
Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6996

NATURE INSPIRED SOFT COMPUTING BASED SOFTWARE
TESTING TECHNIQUES FOR REUSABLE SOFTWARE

COMPONENTS

1PREETI GULIA, 2PALAK
1Assistant Professor, Department of Computer Science and Applications, MDU, Haryana, India

2Research Scholar, Department of Computer Science and Applications, MDU, Haryana, India

E-mail: 1preeti.gulia81@gmail.com, 2palak.aug6@gmail.com

ABSTRACT

Software is the inseparable part of today’s human life. Each and every gadget that we use is dependent
on some or other kind of software. Component based software engineering (CBSE) has provided an
effective software development paradigm which allows selection of domain specific components from
component repository and assemble them into a modular and scalable application. The reliability of
software and its components depends on the amount of effective testing carried on it during its
development life cycle. We cannot deny the fact that exhaustive testing is not possible. Selection of
appropriate test suite is a combinatorial problem. Soft computing provides a promising solution for the
same. Emergence of artificial intelligence over years has added fuel to nature inspired testing techniques.
This paper is a comparative study of various soft computing approaches inspired by nature for reusable
software components such as artificial neural network, genetic algorithm, fuzzy logic and other swarm
based techniques. A comparative analysis is presented to discuss pros and cons of different soft computing
techniques for software testing of reusable components along with their preferences in recent years. A
future dimension is also proposed to develop hybrid techniques for optimization of testing techniques.

Keywords: Soft computing, Test Case Prioritization, Testing, Reusable Components.

1. INTRODUCTION

Optimized techniques and smart
algorithm designs have always attracted potential
programmers. Since its inception in 1990s, the
vast scope of soft computing based algorithms has
attracted various researchers and practitioners
from various fields over years. Soft Computing
(SC) is a multi- disciplinary system of bio
inspired approaches such as Fuzzy Logic (FL),
Neural Network (NN), Genetic Algorithm (GA),
Swarm Intelligence (SI) etc. It provides a large
range of techniques which are inspired by natural
phenomenon and are capable to deal with
imprecision and uncertainty [1].Unlike hard
computing which uses two valued logic, soft
computing uses multivalued logic. Although hard
computing provides deterministic crisp results but
it requires exact input data and algorithm in
advance. Soft computing provides approximate
results with noisy or incomplete data which get
improved iteration after iteration. Within the last
decades, substantial amount of growth has been
noticed in the application of soft computing

techniques in various fields of industries such as
communication, manufacturing automation,
robotics, power systems, process engineering etc.
[2]. Besides offering simplicity, Soft computing
techniques are self-adaptive and able to handle
non-linearity. It is suitable for conflicting multi
objective problems where one parameter is
optimized at the cost of other. In contrast to hard
computing, soft computing provides inexact
solutions which can be used to solve uncertain,
vague and NP complete problems. Three most
important benefits of such techniques are: rich
knowledge representation, scalable and fast
knowledge acquisition and flexible knowledge
processing which reduces the overall cost of
developing intelligent systems [2].

Software testing is the most challenging and
crucial phase of software development life cycle.
It decides the overall quality and user satisfaction
regarding the final software product. Choosing an
optimal test suite is a combinatorial problem
which makes exhaustive testing impossible. The

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6997

faults in any software are un-deterministic. It
requires a large pool of input values to be tested
and many rounds of testing for finding faults
before the software is released. This makes the
process of testing more costly and time
consuming. The development paradigm has
shifted from object oriented to component
oriented [3]. Domain specific components are
selected from large pool of third party
components and assembled using glue code to
make working software. This scenario increases
the challenge of testers to ensure fault free
product. Thus soft computing provides a
promising solution to assist the selection of
optimal test suite. This paper presents various SC
techniques that are utilized in the field of software
testing by various practitioners over years.
Modifications in the existing SC techniques are
making them more efficient day by day that
attracts many researchers in this field. A future
dimension is also proposed to develop hybrid
techniques for optimization of testing techniques.

Rest of the paper in organized as follows:

Section II summarizes components of soft
computing techniques along with their application
area; Section III presents related work carried out
over years by various researchers in chronological
order and tabular form. Various CBSE testing
challenges are given in section IV. A comparative
analysis of each technique and their preferences
by current researchers is given in Section V.

2. COMPONENTS OF SOFT COMPUTING

TECHNIQUES

 Soft computing itself is a separate branch of
computing techniques which provides numerous
bio inspired meta-heuristic techniques, but to
make the study easy we tried to classify the
various components of soft computing
techniques. These are genetic algorithm, artificial
neural network, fuzzy logic, swarm intelligence,
probability based approach etc. Two or more such
approaches can be cascaded to get better results
and we name it hybrid approaches.
 Soft computing has spread its roots to each
and every field of science, engineering and
mathematics. Soft computing techniques can be
utilized to study, model and analyze very
complex phenomena which are not solved by
conventional methods completely. We chose soft
computing techniques to generate and prioritize
effective test cases which provide meta-heuristic
techniques to choose a population of promising
test cases. Some of the area in which soft

computing can be applied for software testing are:
optimal selection of test suite, automated test case
generation, test case prioritization, increasing
code coverage etc. Below is a brief introduction
to all the SC components.

2.1. Fuzzy Logic

 Fuzzy Logic (FL) is a powerful tool to
deal with vagueness which provides many valued
logic between 0 and 1. Although the concept
came into existence a long back in 1965, but the
range of applications [4] covered by it make it
suitable for optimizing modern real life problems.
Fuzzy logic works on linguistics variables and the
results are represented as IF-THEN rules and help
in decision making. The linguistics variables are
the variables which take values in common
language words such as young, middle aged, old.
Fuzzy logic works in three important steps. First
step is fuzzification which involves choosing
membership function and converting the problem
into fuzzy sets. Next step is to generate rules and
evaluating them to choose the best rule. The third
step involves de-fuzzification to convert the
problem back into crisp set. The beauty of FL is
that it is very close to human language and really
easy to interpret.

2.2. Genetic Algorithm (GA)

 It is a soft computing technique inspired
by evolution of organism in their natural
environment. It is inspired from Darwin’s theory
of natural selection and survival of the fittest. It is
best suited for solving various search problems
which demands searching a set of promising
solutions out of given pool of candidate solutions.
The problem parameters are represented as a
binary string of 0’s and 1’s. The iterative process
is applied to these candidate strings to obtain
optimized set of solutions. The basic operations
of genetic algorithm are Mutation, Cross over,
Reproduction, Evaluation and Selection. GA can
be effectively used to prioritize regression test
suite to produce improved population of test cases
in black box testing as researched by [5]. It is also
widely used for automated path testing and
improving coverage criteria in white box testing
[6].

2.3. Swarm Intelligence

 The swarm of organisms living in their
natural habitat shows peculiar properties and
intelligently handles its survival. Inspired from

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6998

coordination between the members of society of
such organisms, swarm intelligence techniques
are becoming popular day by day. They are
capable to handle non linearity and are mostly
adaptive [7] [8]. Ant Colony Optimization (ACO)
is a widely used technique to search promising
test cases as shown by [9-14] [18]. Swarm
Techniques use self-adaptive parameters that
improve the results in next iteration taking input
from previous step. They are mostly suitable for
searching optimal test suite and automation of
testing process. Artificial bee colony (ABC) is
another such technique based on the synergic
social behavior of bee colony. Firefly Algorithm,
Cuckoo search and Particle Swarm Optimization
(PSO) also belong to this category of nature
inspired techniques.

2.4. Artificial Neural Network (ANN)
 ANN is imitation of human
nervous system for solving problems. The
inspiration behind ANN is human brain. It is a
highly connected network of processing elements
in which output of one unit becomes input of next
unit and an activation function is applied at each
layer. These systems are self-learning and trained.
The basic components of ANN are Input unit, one
or more hidden units and output unit. The most
important aspect of ANN is its learning (training).
The available domain specific knowledge is
collected and a part of it is used to train the
network and weights are adjusted according to it.
Once the NN is trained and tested it is ready to
solve problems. A multilayered perceptron is used
to select and prioritize test data using various
classifications and clustering techniques [15].

2.5. Hybrid Approach
 There is no limitation to human
thinking. We always strive to move one step
forward in optimization problems by hybridizing
above soft computing techniques to form a hybrid
model [19] [20]. Neural networks are often linked
with fuzzy logic to make a neuro-fuzzy model
[15] enclosing the benefits of the two. Similar
kind of hybrid models can be developed and
applied one after the other to improve results.

3. SURVEY OF EXISTING TECHNIQUES

Soft computing techniques have attracted
many researchers over years due to its potential to
solve uncertain problems. Soft computing when
used for optimizing testing techniques offers vast
research domain for the researchers such as test

data generation, test case selection, test
automation etc. Moreover, the field of component
testing in component based software is also
attractive to work upon. We tried to extract some
of important research from various sources over
past few years that utilize the potential of soft
computing techniques in software testing. The
following section presents some latest ongoing
research in the field of CBSE testing in
chronological order.

Authors in [9] (2017) proposed new
pheromone update strategy in ACO that is
inspired from correlation between genes
popularly known as epistasis theory. They applied
the modified algorithm for prioritizing regression
test cases. Authors and researchers in [10] also
used swarm intelligence for test case
optimization. They used chaotic behavior of
firefly to improve branch coverage as compared
to other swarm based and SC techniques. Some
researchers as in [11] utilized GA and PSO for
automated test data generation and PSO for test
data prioritization.

Ahlam Ansari et. al (2016) in [12] referred to
the problem of test case prioritization for
optimizing regression testing. They utilized the
well-known ant colony optimization approach to
select optimal set of test cases on the basis of
certain criteria. They also compared their
proposed technique with manual testing and
found that ACO is capable of reducing the overall
testing cost and effort. ACO can be used to
optimize test sequence generation. Sumesh
Agarwal et. Al (2016) proposes a method of
optimal test-sequence generation using ACO on
control flow graph (CFG) [13]. They claimed to
reduce coverage redundancy when compared with
other existing techniques. Their results shows that
after using a modified ACO approach, better test
sequence can be generated.

Authors in [14] presented a comprehensive
study for test case generation paradigms. They
classified the test case generation techniques in
four categories: Code based, Model based, Search
based and Requirement based. They also
proposed a new testing technique by combining
search based and model based techniques by
using UML and EACO (Enhanced Ant Colony
Optimization). Hybrid techniques are equally
important. Gaurav Kumar et. Al. (2015) [15]
proposed a neuro-fuzzy model to estimate &
optimize quality of components. Their approach
is divided into two phases. First phase analyzes

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6999

and evaluates reusability for Component Based
Software Engineering with the help of a series of
design patterns and self-organizing map neural
network technique. They used CK metrics for
evaluation. Second phase empirically categorizes
reusability on the basis of range of reusability
calculator and Fuzzy-Back Propagation Neural
Network technique. Baseline of their paper is CK
metrics. Their model is tested on MATLAB and
the results show that their model is an effective
tool which can be further exploited for effective
selection of components and removing low
quality components from the system. Besides
ACO and other swarm based techniques, Fuzzy
logic is also exploited by many researchers for
optimizing the various steps in software testing as
shown by the authors in [16].

Samaila Musa et. al. (2015) [17] proposed test
case prioritization technique for regression testing
using modified genetic algorithm for object
oriented software. They used dependence graph to
select only those test cases which reveal software
modifications. They evaluated their proposed
algorithm on Average Percentage of rate of Fault
Detection (APFD) metric. Authors in [18] (2014)
proposed improved ant algorithm for test case
generation by improving pheromone update
strategy and volatilization coefficient. Ahmed S.
Ghiduk (2014) [5] uses variable length
chromosome to generate automated basis test
paths that are independent of each other. He
redefined the basic GA terms and proposed a
basis test paths generation tool. The length of
each chromosome is dependent on the length of
the path. He also checked the feasibility of each
test path. GA can be used for minimizing test
suite for software product lines as shown by
authors in [6]. They applied random weight
based GA by defining appropriate fitness function
and achieved better performance.
T. P. Jacob et al. (2013) [21] employed GA for
test case prioritization for selecting test cases for
regression testing. Researchers in [22] (2013)
presented a survey on applications of GA in
different types of software testing. It was found
that by using GA, the results and the performance
of testing can be improved. They tabulated
various GA parameters used in different types of
software testing such as cross over, mutation etc.
Soma Sekhara Babu Lam et. al. (2012) [23]
applied modified artificial bee colony (ABC) for
test suite optimization and generating independent
paths. They also compared their technique with

other SC based techniques. Ali M. Alakeel (2012)
in [24] utilized fuzzy logic for test case
prioritization for the programs with assertions. He
proposed a two-step process to measure the
effectiveness of test suite using fuzzy logic. S.
Raju et. al. (2012) employed GA for the same by
keeping prioritization factors in mind such as
customer assigned priority, complexity, dynamic
requirements etc. [25]. Sebastian Bauersfeld et. al.
(2011) in [26] used ACO for generating input
sequence for GUI testing. Sangeeta Sabharwal et.
al. (2011) applied GA for test case prioritization
derived from UML (Unified Modeling Language)
diagrams [27]. F. Saglietti et. al. (2010) focused
on automation of unit and integration testing for
CBS [28]. They utilized operators of Genetic
Algorithm and state based interaction techniques
to improve testing efficiency. Praveen Ranjan et.
al (2010) [29] optimized test sequence using ACO
by applying it on state transition diagrams to
improve overall coverage. They compared their
results with GA based testing techniques. Qian
Zhongsheng (2010) worked on optimizing test
case generation for web based applications by
collecting user session and logs and further
improved them by using GA [30].

The study of the literature shows that various
algorithms exist to select and prioritize test cases
and automate test case generation. Some of them
are not fully optimized and can be explored
further. Some are computationally complex and
expensive. The above section shows that ACO
and GA are the most commonly used techniques
for optimizing testing process by reducing effort
and increasing efficiency. A combination of soft
computing techniques is also used for testing but
for CBSE based applications they have some
limitations. Complexity of CBSE based software
is higher than conventional software so traditional
testing techniques are not sufficient. Only a
hybrid testing approach can provide a promising
solution.

Software testing has always been an
attractive research topic from many decades. The
importance of testing can be felt be looking at the
vast literature available over years and still the
research is going on. We extracted the recent
research in the field of software testing that is
inspired from soft computing techniques. Each
researcher utilized various available techniques at
various phases of software testing. Table 1 shows
few relevant publications in this field over last
seven years.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7000

4. CBSE TESTING CHALLENGES

Although the field of CBSE is heavily
researched over last two decades but still there are
some challenges which the practitioners has to
face. Some of them are listed below:

4.1. Heterogeneity of Components

Components are heterogeneous in terms of
programming language, platform, data structure,
naming conventions etc. Testing of such
components may lead the testers into a dilemma
during designing of test cases as each language
and platform has its own notation and
specification.

4.2. Need of Dummy Test Modules

Testing is not an isolated task. It requires
dummy modules called stub and drivers to
simulate the behavior of dependent modules.
Building and configuring separate stub and
drivers for each component is a cumbersome task
for testers.

4.3. Test Suite Prioritization

The problem of test selection and
prioritization is the most challenging problem
faced by potential testers. It is considered as NP
hard problem.

4.4. Test Automation

Testing is a time consuming task which
requires test case generation, execution and many
iterations of the same. Most of the testing
activities can be automated. Test automation is a
potential field of research that is attracting many
researchers.

4.5. Measuring Test Coverage

Measuring test coverage is an important
aspect to test the efficiency of testing. The Higher
the coverage more the efficiency is. Maintaining
higher test coverage is always expected from a
good tester. Thus test coverage measurement is
always given priority and itself a challenging
task.

4.6. Complex Interface specification

Each component has some interfaces through
which it interacts with other components.
Interface specifications are the entry points for
defects. They need to be tested thoroughly. But

the problem arises when these specifications are
complex.

4.7. Continuous Evolution and Versioning

CBSE based systems are highly dynamic and
evolve continuously to meet the changing
requirements. A component may exist in various
versions with slight modifications. Testing such
dynamic and evolving systems is itself a problem.
Regression testing after every modification
becomes an important task.

5. COMPARISON OF VARIOUS
TECHNIQUES

 So far we have discussed various nature
inspired techniques. Each technique has its own
pros and cons. Their performance varies from
scenario to scenario. It is the responsibility of the
practitioner to choose the best suitable technique
on the basis of given requirements. ANN needs
extensive training but once trained they provide
fast results. On the other hand fuzzy systems
require proper choice of membership function.
Each technique has some limitations and
advantages. Table 2 summarizes pros and cons of
each technique.

 Figure 1 shows the comparative use and
preference to each SC technique by different
researchers against the number of publications
mentioned in this paper over last few years.

Figure 1: Comparative Use of Various SC Techniques

over Past few years

 It is clear from intensive literature survey
that swarm based techniques are attracting
researchers for current ongoing research in the
field of software testing. Genetic algorithm is
equally preferred for optimizing testing process.
About 80% research in software testing is based
on swarm based techniques and genetic

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7001

algorithm. Other techniques like fuzzy, neural etc.
are also important due to the fact that hybrid
approaches are being developed.

7. RESEARCH CONTRIBUTION

This paper presents a comprehensive survey
to show the current trend of nature inspired
techniques in the field of software testing and that
too in the recently flourished and widely adopted
component based development paradigm.
Existing research in the field focuses on test case
generation, test case selection, prioritization and
test automation. It is interesting to note that
swarm based techniques and genetic algorithm are
preferred over other nature inspired techniques.
We found out that the hybrid techniques are more
attractive and efficient as compared to sole
technique.

8. CONCLUSION
 Nature provides inspiration in almost
every field of computing and optimization. In this
paper, we discussed various soft computing
techniques inspired from nature which can be
exploited for optimization of software testing
process. A summary of all the basic soft
computing techniques is given along with a new
dimension of fusion of two or more techniques to
make a hybrid approach. The flexibility provided
by these techniques are tolerant to imprecision
and uncertainty. Through our extensive literature
survey that is published in recent years we found
that 80% software testing optimization techniques
are based on swarm based techniques and genetic
algorithm. The full potential is yet to be exploited
which inspires researchers to make hybrid
techniques.

REFERENCES

[1] D. Ibrahim, An Overview of Soft Computing,

12th International Conference on Application
of Fuzzy Systems and Soft Computing
(ICAFS), Vienna, Austria, Procedia
Computer Science 102, pp. 34 – 38, August
2016.

[2] Y. Dote and S. J. Ovaska, Industrial
Applications of Soft Computing: A Review,
Proceedings of The IEEE, Vol. 89, No. 9,
September 2001.

[3] T Vale, I. Crnkovic, E. S. de Almeida , P. S.
Neto, Y. C. Cavalcanti and S. R. D. L. Meira,
“Twenty-eight years of Component-Based
Software Engineering,” Journal of Systems

and Software, vol. 111, pp. 128–148,
January, 2016.

[4] H. Singh, M. M. Gupta, T. Meitzler, Z. G.
Hou, K. Garg, A. M. G. Solo and L. A.
Zadeh, “Real-Life Applications of Fuzzy
Logic”, Advances in Fuzzy Systems,
Hindawi Publishing Corporation, Article ID
581879, 3 pages, Volume 2013.

[5] A. S. Ghiduk, “Automatic generation of
Basis Test Paths Using Variable Length
Genetic Algorithm”, Information Processing
Letters, 114, pp. 304–316, 2014.

[6] S.Wang, S. Ali and A. Gotlie, Minimizing
Test Suites in Software Product Lines Using
Weight-Based Genetic Algorithms,
Proceedings of the 15th annual conference on
Genetic and evolutionary computation
(GECCO’13), Amsterdam, The Netherlands,
pp. 1493-1500, July 6–10, 2013.

[7] A. Abraham, H. Guo, and H. Liu, "Swarm
Intelligence: Foundations, Perspectives and
Applications", Swarm Intelligent Systems,
Springer Berlin Heidelberg, pp. 3-25, 2006.

[8] X. S. Yang, Z. H. Cui, R. Xiao, A. Gandomi
and M. Karamanoglu, Swarm Intelligence
and Bio-Inspired Computation: Theory and
Applications, Elsevier, 1st ed. 2013.

[9] Y. Bian, Z. Li, R. Zhao and D. Gong,
"Epistasis Based ACO for Regression Test
Case Prioritization," , IEEE Transactions on
Emerging Topics in Computational
Intelligence, Vol. 1, no. 3, pp. 213-223, June
2017.

[10] A. Pandey and S. Banerjee, Test Suite
Optimization Using Chaotic Firefly
Algorithm in Software Testing. International
Journal of Applied Metaheuristic Computing
(IJAMC), 8(4), 41-57.
doi:10.4018/IJAMC.2017100103, 2017.

[11] M. Mann, P. Tomar and O. P. Sangwan, Bio-
inspired Metaheuristics: Evolving and
Prioritizing Software Test Data, Applied
Intelligence, pp 1–16, 2017.

[12] A. Ansari, A. Khan, A. Khan and K.
Mukadam, Optimized Regression Test using
Test Case Prioritization, 7th International
Conference on Communication, Computing
and Virtualization, Procedia Computer
Science 79, pp. 152 – 160, 2016.

[13] S. Agarwal, S. Gupta, and N. Sabharwal,
Automatic Test Data Generation-Achieving
Optimality Using Ant-Behavior, International
Journal of Information and Education
Technology, Vol. 6, No. 2, February 2016.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7002

[14] R. Elghondakly, S. Moussa and N. Badr, “A
Comprehensive Study for Software Testing
and Test Cases Generation Paradigms”,
ACM, ICC '16, March 22-23, 2016.

[15] G. Kumar and P. K. Bhatia, “Neuro-Fuzzy
Model to Estimate & Optimize Quality and
Performance of Component Based Software
Engineering”, ACM SIGSOFT, Software
Engineering Notes, March 2015.

[16] P. K. Singh, O. P. Sangwan, A. P. Singh and
A. Pratap, An Assessment of Software
Testability using Fuzzy Logic Technique for
Aspect-Oriented Software, International
Journal of Information Technology and
Computer Science, Vol.7, No.3, Feb. 2015.

[17] S. Musa, A. B. M. Sultan, A. A. B. A. Ghani
and S. Baharom , Software Regression Test
Case Prioritization for Object-Oriented
Programs using Genetic Algorithm with
Reduced-Fitness Severity, Indian Journal of
Science and Technology, Vol 8(30), DOI:
10.17485/ijst/2015/v8i30/86661, November
2015.

[18] S. Yang, T. Man, and J. Xu, Improved Ant
Algorithms for Software Testing Cases
Generation, Hindawi Publishing Corporation.
Scientific World Journal, Article ID 392309,
9 pages, Volume 2014.

[19] P. P. Bonissone, Y. T. Chen, K. Goebel, And
P. S. Khedkar, Hybrid Soft Computing
Systems: Industrial and Commercial
Applications, Proceedings of The IEEE,
VOL. 87, NO. 9, 1999.

[20] H. Bhaumika, S. Bhattacharyyaa, M. D.
Natha and S. Chakraborty, Hybrid Soft
Computing Approaches to Content Based
Video Retrieval: A brief review, Applied Soft
Computing, Vol-46, pp-1008–1029, 2016.

[21] T. P. Jacob and T. Ravi, Optimization of Test
Cases by Prioritization, Journal of Computer
Science 9 (8): 972-980, 2013.

[22] C. Sharma, S. Sabharwal and R. Sibal, “A
Survey on Software Testing Techniques
using Genetic Algorithm”, International
Journal of Computer Science Issues, Vol. 10,
Issue 1, No 1, January 2013.

[23] S. S. B. Lam, M L H. P. Raju, U. K. M, S. Ch
and P. R. Srivastav, Automated Generation of
Independent Paths and Test Suite
Optimization Using Artificial Bee Colony,
International Conference on Communication
Technology and System Design-2011,
Procedia Engineering 30, pp.191 – 200,
2012.

[24] A. M. Alakeel, A Fuzzy Test Cases
Prioritization Technique for Regression
Testing Programs with Assertions,
ADVCOMP 2012: The Sixth International
Conference on Advanced Engineering
Computing and Applications in Sciences,
2012.

[25] S. Raju, G. V. Uma, Factors Oriented Test
Case Prioritization Technique in Regression
Testing using Genetic Algorithm, European
Journal of Scientific Research, Vol.74 No.3,
pp. 389-402, 2012.

[26] S. Bauersfeld, S. Wappler and J. Wegener,
An Approach to Automatic Input Sequence
Generation for GUI Testing using Ant
Colony Optimization, GECCO’11, Dublin,
Ireland. ACM 978-1-4503-0690-4/11/07,
July 12–16, 2011.

[27] S. Sabharwal, R. Sibal and C. Sharma,
Applying Genetic Algorithm for
Prioritization of Test Case Scenarios Derived
from UML Diagrams, IJCSI International
Journal of Computer Science Issues, Vol. 8,
Issue 3, No. 2, May 2011.

[28] F. Saglietti and F. Pinte, “Automated Unit
and Integration Testing for Component-based
Software Systems”, S&D4RCES, Vienna,
Austria, ACM, 2010.

[29] Praveen, K Baby, “Automated Software
Testing Using Metahurestic Technique Based
on An Ant Colony Optimization”.,
Proceedings - 2010 International Symposium
on Electronic System Design (ISED), 2010.

[30] Q. Zhongsheng, "Test case generation and
optimization for user session-based web
application testing." Journal of Computers,
pp. 1655-1662, Nov 2010.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7003

Table 1: Existing Soft Computing Based Testing Techniques: A Survey
Year of
Publication

Title Authors Basic Soft Computing
Technique Used

2017 Epistasis Based ACO for Regression
Test Case Prioritization [9]

Y. Bian, Z. Li, R. Zhao and D.
Gong

Ant Colony Optimization

2017 Test Suite Optimization Using
Chaotic Firefly Algorithm in
Software Testing [10]

Abhishek Pandey and S.
Banerjee

Firefly Algorithm

2017 Bio-inspired Meta-heuristics:
evolving and prioritizing software
test data [11]

Mukesh Mann, Pradeep
Tomar, Om PrakashSangwan

Genetic Algorithm,
Particle Swarm
Optimization

2016 Optimized Regression Test using
Test Case Prioritization [12]

Ahlam Ansari, Anam Khan,
Alisha Khan, Konain
Mukadam

Ant Colony Optimization

2016 Automatic Test Data Generation-
Achieving Optimality Using Ant-
Behavior [13]

Sumesh Agarwal, Shubham
Gupta, and Nitish Sabharwal

Ant Colony Optimization

2016 A Comprehensive Study for
Software Testing and Test Cases
Generation Paradigms [14]

Roaa Elghondakly, Sherin
Moussa, Nagwa Badr

Ant Colony Optimization

2015 Neuro-Fuzzy Model to Estimate &
Optimize Quality and Performance
of Component Based Software
Engineering [15]

Gaurav Kumar, Pradeep
Kumar Bhatia

Neuro Fuzzy

2015 An Assessment of Software
Testability using Fuzzy Logic
Technique for Aspect-Oriented
Software [16]

Pradeep Kumar Singh, Om
Prakash Sangwan, Amar Pal
Singh, Amrendra Pratap

Fuzzy Logic

2015 Software Regression Test Case
Prioritization for Object-Oriented
Programs using Genetic Algorithm
with Reduced-Fitness Severity

Samaila Musa, Abu-BakarMd
Sultan, Abdul-Azim Bin Abd-
Ghani and Salmi Baharom

Genetic Algorithm

2014 Improved Ant Algorithms for
Software Testing Cases Generation
[18]

Shunkun Yang, Tianlong Man,
and JiaqiXu

Ant Colony Optimization

2014 Automatic generation of basis test
paths Using variable length genetic
algorithm [5]

Ahmed S. Ghiduk Genetic Algorithm

2013 Minimizing Test Suites in Software
Product Lines Using Weight-based
Genetic Algorithms [6]

Shuai Wang , Shaukat Ali,
Arnaud Gotlieb

Genetic Algorithm

2013 Optimization of Test Cases by
Prioritization [21]

T. Prem Jacob and T. Ravi Genetic Algorithm

2013 A Survey on Software Testing
Techniques using Genetic
Algorithm [22]

Chayanika Sharma, Sangeeta
Sabharwal, Ritu Sibal

Genetic Algorithm

2012 Automated Generation of
Independent Paths and Test Suite
Optimization Using Artificial Bee
Colony [23]

Soma Sekhara Babu Lam, M
L Hari Prasad Raju, Uday
Kiran M, SwarajCh, Praveen
Ranjan Srivastav,

Artificial Bee Colony
Technique

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7004

2012 A Fuzzy Test Cases Prioritization
Technique for Regression Testing
Programs with Assertions [24]

Ali M. Alakeel Fuzzy Logic

2012 Factors Oriented Test Case
Prioritization Technique in
Regression Testing using Genetic
Algorithm [25]

S. Raju , G. V. Uma Genetic Algorithm

2011 An Approach to Automatic Input
Sequence Generation for GUI
Testing using Ant Colony
Optimization [26]

Sebastian Bauersfeld, Stefan
Wappler, Joachim Wegener

 Ant Colony Optimization

2011 Applying Genetic Algorithm for
Prioritization of Test Case Scenarios
Derived from UML Diagrams [27]

Sangeeta Sabharwal, RituSibal
and Chayanika Sharma

Genetic Algorithm

2010 Automated Unit and Integration
Testing for Component-based
Software Systems [28]

F. Saglietti, F. Pinte Genetic Algorithm

2010 Automated Software Testing Using
Meta- heuristic Technique Based on
An Ant Colony Optimization [29]

Praveen Ranjan, Km Baby Ant Colony Optimization

2010 Test case generation and
optimization for user session-based
web application testing [30]

Qian Zhongsheng Genetic Algorithm

Table 2: Pros and Cons of Various SC Techniques
Sr. No. Technique Pros Cons

1. Genetic Algorithm Easy to implement
 Better solution after every

iteration

 Slow Convergence
 Problem of finding suitable Fitness

Function
 Applicable to small population

2. Artificial Neural
Network

 Adaptive Learning
 Self-Organization
 Fast Processing

 Requires large volume of training data
 Black box view of hidden layers
 Poor Interpretation

3. Fuzzy Logic Ease of implementation
 Interpretable

 Problems of finding suitable
membership values

4. Swarm
Intelligence

 Self-Adaptive
 Scalable
 Parallelism

 Poor Interpretability
 Premature Convergence

