subsystem uses file level deduplication and 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7071 

 

chunk level deduplication. Where, file level 
deduplication increases the performance of the 
system by avoiding the chunk level deduplication 
for recent files that are redundant files.  

The rest of this paper is organized as follows: 
section 2 for related work that plays a major role in 
raising of proposed system. Section 3 includes the 
details about the proposed system. Where, section 
3.1 is architecture of the proposed system that 
describes the layers of proposed system. Section 3.2 
is data flow about hybrid deduplication inside the 
proposed system. And, section 3.3 discusses the 
Rabin-Karp variable size deduplication that is 
rolling hash algorithm used the Rabin-Karp 
algorithm for defining the boundaries of variable 
size chunks. Finally, the section 4 discusses 
conducted simulations for testing and obtaining 
results from the simulator of the proposed system. 
The conclusion of the work is in Section 5.  

2. RELATED WORK 
 

A deduplications systems were proposed 
for reducing size of data on the storage device, and 
reducing the number of bytes that can be transferred 
over the networks. The previously proposed data 
deduplication systems aimed to provide new 
architectures and schemas for solving certain 
problems, and satisfying certain business demands. 
For example, a deduplication system can be 
proposed for enhancing the performance of data 
deduplication, or improving the effectivity of 
private clouds that owned by certain enterprise. 

 
2.1 Reducing Size of Data on Storage Devices 
Although, the tape libraries with data deduplication 
is widely used nowadays for the storage of backup 
data. The disk-based backup appliances with 
deduplication compete the tape libraries with data 
deduplication. Because, they provide better 
execution time and more efficient utilization. 
Moreover, restoring data back at disk-based backup 
appliances is less time consuming, and more quick 
and efficient [9,11]. 
The data domain deduplication file system (DDFS) 
to avoid disk bottleneck is discussed at the reference 
[11], the published paper aims to avoid the 
bottleneck of back up jobs to increase the execution 
time of data deduplication at disk-based backup 
devices with deduplication. The published paper 
provided a system consists of five layers, and uses 
the variable size chunk level deduplication [9,11].  
 
The Figure 1 shows the architecture of data domain 
file system. Where, each layer at the architecture 

responsible of certain function. The first layer is the 
interface layer that has multiple access protocols for 
receiving different types for data, the protocols at 
this layer include: network file system (NFS), 
common internet file system (CIFS), and virtual 
tape library (VTL). The second layer is the file 
service layer that is responsible on the file services 
like metadata management. The third layer is the 
content layer that divides the data stream into 
segments. The segment store layer is responsible for 
chunk level deduplication, it detects the duplicate 
chunks and keep track of references, and 
constructing the file recipe to restore the data 
stream. Which, includes mapping the bytes to the 
chunks and making a reference between each data 
block and its chunks. Moreover, the proposed 
system compresses the data using the Ziv-Lempel 
algorithm [9,11].  

 
Fig. 1: Architecture Of Data Domain File System 

 
After filling a container with the unique chunks the 
container is appended to the storage layer, and the 
indices list is updated to map each chunk to the 
contained container. The last layer is the storage 
layer that contains the containers of the data and the 
container manager, the containers contain the data 
that are ready for the storage. And, the container 
manager is responsible of allocation, de-allocation, 
reading and writing of data, and providing reliable 
storing for the containers [10,12].   
 
The schema redundancy elimination at block level 
(REBL) is published at [13], the REBL schema is a 
combination of variable size chunk level 
deduplication and delta-encoding via resemblance 
detection (DERD). The variable size chunk level 
deduplication removes the duplicated chunks. After 
that, the DERD responsible of removing unused 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7072 

 

data that are scattered through the chunks. 
Although, this schema provides better effectivity in 
reducing the data size, it consumes relatively higher 
execution time and resources [13,14]. 

The extreme binning data deduplication system is 
discussed at published paper [15], which is a 
scalable data deduplication system proposed for 
nontraditional backup system. The non-traditional 
backup system consists of different types of devices 
that have dynamic size, and the data are distributed 
on these devices. The aim of this research is 
providing new design of data deduplication that 
avoids the bottlenecks on the non-traditional 
backup system and provides better performance and 
throughput. 

The index of extreme binning consists of two parts, 
to avoid loading all the records of the index at the 
memory without a real demand. The index of 
extreme binning consists of two tiers the primary 
index and the mini secondary index. The primary 
index contains the representative chunk index of the 
file, the hash value of the file, and the pointer to 
mini secondary index or the (bin). The pointer at the 
primary index refers the records at the mini 
secondary index that belongs to the chunks of the 
file and is the recipe for the file reconstruction [15]. 
The enhanced dynamic whole file deduplication 
(DWFD) is discussed at [16], that is a contribution 
for improving the efficiency of extreme binning and 
make it more appropriate for data backup at private 
cloud. Where, the private cloud has fewer 
resources, and it needs more efficient methods for 
utilization of resources. The DWFD suggests 
dividing the primary index into parts, each part is 
dedicated for data of a specific user. When, new 
stream of data is received for backup, the system 
does not need to check all the records at the index 
for finding a file’s duplication. But, it needs to 
check the parts of index that belongs to the user of 
the newly incoming data stream. 
 
A method of object-based deduplication is 
discussed at [11], that models the files of the data 
into a set of objects. And, applies the hash algorithm 
on each objects to obtain the addressable and unique 
identification value for each object that called 
(Object_ID). The provided method aims to remove 
the redundant data between the data flow that may 
not have a large space of repetition. Indeed, it was 
emphasized that the proposed method showed 
better efficiency for deduplication the unstructured 
data, unrelated data, and compound files more than 
the file level and chunk level deduplication. 

Because, these types of data not have a lot of 
commonalities.  

The method of object-based deduplication consists 
of three main modules that are: file parser, object 
extractor, and duplicate object resolver. The file 
parser parses the data into primitive and compound 
objects, the primitive object is a representation of 
basic data structure such as image. And, the 
compound object is combination of more than a 
primitive object. The file parser defines the 
boundaries of the primitive objects at the compound 
object to be ready for extraction by object extractor. 
The object extractor extracts the primitive object 
from compound object using a recursive process, 
and creates the (Object_ID) for each primitive 
object using SHA1 algorithm. After that the object 
extractor classifies the object at the data depending 
on its type and size. Moreover, the method of 
object-based deduplication introduced the object 
size threshold to facilitate removing the redundant 
bytes that scattered among different objects. 

The published paper introduced the duplicate object 
resolver that is responsible of metadata 
management and reference an object at the storage. 
The object resolver organizes the metadata of 
objects at B+ tree, that each node contains metadata 
about certain object and reference of this object at 
the storage. The metadata of an object includes the 
(ObjectID) and information about the contents of 
the object, which includes the size and type of data. 
Moreover, the (ObjectID) contains necessary 
information about the size of the object, and for 
locating the object at the storage. 
 
2.2 Redundancy Elimination from Network 

Traffic 
The World Wide Web (WWW) is a distributed 
system that has a lot of data shared by a huge 
number of users, the number of users that are using 
the WWW is increasing rapidly. Because, the 
WWW an efficient method for accessing large size 
and wide range of resources. And so, the congestion 
and the overloading are common problems in 
WWW.The data deduplication methods can be 
employed to improve the web performance and 
reduces the download time for the user [18, 19]. 

An architecture for analyzing the effectivity of web 
proxy cache in reducing the redundancy at web 
traffic is presented at [20]. And, it provided the 
protocol-independent technique for eliminating 
redundant network traffic, and covering the 
shortage of web proxy cache. The provided protocol 
is independent from the application protocol of the 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7073 

 

data flow, the provided protocol can support FTP 
data flow, streaming media, emails, and others. 

 
Fig. 2: Shared Cache Architecture Of RE 

 
The Figure 2 represents the shared cache 
architecture of the provided system, that consists of 
two parts one is near to the server and the other is 
near to client side. The provided protocol is 
implemented on the cache systems for 
deduplication the redundant network traffic. The 
protocol produces a representative fingerprint for 
each packet. Where, the representative fingerprint 
represents the content of a packet and can define the 
similarities between two packets. And, these 
representative fingerprints form the index at the 
cache. Moreover, the data at the packets are 
identified using fingerprints that are integers 
generated using one-way hash function. The 
repeated regions at data stream are marked using 
anchors that identifying the start and end of 
repeated regions in data stream. The repeated 
regions are sent to other cache side in the form of 
encoding token, and the other side decode the data 
to be available for the users. Although, the 
independent protocol for data deduplication is 
independent and can support any type of application 
protocol, it is not a replacement for the proxy cache 
technique. Because, it consumes more computation 
power and memory [20].  
The provided chunk and object level deduplication 
is provided at the reference [17], that uses the proxy 
cache and protocol-independent technique for 
eliminating redundancy (RE) at the same system. 
The published paper uses both systems at the same 
system for many reasons. First, the proxy cache 
cannot support all the objects of http protocol, 
where some objects and uncatchable according to 
RFC 2616 that belongs to http protocol. Second, the 
RE provides better efficiency and can detect 
redundant bytes that scattered among more than a 
chunk. Third, reducing the consuming of memory, 
where the intensive data processing of the RE is not 
necessary for some data flow. Forth, the RE can be 
deployed to work with the proxy cache, without 
significant modification at the WAN optimization 
system.  
 

 
Fig. 3: Architecture Of Hybrid Redundancy Elimination 

For WAN Optimization 
 

The Figure 3 shows the architecture of the system 
that consists from the encoding and decoding 
components. The architecture of the system consists 
of: encoding middle box, decoding middle box, and 
scheduler. The proxy cache is implemented using 
the Squid, and it has additional features for 
increasing the system performance. Moreover, the 
RE at the system is modified version of legacy RE. 
Where, new methods are implemented for 
improving RE performance. At the following there 
are more details about encoding components: 
A-Scheduler 
The scheduler works on multiple layers to define if 
the received object is cacheable or not, it checks the 
TCP buffers for the connections with port 80. The 
cacheable objects are sent to proxy cache and not 
cacheable objects are sent to RE module, and the 
remaining TCP/UDP traffic is sent either for the RE 
module that shows better saving in this context or 
leaves them without deduplication [16]. 
B-Proxy Cache Module  
The proxy cache is responsible of caching the 
commonly requested objects, that it can prevent 
downloading the same content more than one time. 
The http proxy cache saves the web object at 
persistent storage, and saves the hash value of 
object and additional metadata in RAM.  This 
module has additional feature called partial 
downloading, it saves the fragments of the object 
that is commonly requested instead of saving the 
whole object. Also, the http cache module has 
additional optimization feature related to the http 
206 partial content response. The proxy cache can 
cache the fragments of the object and parse the 
range offset to find the duplicated objects [16]. 
C-The RE Cache Module  
The protocol-independent technique for eliminating 
redundancy or RE is already discussed at this 
section. At the legacy RE the whole object is loaded 
in the memory and the hashing starts byte-by-byte, 
in order of increasing the performance the RE at the 
system has circular queue on application layer for 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7074 

 

each TCP connection. Where, the content of data is 
stored at persistent storage and the hash values that 
represent the bytes at the data stream are stored at 
the RAM. 
 
3. PROPOSED SYSTEM 
 

3.1 Architecture of Proposed System 
The proposed system consists of three layers the 
interface of the data, data deduplication layer for 
deduplication and restore data back, and the last 
layer for saving the data and metadata after 
deduplication or reading the data and metadata for 
viewing or updating the data. The Figure 4 shows 
the layers of the proposed system. 

 

Fig. 4: Architecture Of Proposed System 

 The interface of data receives stream of data, and 
stores the bytes of stream at storage devices of cloud 
in form of files. The deduplication module at the 
second layer analyzes the data and performs the 
data deduplication that transforms the form of data 
and generates the metadata and recipes for 
reconstruction the data later. The third layer is the 
engine that responsible of saving the data and 
metadata after deduplication. On the other hand, the 
process that needs to access the data send request to 
interface of data that must be able to send the 
request to second layer. Which, sends the required 
parameters for third layer. The third layer loads the 
related metadata for loading the requested data, that 
are restored back using the data reconstruction 
module at second layer. Finally, the interface must 
be capable to send the data back for the user or 
process.  
The interface of data reads the data in the form of 
bytes, and stores these bytes in form of files. The 
data deduplication module at the second layer reads 
the bytes of each file for defining the boundaries of 
chunks at these bytes, and during that the system 
generates metadata that will be used later by the 
data reconstruction module. The last layer saves the 
transformed bytes and keep these bytes 

distinguished in form of chunks. And, it saves 
metadata into xml files that plays major role in 
distinguishing saved bytes in form of chunks and 
reconstruction the data back.  When, the user 
requests the data the last layer retrieves the data and 
metadata into a set of bytes and the reconstruction 
module at the second layer restores the bytes to its 
original form and sends these bytes to interface of 
data. Which, sends the bytes of data to the processes 
that requested the data.  
 
3.2 Data flow at deduplication 
This section describes the flow of data during the 
data deduplication, and shows main components 
and processes at the proposed system. First, file 
level deduplication checks a recent file from data 
against duplication, if the file is redundant the 
deduplication sets the reference to unique file 
instead of the file. Otherwise, the deduplication 
sends the file to the scheduler, that uses the user’s 
preferences for determining the suitable type of 
chunk level deduplication of the file. The chunk 
level deduplication checks the chunks of the file 
against duplication, and moves to the next file at the 
data. This data flow is repeated for all files at the 
data.  
The Fig. 5 shows detailed flow chart of the 
deduplication system. At the beginning data 
deduplication reads a file from the recent data, and 
creates the FileId of the file using the SHA1 
algorithm. The file level deduplication organizes 
the FileId of the unique files that already stored at 
the system to form the index, and look up for file 
deduplication using the newly created FileId of the 
file. If the file was stored before at the system, the 
file is considered a unique file and is saved at the 
system. Otherwise, the file is considered a unique 
file and sent to scheduler that sends the file to the 
appropriate chunk level deduplication. 

The fix size chunk level deduplication divides each 
file into fix size chunks, and the size of a chunk can 
be resized to accommodate with user demands. 
Where, there is an inverse relation between the size 
of a chunk from side and effectivity of reducing data 
size and reducing utilization of memory from 
another side. After tuning the chunk’s size of fix 
size chunk level deduplication, it can provide better 
execution time than variable size chunk level 
deduplication especially it uses simpler chunking 
algorithm. On the other hand, the variable size 
chunk level deduplication divides each file into 
variable size chunks using rolling hash algorithm 
that uses complex multiplication similar to the 
concept of Rabin fingerprint that is used at Rabin 
Karp string searching algorithm. 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7075 

 

The chunk level deduplication divides each file into 
chunks, and calculates the uniqueId for each chunk. 
At the fix size chunk level deduplication, the 
uniqueId of each chunk consists of 
(ChunkOrder.FileId.ChunkId). The (ChunkOrder) 
represents the order of the chunk at its file. Where, 
at fix size chunk level deduplication the unique and 
duplicate chunks can be at the same file. Since, the 
size of most chunks are the same. But, the uniqueId 
of a chunk at variable size chunk level 
deduplication is (FileId.ChunkId). The chunk level 
deduplication uses the uniqueId of each chunk at the 
file to look up at the index for seeking duplication. 
The index of each chunk level deduplication 
consists of the hash values (FileId) of all files at the 
storage, each FileId at the index references the 
information about the chunks of this file.  

The chunk level deduplication looks up at the index 
to check if a chunk at the file is duplicated with 
another chunk belongs to another file that already 
stored at the system. The duplicated chunk is 
replaced with reference to the unique chunk, and 
unique chunk is prepared for storage after the 
deduplication. After that, the suitable metadata are 
prepared depending on the type of chunk. And, after 
checking all the chunks of newly incoming file, the 
FileId and information of this file is added to the 
index. And, the data deduplication moves to next 
file. 

Finishing the deduplication of all files at the newly 
incoming data, the bytes of data are sent for lower 
layer to be ready for storage. Which, stores the data 
in the new form, and the metadata that are necessary 
for reconstruction the data later on.  

 
Fig. 5: Flow Chart At Hybrid Data Deduplication 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7076 

 

3.3 Rabin-Karp variable size chunking 
[21][22] 

The Rabin-Karp algorithm is string searching 
algorithm that is developed at 1980 by M. O. Rabin 
and R.M. Karp. The algorithm runs in time 
proportional to M+N, and the worst case is O(MN). 
There are algorithms have better worst case than the 
Rabin-Karp algorithm. The Rabin-Karp algorithm 
is used for solving the string matching problem. The 
string matching is the problem of finding the 
occurrences of certain substring in document(s), 
and it is a common problem in text editors. Also, 
the string matching problem can be employed in 
other fields like the searching using internet search 
engines. Where, the search engine is looking for 
certain substrings at relevant webpages in response 
to user query. 
The Rabin-Karp searches for certain substring 
(pattern) occurrences at string, and calculates the 
hash value of this pattern. After that, the algorithm 
keeps moving on all substrings at string until it finds 
a substring has hash value similar to the hash value 
of the pattern. Indeed, the Rabin-Karp is fingerprint 
algorithm that uses the Rabin fingerprint for 
calculating hash value of each substring. Where, the 
hash value (integer) represents M-character 
substring. And, it uses the hash values of substrings 
in the searching process. Where, substrings that 
have similar hash value are equal to each other. 
Unless, there is a collision.    

The Rabin-Karp algorithm is modified to become a 
solution for variable size chunking, the Rabin-Karp 
variable size chunking (RKVC) slides over the data 
stream for finding a set of bytes that has accepted 
hash value to become a variable size chunk. Where, 
if thirteen LSB of binary format of hash value is 
zero, the hash value is accepted and a new variable 
size chunk is found. 
 
 First, the RKVC defined an initialized window 
from the data stream that can be from byte at index 
0 to byte at index 1023 (1024 bytes). After that 
RKVC calculates the hash value of the initialized 
window, the hash value of the initialized window is 
calculated depending on the following: 

݄ሺݓሻ ൌ ݄ሺݐሻ  ݄ሺݐଵሻ  ݄ሺݐଶሻ  ⋯
݄ሺݐ௦ሻ	………eq. 1 

ݐ݈ݑ݉ ൌ ሺ0ሻݐ݈ݑ݉  ሺ0ሻݐ݈ݑ݉ ∗ ݍ ݉ݐ݈ݑሺ1ሻ ∗ ݍ 
⋯݉ݐ݈ݑሺݏ െ 1ሻ ∗  eq. 2 ..… ݍ

݄ሺݐሻ ൌ   …. eq. 3ݐ

݄ሺݐାଵሻ ൌ ሺ݄ሺݐሻ ∗ ሻݍ   ାଵ …. eq. 4ݐ

ሺ0ሻݐ݈ݑ݉ ൌ1 …… eq. 5 

ݓ ∶  ݓ݀݊݅ݓ	݀݁ݖ݈݅ܽ݅ݐ݊݅

ݐ ∶  0	ݔ݁݀݊݅	ݐܽ	݁ݐݕܾ

:ݏ  ݓ݀݊݅ݓ	݈݀݁݅ܽ݅ݐ݊݅	݂	݁ݖ݅ݏ

:ݍ  	ݎܾ݁݉ݑ݊	݁݉݅ݎ	݈݃݊

If the hash value of the initialized window is 
accepted to form new variable size chunk. If the 
hash value of the initialized window is not accepted, 
the algorithm adds new byte for the window and 
recalculate the hash value depending on the 
following:  

݄ሺݖሻ ൌ ሾ݄ሺݓሻ െ ൫݉ݐ݈ݑ ∗ ݄ሺݐ௦ାଵሻ൯ ∗  ሿ ……eq.6ݍ

h(z): hash value of initialized window after adding 
new byte 

The algorithm keeps adding bytes to the window 
one by one, and recalculating the hash value after 
adding each byte, until finding a set of bytes that has 
accepted hash value. At this point the window is 
considered a new variable size chunk. After that an 
empty window is created, and a new byte is added 
to this empty window. And, the hash value of this 
window is calculated using previous hash value, 
and the algorithm keeps adding bytes to the window 
one by one until find accepted variable size chunk. 
This algorithm keeps working in this way until 
reaching to the last byte at data stream of the file.  
 
4. SIMULATION 

 
A simulator was designed and developed 

for testing the proposed system that is developed 
using: Java programming language, IDE NetBeans 
8.1 RC. The simulation was conducted on Dell 
laptop: core i7,2.50 GHz,8 GB RAM,1 TB HDD, 
and has Windows 7 professional 64-bit operating 
system. 

 
Two test cases were prepared for acquiring results 
from the simulator, each test case has a set of 
directories. And, each directory has a set of files that 
either related or not related to each other, the data 
types of files at the directories can be: pictures (png, 
jpeg), documents, and audio and video files 
(3gp,MP4). These files are retrieved using 
advanced Google search, and the relations between 
the pictures are created using the Paint applications 
and between the audio and video files using the 
WonderShare video editor. Each test case is used 



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7077 

 

for conducting three scenarios. First scenario 
compares between FVCD and FFCD when chunk’s 
size is 500 bytes, at second scenario the chunk’s 
size of FFCD was increased to 1 KB, and at third 
scenario the chunk’s size was increased to 1 MB. 
The results of each scenario are organized into a 
table that are represented using a curve chart to 
show the differences between the subsystems 
clearly.  

A set of procedures were specified for obtaining the 
results from simulator using the test cases, and 
deriving the evaluations from these results. The data 
deduplication is carried out for the directories at a 
test case one by one, and after finishing the 
deduplication of a directory the data at the system 
and the execution time of deduplication were 
recorded. After that the testing process moves to the 
next directory at the test case. Finishing the 
deduplication of all directories at a test case, the 
difference between the original size of data and size 
of data after deduplication is used for calculating 
the effectivity of the deduplication.  The following 
are the procedures for testing the system: 

1. Choose files at a directory of test case for 
deduplication 

2. Finishing the deduplication of the directory, the 
execution time of the deduplication process 
and the size of data at the deduplication system 
are recorded.  

3. The efficiency ratio of the deduplication is 
derived using the following equations: 
ሺܣ െ ሻܤ ൌ ܼ  ……………eq. 7 

݅ݐܴܽ	ݕ݂݂݊ܿ݁݅ܿ݅ܧ ൌ 	 ቀ



ቁ ∗ 100	% …. eq.8   

ܣ ∶  		݊݅ݐ݈ܽܿ݅ݑ݀݁݀	݁ݎ݂ܾ݁	ݏ݈݂݁݅	݂	݁ݖ݅ݏ	
ܤ ∶  ݊݅ݐ݈ܽܿ݅ݑ݀݁݀	ݎ݁ݐ݂ܽ	ݏ݈݂݁݅	݂	݁ݖ݅ݏ
ܼ ∶  	ܽݐܽ݀	ݐ݊ܽ݀݊ݑ݀݁ݎ	݂	݁ݖ݅ݏ

4. The previous points are repeated until finishing 
the testing of FVCD and FFCD using the test 
cases.  

5. The results of testing the FVCD and FFCD 
were organized into a table of five columns. 
The first column represents the order of the 
directories at testing case, the 2nd and 3rd 
columns represent the results of testing FVCD. 
And, the 4th and 5th columns are the results of 
FFCD. Notice that record of headers is not 
considered a record. 

6. The tables that contain the results of testing the 
simulator were represented into curve chart, 
that have two curves a curve represents the 
result of testing FVCD and another curve for 
the results of testing FFCD. The X axis at the 
curve chart represents the size of data at the 

system after deduplication, and the Y axis 
represents the time of execution for 
deduplication of files at a directory. Each curve 
at curve chart consists of a set of separated 
points, each point represents the results of 
deduplication files at a directory in a test case. 
Generally, first scenario did not show 
promising results, where the results of testing 
FFCD was not practical. Since, at first scenario 
of the test case A the FFCD showed lower 
effectivity in reducing the size of data than 
FVCD. And, at the first scenario of test case B 
the FFCD showed much higher execution time 
from FVCD. At the second scenario after 
increasing the chunk’s size of FFCD into 1 KB, 
the execution time of FFCD becomes better. 
But, nearly no improvement on the effectivity 
of reducing the size of data. Finally, at the last 
scenario after increasing the chunk’s size of 
FFCD was promising for hybrid data 
deduplication system. Where, FFCD showed 
better execution time more than the FFVD. 
And, FVCD showed better effectivity in 
reducing the size of data more than FFCD. 

4.1 Scenarios for testing using test case A 
The test case A consists of eleven folders, and the 
execution time and size of data is recorded after 
the deduplication of each folder. 

 
Table 1. Size And Accum. Size For Directories At Test 

Case A 

# 
Original size 

(MB) 
Accum Original size 

(MB) 
1 4.03 4.03 
2 6.4 10.43 
3 14.4 24.83 
4 20.8 45.63 
5 64.1 109.73 
6 2.09 111.82 
7 0.552 112.372 
8 34.3 146.672 
9 36.4 183.072 

10 41 224.072 
11 49 273.072 

 

The table 1 represents the size of each directory, and 
accumulation (accum.) size of directories at the test 
case A.  



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7078 

 

 

Fig. 6 Curve Chart Of Results At First Scenario In Test 
Case A 

 

The curve chart at Figure 6 shows that FVCD has 
better efficiency ratio and slightly better execution 
time. Where, it is efficiency ratio is better with 5% 
and its execution time is better with nearly 3 s. The 
efficiency ratio of FVCD is 50% and average 
execution time for deduplication the directories at 
the test case is 90 s. While, the efficiency ratio of 
FFCD is 45% and average execution time nearly 93 
s.   

Table 2. Results Of FFCD With 500 Bytes And FFCD 
With 1 KB 

# 
FFCD 500 

bytes 
Time 

FFCD 1 
KB 

Time 

1 2.01 2.7 2.01 1.3 
2 8.41 12.11 8.41 5.1 
3 16.5 15.62 16.5 6.13 
4 16.5 1.2 16.5 0.6 
5 60.1 143 60.2 59.1 
6 62 21.3 62.2 10 
7 62.5 65.8 62.7 33.24 
8 96.2 230.5 96.5 85.55 
9 96.2 29.7 96.5 16.5 

10 133 324.4 133 131.35 
11 150 173 151 75.51 

AVG  92.7   
 

The table 2 represents comparison between FFCD 
when chunk’s size is 500.And, FFCD after 
increasing the chunk’s size to 1 KB. 
 

 

Fig. 7 Curve Chart Represents Comparison Between 
FFCD With 500 Bytes And FFCD With 1 KB 

The Figure 7 represents the comparison between 
FFCD with chunk’s size 500 bytes and FFCD after 
increasing the chunk size to 1 KB. The curve chart 
shows obviously that increasing the chunk’s size 
reduce the execution time of the data deduplication.  

Table 3. Comparison FFCD 1 MB And FVCD 

# 
Accum 

size (MB) 
Time 

(s) 
Accum 

size (MB) 
Time 

(s) 
1 2.01 0.53 2.01 0.18 
2 8.41 1.36 8.41 0.37 
3 16.5 1.93 16.5 0.81 
4 16.5 0.81 16.5 0.64 
5 55 24.17 80.7 2.2 
6 57 20.02 82.8 0.74 
7 57.4 75.52 83.3 3.92 
8 91 175 117 6.47 
9 91 60.21 177 3.66 

10 124 418.68 157 11.29 
11 137 213 187 6.85 

 

The table 3 represents the results of comparison 
FVCD, and FFCD after increasing the chunk’s size 
to 1 MB. 

 

Fig. 8 Curve Chart Represents Comparison Between 
FVCD And FFCD With 1 MB 

0

50

100

150

200

250

300

350

400

450

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

S
IZ
E 
(S
)

SIZE (MB)

FVCD FFCD 500 bytes

0

50

100

150

200

250

300

350

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

TI
M
E 
(S
)

SIZE (MB)

FFCD 500 bytes FFCD 1 KB

0

50

100

150

200

250

300

350

400

450

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

T
IM

E
 (
S
)

SIZE (MB)

FVCD FFCD 1 MB



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7079 

 

 
The Figure 8 shows obviously that FFCD with 1 
MB chunk’s size has lower execution time than 
FVCD. While, FVCD shows better effectivity in 
reducing the size of data. 

The efficiency of FFCD is less nearly with 18% and 
its execution time faster with 30 times. The 
efficiency ratio of FVCD is 50% and average 
execution time is 90, while it is 32% for FVCD and 
average execution time nearly 3.3 s. 
4.2 Scenarios for testing using test case B 
The testing of hybrid subsystems using test case A 
showed promising results for hybrid system. The 
hybrid FVCD showed better capability of reducing 
data size, and hybrid FFCD showed better 
execution time at third scenario when chunk’s size 
becomes 1 MB. And, the effectivity of 
deduplication increased when there are more files 
related to each other and from same data type. 

Table 4. Size And Accum. Size Of Directories At Test 
Case B 

# Original size (MB) Accum size (MB) 
1 15.5 15.5 
2 26 41.5 
3 52.7 94.2 
4 38 132.2 
5 200 332.2 
6 138 470.2 
7 20.2 490.4 
8 11.6 502 
9 41.1 543.1 

10 210 753.1 
 

The table 4 shows the size and accumulated size of 
directories at test case B, the test case B consists of 
10 directories that its size higher that the size of 
the directories of test case A and their file more 
related to each other.    

Table 5. Results Of First Scenario Test Case B 

# 
Accum 

size (MB) 
Time 

(s) 
Accum 

size (MB) 
Time 

(s) 
1 10.5 1.68 10.5 24.75 
2 10.5 0.44 10.5 0.56 
3 10.5 0.72 10.5 0.7 
4 33.3 3.83 32.8 58.62 
5 33.3 4 33 3.3 
6 149 27.84 94.8 385.57 
7 164 3.75 115 151.82 
8 173 27.69 125 142.57 
9 214 52.8 165 401.8 

10 214 19.89 165 43.6 

 

The table 5 shows the results of testing FVCD and 
FFCD, when the chunk’s size is 500 bytes  
 

 

Fig. 9 Curve Chart Is Results Of First Scenario In Test 
Case B 

 
The Figure 9 represents the results of comparison 
FFCD and FVCD, that it shows the FFCD has better 
capability in reducing size of data than FVCD. But, 
this is not a justification to use this type at hybrid 
system. Because, its execution time much higher 
than FVCD. 

At this scenario of test case B, the FFCD shows 
better efficiency and lower average execution time, 
it is efficiency ratio was better with 6% and FVCD 
is faster nearly with 8 times. The efficiency ratio of 
FVCD is 72% and average execution time is 14.3 s. 
While, efficiency ratio of FFCD is 78%. And, the 
average execution time is 121 s.  

Table 6. Results Of Third Scenario At Test Case B 

# 
Accum 

size 
(MB) 

Time(s) 
Accum 

size 
(MB) 

Time(s) 

1 10.5 1.68 11.7 0.64 
2 10.5 0.44 11.7 0.51 
3 10.5 0.72 11.7 0.93 
4 33.3 3.83 37.3 1.47 
5 33.3 4 37.3 3.74 
6 149 27.84 160 4.62 
7 164 3.75 181 1.02 
8 173 27.69 192 2.61 
9 214 52.8 233 5.12 

10 214 19.89 233 7.37 
 

The table 6 shows the results of the comparison 
FVCD and FFCD with chunk’s size 1 MB.  The 
FFCD has better execution time than FVCD. And, 
the FVCD has better capability in reducing the size 
of data. 

0

50

100

150

200

250

300

350

400

450

0 50 10 0 1 5 0 20 0 2 50

FVCD FFCD 500 bytes



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7080 

 

 

Fig. 10 Curve Chart Of Results Of Third Scenario At 
Case B 

This Figure 10 shows the FVCD has better 
efficiency and higher execution time. And, the 
FFCD has better performance and lower efficiency. 
At this scenario FFCD has lower efficiency ratio 
and execution time. The efficiency ratio of FVCD 
is better with 3% and FFCD faster nearly with five 
times. The FVCD has efficiency ratio 72% and 
average execution time nearly 14.3 s. And, the 
FFCD has efficiency ratio 69% and average 
execution time nearly 2.8 seconds. 

5. CONCLUSION 
The hybrid data deduplication for cloud 

computing is designed for satisfying the diverse 
demands of applications and users at cloud of cloud 
service providers. The design of hybrid data 
deduplication got benefits from different type of 
data deduplication types to produce a powerful data 
deduplication system. Using the file level with 
chunk level deduplication can improve the 
execution time of data deduplication. When, the 
data has a lot of duplicated files. Moreover, the 
composition of file level and variable size chunk 
level deduplication is better for the users and 
applications that can tolerate higher execution time 
for having better effectivity in reducing the size of 
data. The FFCD shows better results than expected. 
Where, the FFCD showed effectivity nearly similar 
to FVCD when the chunk’s size is 500 bytes. But, 
at test case B it showed much higher execution time 
than FVCD. The promising results appeared when 
the chunk’s size of FFCD increased to 1 MB. The 
FVCD uses more complicated algorithm for chunk 
level deduplication for avoiding the shifting 
problem at FFCD. Which, means more processing 
overhead. Moreover, at FFCD smaller the chunk’s 
size means more processing and higher execution 
time. So, the chunk’s size of FFCD and parameters 
at FVCD must be tuned, until the hybrid 
deduplication system can have two different 
subsystems with different characteristics. Which 
can satisfy diverse requirements of users and 

applications. Therefore, the research objective has 
been achieved. 
 

REFERENCES  

[1] Vikraman,R.,Abirami,S.,A Study on Various 
Data Deduplication Systems, International 
Journal of Computer Applications 
,International Journal of Computer 
Applications (IJCA),Volume 94 , Number 
4,2014,Pages 35-40. 

[2] Guo,F.,Efstathopoulos,P.,Building a high-
performance deduplication system, USENIX 
annual technical conference, (Portland in 
U.S.A,2011), Publisher: USENIX 
Association Berkeley, Publication Date:2011-
06-15,Pages:1-14 

 
[3] NIST organization, The NIST Definition of 

Cloud Computing (September 2011), 
retrieved at 2015 
from:http://nvlpubs.nist.gov/nistpubs/Legacy
/SP/nistspecialpublication800-145.pdf 

[4] Kulkarni, G., Waghmare, R., Palwe, R., 
Waykule, V., Bankar, H., Koli,K., Cloud 
Storage Architecture,7th International 
Conference on Telecommunication Systems, 
Services, and Applications (TSSA),(Bali in 
Indonesia,2012),Pages : 76-81 

[5] Liang,Q.,  W.,Yuan-Zhuo, ,Z.,Yong-
Hui,Resource Virtualization Model Using 
Hybrid-graph Representation and Converging 
Algorithm for Cloud Computing,International 
Journal of Automation and Computing, 
December 2013, Volume 10, Issue 6, pp 597–
606  

[6] Amazon Web Services, the web site link is 
retrieved at 2015 from: 
https://aws.amazon.com/ 

[7] Singh,S.,Anand, S., Implementing Storage as a 
Service in Cloud using Network Attached 
Storage, International Journal of Computer 
Applications, Volume 108 ,Issue 
13,December 2014,Pages 6-9 

[8] Google Apps Official Web site, retrieved at 
2015 
from:https://www.google.com/work/apps/bus
iness/ 

[9] National Computer Broad, Guidelines on server 
consolidation and virtualization, retrieved at 
2015 
from:http://www.ncb.mu/English/Documents
/Downloads/Reports%20and%20Guidelines/
Guideline%20on%20Server%20Consolidatio
n%20and%20Virtualisation.pdf  

0

10

20

30

40

50

60

0 50 1 00 1 5 0 2 00 2 5 0

TI
M
E 
(S
)

SIZE (MB)

FVCD FFCD 1 MB



Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
7081 

 

 [10] Lokeshwari,V.,Prabavathy,B.,Babu,C., 
Optimized Cloud Storage with High 
Throughput deduplication Approach , 
International Conference on Emerging 
Technology Trends (ICETT) , published by 
International Journal of Computer 
Applications (IJCA) (India,2011),Pages 32-
37 

[11] Yan, F. ,Tan,Y.,A Method of Object-based 
Deduplication , Journal of Networks ,Journal 
of Networks, Volume 6, Number 12, 
December 2011,Pages : 1705-1712 

[12] Zhu,B.,K., Li,H., Patterson, Avoiding the disk 
bottleneck in the data domain deduplication 
file system, USENIX Conference on file and 
Storage Technologies(2008, San Jose in 
California) 

[13]Kulkarni,P.,Douglis,F.,LaVoie,J.,Tracey,J.,Re
dundancy Elimination Within Large 
Collections of Files, Annual Technical 
Conference,(2004,Boston in Massachusetts) 

[14] Shieh F.,Arani, M.,Shamsi, M., Deduplication 
Approaches in Cloud Computing 
Environment: A Survey, International Journal 
of Computer Applications ,Volume 120 ,Issue 
13,2015,Pages :6-10 

[15] Bhagwat, D.,Eshghi K., Long, D.,  
Lillibridge,M., Extreme Binning: Scalable, 
parallel deduplication for chunk-based file 
backup, IEEE International Symposium on 
Modeling, Analysis & Simulation of 
Computer and Telecommunication Systems 
(London,2009) 

[16] M., Devi,V.,Khanna,A.,Bhalaji, Enhanced 
Dynamic Whole file Deduplication (DWFD) 
for Space Optimization in Private Cloud 
Storage Backup, International Journal of 
Machine Learning and Computing, Volume 4, 
Issue 4, 2014, Pages 376-38 

[17] Callaway, R., Devetsikiotis,M.,Chunk and 
Object level deduplication for Web 
Optimization: A hybrid Approach, IEEE 
International Conference on Communications 
(ICC), (Ottawa, June 2012), Pages 1393-1398  

[18] Wang,J., A survey of web caching schemes for 
the Internet, ACM SIGCOMM Computer 
Communication Review Homepage archive, 
Volume 29 Issue 5, October 1999 ,Pages 36-
46 

[19]  Maxcdn One, Proxy Caching, retrieved at 2015 from 
:https://www.maxcdn.com/one/visual-
glossary/proxy-caching/ 

 
 
 

[20] Spring,N.,Wetherall,D., A protocol-independent 
technique for eliminating redundant network 
traffic, conference on Applications, Technologies, 
Architectures, and Protocols for Computer 
Communication, (Stockholm in Sweden, 
2000),Pages 87-95 

[21] Cormen, H.,Leiserson,C.,Rivest, R.,Stein,C., 
Introduction to Algorithms, 3rd edition, IT 
Press,U.S, 2009, ISBN-13: 978-0262033848 

[22] Sedgewick, R., Wayne, K., Algorithms 4th edition, 
Addison-Wesley Professional, U.S,2011, ISBN-
13: 860-1400041420 

 


