
Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6964

DECIDABILITY PROPERTIES OF THE CLASS OF FORMAL
LANGUAGES RECOGNIZED BY K-EDGE FINITE STATE

AUTOMATA

1ANUCHIT JITPATTANAKUL
1Intelligent Control and Nonlinear Research Center

Department of Mathematics, Faculty of Applied Science

King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

E-mail: 1anuchit.j@sci.kmutnb.ac.th

ABSTRACT

Finite state automata (FSA) are computational models which are used for studying theoretical complexity
of computational problems. The computational model of k-edge finite state automata (k-FSA) have been
introduced to compute naturally ordered data such as data in music processing and time series domain. The
k-edge finite state automata contain theoretical interest that numbers of their edges are bounded with a k
value. In order to use such model in practice, some theoretical properties need to be investigated by way of
their classes of formal languages. This paper investigates the closure properties and decidability of the class
of formal languages recognized by k-edge finite state automata called k-acceptable languages (k-ACC). The

results include the following: (i) for k  1, the class of k-acceptable languages is closed under complement.

(ii) for k  2, the class of k-acceptable languages is closed under complementation, union, intersection,
concatenation and Kleene-star operation. (iii) The infiniteness problem, membership problem, equivalence
problem and emptiness problem of k-acceptable languages are decidable.

Keywords: Decidability, Closure Properties, K-Acceptable Languages, K-Edge Finite State Automata

1. INTRODUCTION

Formal language theory is a research field
originated from attempt to understand how human
learns natural languages by Noam Chomsky in
1950s [1]. The paper defined the syntax of
languages using precise mathematical rules called
grammars. The research results have greatly
benefited to many fields of computer science,
including programming languages, compiler design,
and artificial intelligence. After the advent of
modern electronic computers, mathematical model
of computer known as automata plays an important
role of model of computation. Specifically, this
computational model can be viewed a recognizer of
the formal languages.

Nowadays, the formal languages and
grammatical representations have many
applications in other fields, including molecular
biology and symbolic dynamic [2]. However

theoretical properties have been studied in parallel
to better understand the powerful of computational
models. Some of these are closure properties and
decidability of computational problems.

Closure properties of various formal
languages under different operation are of
considered theoretical interest [3]. The closure
properties are often useful in constructing new
languages from existing languages. That is every
application of the operation on languages of the
class yield a language of the class. Moreover, the
established closure properties could be also use to
prove some decision problems known as
decidability. In the field of research, various classes
of formal languages have been investigated this
theoretical properties, including formal language
classes in Chomsky hierarchy (regular languages,
context-free languages, context-sensitive languages
and recursively enumerable languages) shown in
Fig. 1. Moreover, other classes such as quantitative

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6965

languages [4], quantum Turing languages [5], and
ordered languages [6] have also investigated their
closer properties and decidability.

Fig 1. Chomsky hierarchy

In this paper we focus on the theoretical

properties of class of formal languages called k-
acceptable languages denoted by k-ACC. The
studied languages is a subclass of regular languages
recognized by k-edge finite state automaton, shortly
called k-FSA, has been introduced by Higuera in [7]
to be a computational model recognized strings
defined on an ordered alphabet. These strings can
be found in many real-world applications. For
example the alphabet of melody is naturally ordered
in the case of music [8]. Another example, in time
series domain, the discretization of original data in
numeric to discrete data needs to keep topological
characteristics [9]. The interesting property of k-
edge finite state automata is that its size depends on
the k value instead of the size of alphabet. This is a
reason why the study of k-edge finite state automata
is useful and interesting.

The classes of formal languages that
recognized by k-edge finite state automata have
been studied in [10-11] to investigate their
learnability. The results have shown that the class
of k-acceptable languages is shown that it is
learnable in the limit from polynomial time and data
from positive and negative examples. However,
there are no literatures concerned with theoretical
properties of the language class. Research
objectives for this work is to investigate the closure
properties and decidability of the class of k-
acceptable languages.

This paper is organized as follows. In
section 2, we give preliminaries composing of
related definitions and some examples. Section 3

studies algebraic properties of k-edge finite state
automata. Section 4 investigates closure properties
of k-acceptable languages. In section 5, we show
that infiniteness problem, membership problem,
equivalence problem and emptiness problem of the
class of k-acceptable languages are decidable. The
final section is conclusion.

2. PRELIMINARIES

The related definitions and notations used
throughout this paper are provided in this section.

2.1 Formal languages and automata
Let  be an alphabet that is a finite and

nonempty set of characters. The size of  is a
number of letters, denoted by ||. A finite sequence
of letters from  is called a string. Given a string w,
the length of strings is the total number of letters
appearing in w and it is denoted by |w|. The string
with length zero is called the null string denoted by
λ. The infinite set of all possible strings over ,
denoted by *, is the set of all finite-length strings
generated by concatenating zero or more letters of
. An alphabet  is called an ordered alphabet
denoted by . Given an order relation  on , we
can define a lexicographic-length order over * for
two strings u, v  *, by setting u <lex v if and only
if |u| < |v| or there exist strings w, u, v * and
two letters x < y   such that | u| < | v| and u =
wxu, v = wyv. A formal language over  denoted
by L is any subset of *. The family of languages
over , denoted by , is called a class of languages.

Definition 2.1
A finite state automaton (FSA) is a grammatical
representation that is typically defined as a 5-tuple
M = (, Q, q0, F, ), where

  is a finite alphabet,
 Q is a finite non-empty set of states,
 q0  Q is an initial state,
 F  Q is a set of final states, and
  : Q    Q is a state transition

function.

The state transition function  can be
extended to a mapping *: Q  * Q in the
following inductive way:
(i) *(q, ) = q, for each state q  Q, where  is the
null string, and

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6966

(ii) *(q, wa) =  ( *(q, w), a), for each state q  Q,
each letter a  , and each string w   *.

An example of a finite state automata is
shown in Fig. 2.

a b

b

a

q0 q1

Fig 2. a finite state automata

Theoretically, an automaton plays an

important role as a language recognizer. A string w
is recognized by an finite state automaton M = (,
Q, q0, F, ) if *(q, w)  F. The language
recognized by M, denoted by L(M), is the set of all
strings that are recognized by the automaton M and
this set is called a regular language. A language L is
recognizable if there exists an automaton M such
that L = L(M).

Because of size of finite state automata, an
automaton called k-edge finite state automaton has
been introduced. They contains very nice properties
with numbers of their edges are bounded with a k
value. The definition are shown as follows.

Definition 2.2
A k-edge finite state automaton (k-FSA) is a 6-tuple
denoted by Mk = (Σ≤, Q, q0, FA, FR, δk) where

 Σ≤ is a finite ordered alphabet,

 Q is a finite set of states,

 q0 is the initial state,

 FA⊆Q is a set of accepting states,

 FR⊆Q is a set of rejecting states, and

 δk : Q × Σ≤ × Σ≤  Q is the transition
function.

The transition function δk defined as q  Q, |{[x,

y]: δk(q, x, y) ≠ }| ≤ k, and if δk(q, a1, b1) ≠ δk(q,

a2, b2) then {z : a1 ≤ z ≤b1}{z : a2 ≤ z ≤ b2} = .

The extended transition function δk
 : Q× Q is

defined as δk
 *(q, ) = q and δk

 *(q, aw) = δk
 *(q, w)

where x ≤ a ≤ y and δk(q, x, y) = q such that q, q 

Q, a, x, y  Σ≤, w  Σ≤*.

Remark : Notice that the maximum number of
edges of a state is used to determines the value of k
in definition of k-edge finite state automata. Thus a
k-edge finite state automata can be also viewed as a
m-edge finite state automata such that m > k for m,

k  .

Definition 2.3
Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge finite
state automata. The transition graph of Mk, denoted
by (Mk), is a directed graph, where nodes are
states from Q, and there is an edge from p to q
labeled with an interval [a, b] if and only if (p, a, b,
q)  δk. A state q  Q is reachable if there is a walk
from q0 to q in (Mk). A state q  Q is terminating
if there is a walk from q to some f  FA.

Definition 2.4
Languages recognized by k-edge finite state
automata Mk = (Σ≤, Q, q0, FA, FR, δk) are called k-
acceptable languages defined as L = {w : δk

 *(q0, w)

 FA}. A set of all k-acceptable languages is called
that a class of k-acceptable language denoted by k-
ACC for any integer k ≥ 0.

Example 2.1

Let L be a formal language defined over ≤ =
{a1, a2, a3, a4, a5}. The formal language L defined
by regular expression as

((a1+a2+a3) + (a4+a5) a1
(a2+a3+a4+a5)).

This automata accepting the language L is 2-edge

finite state automaton because for any q  Q, |{(x,

y) : δ2(q, x, y) ≠ }| = 2 and for state q0 : δ2(q0, a1,

a3) ≠ δ2(q0, a4, a5) ≠  then {z : a1≤ z ≤ a3}{z : a4

≤ z ≤ a5} =  for state q3 : δ2(q3, a1, a1) ≠ δ2(q3, a2,

a5) ≠  then {z : a1 ≤ z ≤ a1}{z : a2 ≤ z ≤ a5} = .
The 2-edge finite automata in this example is
depicted in Fig. 3

 Fig 3. 2-edge finite state automata

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6967

2.2 Closure properties
 Theoretically, a set is closed under an
operation if applying that operation to any members
of the set yields a members of the set. In formal
language theory, the closure is a property about
classes of languages, not about individual strings.

Definition 2.5
Let be  a class of languages and L1, L2, L3,, Ln

be languages in . The language class  is said to
be closed under an operation op, if for all languages

L1, L2, L3,, Ln in  then we have op(L1, L2, L3,,

Ln) in .

Investigation of the closure properties of a
class of formal languages is one of the most
interesting and fundamental research tasks in
formal languages theory. Normally any progress
leads to insights and techniques that yield a better
understanding of the class. In case of languages in
Chomsky’s hierarchy, the results are shown in
Table 1 as below.

Table 1 Closure properties of classes in Chomsky’s
hierarchy

2.3 Decidability
Decidability is an important property

concerning to ask decision problems about formal
languages. Informally, we use the word problem to
refer to a question such as “Is a given k-acceptable
language finite?”. By restricting our attention to
problems with yes-no answers and encoding
instances of the problem by strings over some finite
alphabet, we can transform the question to whether
or not there exists an algorithm for solving a
problem. A problem whose language there exists
an algorithm for solving is said to be decidable.
Otherwise, the problem is undecidable. That is, a
problem is undecidable if there is no algorithm that
takes as input and instance of the problem and
determines whether the answer to that instance is
“yes” or “no”.

3. k-EDGE FINITE STATE AUTOMATA
AND ALGEBRAIC PROPERTIES

To investigate closure properties and
decidability of the class of k-acceptable languages,
some algebraic properties are needed. In this
section we give some propositions that will be
referred in next section.

Proposition 3.1 Let Mk = (, Q, q0, FA, FR, k) be
k-edge finite state automata, we can always
construct a finite state automata represents by Md =
(, Qd, q0d, Fd, d) such that L(Mk) = L(Md).
Proof: Let Mk = (, Q, q0, FA, FR, k) defined on
the followings.

  = {a1, a2,  , an},
 k = {(p, a, b, q) : p, q  Q and a, b  }

such that #(k) = k.
From the definition 2.2, the Mk is a k-edge finite
state automata recognizing a language L.

We can construct a finite state automata
recognized the language L as follows. We give a
finite state automata defined by

Md = (, Qd, q0d, Fd, d)
such that

  = {a : a  },

 Qd = Q,

 q0d = q0,

 Fd = FA and

 d = {(p, z, q) : a  z  b for all (p, a, b, q)

 k}.
From this construction, it follows that Md

recognizes L. Therefore, L(Mk) = L(Md). 

Proposition 3.2 For any integer k ≥ 0, a k-FSA is a
(k+1)-FSA.
Proof: Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge
finite state automata.

Suppose that q is a state in Q such that q 

Q, |{[x, y] : δk (q, x, y) ≠ }| = k and if δk(q, a1, b1)

≠ δk(q, a2, b2) then {z : a1 ≤ z ≤ b1}{z : a2 ≤ z ≤

b2} = .
For all integer k, it is algebraically obvious

that
k < k + 1.

It follows that |{[x, y] : δk(q, x, y) ≠ }| ≤
k+1. Therefore, Mk is a (k+1)-edge finite state

automata by definition. 

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6968

Proposition 3.3 For any integer k ≥ 0, k-ACC 
(k+1)-ACC.
Proof: Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge

finite state automata and Lk  k-ACC be a k-
acceptable language recognized by Mk.

In order to prove this proposition, we will
show that Lk is a language in the class (k+1)-ACC.
In other word, we have to show there exists a (k+1)-
finite state automata to recognize the language Lk.

Suppose Mm = (Σ≤, Q, q0, FA, FR, δm) is a
m-edge finite state automata. We define the
transition function δk+1 of Mm as

δm= δk– {(q0, a0, ai, p) : ai  Σ≤, p  Q }{(q0, a0,
a0, p), (q0, a1, ai, p)}.
It follows that

for all q  Q, |{[x, y] : m(q, x, y)  }| = k+1.
It follows that Mm is a (k+1)-edge finite

state automata recognizing the language Lk. That is

the language Lk  (k+1)-ACC.

Thus we can conclude that k-ACC 

(k+1)-ACCfor k ≥ 0. 

 The relation between classes of k-
acceptable languages and regular languages shown
as the Venn diagram in Fig.4.

Fig. 4 The relation between classes of k-acceptable
languages and regular languages

Definition 3.1
A k-edge finite state automaton with null transition
(k-FSA) is a 6-tuple Mk = ( ≤, Q, q0, FA, FR, δk

)
where

 Σ≤ is an ordered alphabet,

 Q is a finite set of states,

 q0 is the initial state,

 FA 	Q is a set of accepting states and

 FR Q is a set of rejecting states,

 δk
 : Q × ≤  {}× ≤  {}  Q is the

transition function with null defined as for

any q  Q, #(δk
) = |{[x, y]: δk

 (q, x, y) ≠

}| = k, and if δk
(q, a1, b1) ≠ δk

(q, a2, b2)

then {z : a1 ≤ z ≤b1}{z : a2 ≤ z ≤ b2} =

.

The extended transition function δk
*: Q× *

Q is defined as δk
 *(q, ) = q and δk

 *(q, aw) =

δk
 *(q, w) where x ≤ a ≤ y and δk

(q, x, y) = q
such that q, q  Q, a, x, y   ≤, w   ≤

*.

 From above definition, k-FSA can do
transition a state to another state by null string, but
not for k-FSA.

Definition 3.2
Let Mk = (≤, Q, q0, FA, FR, δk

) be a k-edge finite
state automaton with null transition. We call Mk that
a k-edge finite state automaton with null transition
and zero successor denoted by k-FSA0

 if for all q
FA has no successor states.

(a) 3-FSA

(b) 3-FSA0


Fig 5. Example of 3-FSA and 3-FSA0


Fig. 5 shows 3-FSA and 3-FSA0

. To
prove equivalence, we show the equivalence in the
below proposition.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6969

Proposition 3.4 Let Mk = (≤, Q, q0, FA, FR, δk) be a
k-edge finite state automata recognizing the
language L(Mk). There exists a k-edge finite state
automaton with null transition that recognizes
L(Mk).
Proof: To show the existence of a k-edge finite
state automaton with null transition (k-FSA), we
construct a k-FSA denoted by

Mk
 = (≤, Q, q0, FA, FR, k

).
We defined each tuples as follows.

 F A = {qi : qi  FA},
 Q  = Q  F A,
 k

 = (k  {(q i, a, b, p) : qi  FA }
{(Pred(qi), , , q i)})  {(q, a, b, p) :
q  FA }

From this construction, we see that Mk
 can

recognize L(Mk). 

4. CLOSURE PROPERTIES OF THE
CLASS OF k-ACCEPTABLE LANGUAGES

All closure properties that we present in this

paper are constructive: when the class of languages

 is closed under an operator, we always constructs

the automaton M such that L(M) give L1,

L2. In this section, we give constructively
proofs that the class ok k-acceptable languages (k-

ACC)is closed under complementation, union,
Kleene-star operation, intersection and difference as
follows.

Theorem 4.1 The class of k-acceptable languages
is closed under complement.
Proof: To show closure under complementation,

we let Mk1 = (≤, Q, q0, FA, FR, δk) be a k-edge finite

state automata that accept L1  k-ACC. Then we
construct a k-edge finite state automata defined by

Mk12 = (≤, Q, q0, Q  FA, Q  FR, δk) to recognize
the complementation of L1.

From the definition 2.2 of a k-edge finite
state automata, we assume δk* be a total function.

So that δk*(q0, w) is defined for all w  ≤*.

Consequently either δk*(q, w) is a final state, in

which case w  L1, or which δk*(q0, w) Q - FA

and w 
1

L .

L(Mk12) = {w  ≤* : k*(q0, w)  Q FA}
 = {w  ≤* : k*(q0, w)  FA}

 = ≤*  {w  * : k*(q0, w)  FA}
 = ≤*  L(Mk1)

 =)(
1k

ML

It follows that
1

L  k-ACC., Thus, the class of k-

acceptable languages is closed under complement.
 

Theorem 4.2 The class of k-acceptable

languagesis closed under union.
Proof: Let L1 = L(Mk1) and L2 = L(Mk2) be

languages in k-ACC, where Mk1 = (≤, Q1, q01, FA1,

FR1, δk1) and Mk2 = (≤, Q2, q02, FA2, FR2, δk2) are k-
edge finite state automata.

To show closure under union, we construct

a combined k-edge finite state automata Mk12 = (≤,
Q, q0, FA, FR, k) recognizing L1  L2 by following
steps.
Step 1 : From proposition 3.4, we can construct the

k-edge finite state automata with null

transition and zero successor Mk1_0
 from

Mk1 and Mk2_0
 from Mk2.

Step 2 : Construct Q of Mk12 as follows.
 Q = Q1  Q2.
Step 3 : Construct FA = {qfinal}.
Step 4 : Construct q0 = qini.
Step 5 : We add q0 and the set of accepting state FA

into Q. Now, we have Q = Q  FA 

{qini}.

Step 6 : Construct FR = Q - FA.

Step 7 : Construct the k-transition function k as
following.

 7.1 : Construct two null transition by linking q0

to initial states of Mk1_0
 and Mk2_0


. That is

k = {(qini, , , q01), (qini, , , q02)}.

 7.2 : Add all transitions of Mk1_0
 into k. We

have k = k  k1.
 7.3 : Add all transitions of Mk2_0

 into k. We

have k = k  k2.
 7.4 : Construct two null transition by linking

for each q  FA1 of Mk1_0
 into k of Mk.

Then we get k = k  {(q, , , qfinal) : q 
FA1}.

 7.5 : Construct two null transition by linking

for each q  FA2 of Mk2_0
 into k of Mk.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6970

Then we get k = k  {(q, , , qfinal) : q 
FA2}

Then it is simple matter to show that w  L1

 L2 if and only if it is accepted by Mk12.
Consequently, L1  L2  k-ACC. Thus, the

class of k-acceptable languages is closed under

union. 

Theorem 4.3 The class of k-acceptable
languagesis closed under intersection.
Proof: For proving closure property under
intersection, we start with DeMorgan’s law, taking
the complement of both sides. Then

L1L2 = 21 LL 

For any language L1, L2  k-ACC. Now, if L1 and
L2 are k-acceptable languages, then by closure

under complementation, so are
1

L and
2

L . Using

the closure property under union (Theorem 4.2), we

next get that
21

LL  is k-acceptable. Using the

closure property under complementation (Theorem

4.1) once more, we see that
21

LL  is k-

acceptable. Thus, the class of k-acceptable
languages is closed under intersection. 

Theorem 4.4 The class of k-acceptable languages
is closed under concatenation.
Proof: Let L1 = L(Mk1) and L2 = L(Mk2) be

languages in k-ACC, where Mk1 = (≤, Q1, q01, FA1,

FR1, δk1) and Mk2 = (≤, Q2, q02, FA2, FR2, δk2) are k-
edge finite state automata.

To show closure under concatenation, we
construct a combined k-edge finite state automata

Mk12 = (≤, Q, q0, FA, FR, k) recognizing L1L2 by
following steps.
Step 1 : From proposition 3.4, we can construct a k-

edge finite state automata with null

transition and zero successor Mk1_0
 from

Mk1 and a k-edge finite state automata with

null transition and zero successor Mk2_0


from Mk2.
Step 2 : Construct Q of Mk12 as follows.
 Q = Q1  Q2.
Step 3 : Construct FA = {qfinal}.
Step 4 : Construct q0 = qini.

Step 5 : We add q0 and the set of accepting state FA
into Q. Now, we have

 Q = Q  FA  {qini}.
Step 6 : Construct FR = Q - FA.

Step 7 : Construct the k-transition function k as
following.

 7.1 : Construct a null transition by linking

 q0 to initial states of Mk1_0


. That is k =

 {(qini, , , q01) }.

 7.2 : Add all transitions of Mk1_0


 into k.

 We have k = k  k1.
7.3 : Construct null transition by linking

 every final states of Mk1_0


 to the

 initial state of Mk2_0
. That is

 k = k  {(q, , , q02) : q  FA1}.

 7.4 : Add all transitions of Mk2_0


 into k.

 We have k = k  k2.
 7.5 : Construct null transitions by linking

every final states of Mk2_0


 to the

final state of Mk. That is k = k 

{(q, , , qfinal) : q  FA2}.

Then it is simple matter to show that w  L1L2 if
and only if it is accepted by Mk12. Consequently, the
language L1L2 is a k-acceptable language. Thus, the
class of k-acceptable languages is closed under

concatenation. 

Theorem 4.5 The class of k-acceptable languages
is closed under Kleene-star operation.
Proof: Let L1 = L(Mk1) be a language in k-ACC,

where Mk1 = (≤, Q1, q01, FA1, FR1, δk1).
To show closure under Kleene-star

operation, we construct a combined k-edge finite

state automata Mk12 = (≤, Q, q0, FA, FR, k)
recognizing L1* by following steps.
Step 1 : From proposition 3.4, we can construct k-

edge finite state automata with null

transition and zero successor Mk1_0
 from

Mk1.
Step 2 : Construct Q of Mk12 as follows.
 Q = Q1
Step 3 : Construct FA = {qfinal}.
Step 4 : Construct q0 = qini.
Step 5 : We add q0 and the set of accepting state FA

into Q. Now, we have Q = Q  FA  {qini}.

Step 6 : Construct FR = Q - FA.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6971

Step 7 : Construct the k-transition function k as
following.

 7.1 : Construct a null transition by

linking q0 to initial states of Mk1_0


.

That is k = {(qini, , , q01) }.
7.2 : Construct a null transition by linking
 the initial state of Mk to the final
 state of Mk that is

 k = k  {(qini, ,, qfinal)}.

 7.3 : Add all transitions of Mk1_0


 into k.

 We have k = k  k1.
 7.4 : Construct a null transition by linking
 the final state of Mk to the initial
 state of Mk that is

 k = k  {(qfinal, , , qini)}

Then it is simple matter to show that w  L1* if and
only if it is accepted by Mk12. Consequently, L1* is
k-acceptable.

Thus, the class of k-acceptable languages

is closed under concatenation 

Theorem 4.6 The class of k-acceptable languages
is closed under difference.
Proof: To show closure property under
difference, we need to show that if L1 and L2 are k-
acceptable languages, then L1 - L2 is a k-acceptable
language also.
From the definition of a set difference,

1 2 1 2L L L L   .

The fact that L2 is k-acceptable implies
2

L is also

k-acceptable. Then, because of the closure of k-

ACC under intersection, we know that 1 2L L is

k-acceptable. Therefore, L1 - L2 is k-acceptable.
Thus, the class of k-acceptable languages

is closed under difference 

5. DECIDABILITY OF k-ACC

In this section, we consider the decidability
status of some decision problems for k-acceptable
languages.

Lemma 5.1 Let Mk = (≤, Q, q0, FA, FR, δk) be a k-
edge finite state automata. Then, the language
L(Mk) is infinite if and only if δk*(p, u) = p in Mk

for some u  + and p  Q such that p is both
reachable and terminating in Mk.

Proof :

(If part) Let Mk = (≤, Q, q0, FA, FR, δk) be a k-edge
finite state automata such that if δk*(p, w) = p is in

Mk for some w  + and p  Q such that p is both
reachable and terminating in Mk.
Then,
 δk*(q0, w) = δk*(p, u) = δk*(p, v) = f

where w  L(Mk), u, v  
≤, p  Q, f  FA.

Consequently,

 δk*(q0, w) = δk*(p, uy) = δk*(p, v) = f

where y = yn for all n  0.
Therefore, L(Mk) is infinite, so the if part holds.

(Only if part) : Let Mk = (≤, Q, q0, FA, FR, δk) be a
k-edge finite state automata such that L(Mk) is
infinite.
Then,

δk*(q0, w) = δk*(p, u) = δk*(p, v) = f

for some w  L(Mk), u, v  
≤, p  Q, f  FA.

This implies that p is both reachable and

terminating in Mk. Let y  
≤ be a string read by

Mk during δk*(p, u) = δk*(p, v).Then, δk*(p, w) = p

in Mk, so the only-if part holds. 

Theorem 5.2 The infiniteness problem is decidable
for the class of k-acceptable languages.

Proof : Let Mk = (≤, Q, q0, FA, FR, δk) be a k-edge
finite state automata. By Lemma 5.1, L(Mk) is
infinite if and only if δk*(p, u) = p is in Mk for some

y  
≤ and p  Q such that p is both reachable and

terminating in Mk. This condition can be checked
by any graph searching algorithm, such as breadth-
first search.

Therefore, the infiniteness problem is
decidable for the class of k-acceptable languages.

 

The membership problem for L  k-ACC is
to that test whether a given k-edge finite state
automata M accepts a given input string w. We
consider the language as follows.

Theorem 5.3 The membership problem is
decidable for the class of k-acceptable languages.
Proof : The language contains the encodings of all
k-edge finite state automata together with strings
that the k-edge finite state automata accept.

Let Ak-FSA = { M, w  : M is a k-edge
finite state automata that accepts input string w}.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6972

We present an algorithm that decides the language
Ak-FSA as below.

Input : a k-FSA Mk and a string w  *
Output : yes or no
Step 1 : Simulate Mk on input w.
Step 2 : If the simulation ends in an accept state,
 then return yes.
 If it ends in a nonaccepting state, then
 return no.

Therefore, the membership problem is decidable for
the class of k-acceptable languages. 

The emptiness problem for the class of k-
acceptable languages is to test whether the language
recognized by a given k-edge finite state automata
M is empty or not.

Theorem 5.4 The emptiness problem is decidable
for the class of k-acceptable languages.
Proof : We consider the language of the emptiness
problem defined as

Ek-FSA = {M : M is a k-FSA and L(M) = }.

We note that L(M) =  if and only if there is no
path in the state diagram of M from the initial state

q0 to a accepting state. If FA = , then clearly L(M)

= .
To show the emptiness problem is

decidable, we present an algorithm that decides the
language Ek-FSA as follows.

Input : a k-FSA Mk
Output : yes or no
Step 1 : Mark the initial state of Mk.
Step 2 : Repeat until no new states get marked:

Mark and state that has a transition coming
into it from any that is already marked.

Step 3 : If no accepting state is marked, then return

 yes; otherwise return no.

Therefore, the emptiness problem is decidable for

the class of k-acceptable languages.. 

The language equivalence problem for the
class of k-acceptable languages is to test whether
two given k-edge finite state automata recognize the
same language.

Theorem 5.5 The equivalence problem is decidable
for the class of k-acceptable languages.
Proof : We consider the language of an equivalence
problem EQk-FSA defined as

EQk-FSA = {Mk1, Mk2 : M1 and M2 are k-edge finite
state automata and L(Mk1) = L(Mk2)}.

To prove EQk-FSA is a decidable language,
we use Theorem 5.4. We construct a new k-edge
finite state automata Mk3 from k-edge finite state
automata Mk1 and Mk2, where accept only those
string that are accepted by either Mk1 or Mk2 but not
by both. Thus, if the k-edge finite state automata
Mk1 and Mk2 recognize the same language, the k-
edge finite state automata will accept nothing. The
language of Mk3 is

   3 1 2 1 2() () () () ()k k k k kL M L M L M L M L M    .

We can construct Mk3 from Mk1 and Mk2
with the construction for proving the class of k-
acceptable closed under complementation, union
and intersection proved in the section 4. These
construction are algorithms that can be carried out
by Turing machines. Once we have constructed Mk3
we can use Theorem 5.4 to test whether L(Mk3) is
empty. If it is empty, L(Mk1) and L(Mk2) must be
equal. We present an algorithm that decides the
language EQk-FSA as below.

Input : k-FSA Mk1 and Mk2
Output : yes or no
Step 1 : Construct a k-FSA Mk3 as described above.
Step 2 : Run the algorithm from Theorem

 5.4 on the input  Mk3 .
Step 3 : If the algorithm return yes, return yes;
 otherwise return no.

Therefore, the equivalence problem is decidable for
the class of k-acceptable languages.. 

Theorem 5.6 The disjointness problem is decidable
for the class of k-acceptable languages.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6973

Proof : We consider the language of an equivalence
problem Dk-FSA defined as

Dk-FSA = {Mk1, Mk2 : M1 and M2 are k-edge finite

state automata and L(Mk1)  L(Mk2) = }.
To prove Dk-FSA is a decidable language,

we use Theorem 4.3 that it follows that L(Mk1) 
L(Mk2) is a k-acceptable language. Clearly, we can
construct a k-edge finite state automata accepting

L(Mk1)  L(Mk2). Then the algorithm in Theorem

5.5 can be used to test the emptiness of the

language L(Mk1)  L(Mk2). We present an

algorithm that decides the language Dk-FSA as below.

Input : k-FSA Mk1 and Mk2
Output : yes or no
Step 1 : Construct a k-FSA Mk3 that accepts

 L(Mk1)  L(Mk2) as described above.
Step 2 : Run the algorithm from Theorem

 5.5 on the input  Mk3 .
Step 3 : If the algorithm return yes, return yes;
 otherwise return no.

Therefore, the disjointness problem is decidable for
the class of k-acceptable languages.. 

6. CONCLUSION

We were motivated by the aim to come to a
better understanding of formal languages
recognized by k-edge finite state automata called k-
acceptable languages. In this paper, we have
achieved for investigation of the closure properties
and proved that the class of k-acceptable languages
is closed under complementation, union,
intersection, concatenation, difference and Kleene-
star operation. Moreover, we have shown that
infiniteness problem, membership problem,
equivalence problem, emptiness problem and
disjointness problem of k-acceptable languages are
decidable. The theoretical properties obtained in
this work benefit to better understand the powerful
of k-edge finite state automata.

ACKNOWLEDGEMENT

This research was funded by King Mongkut’s
University of Technology North Bangkok Contract
no. KMUTNB-GOV-58-30.

REFRENCES:

[1] N. Chomsky, “Three models for the description

of languages”, Proceedings of the Symposium
on Information Theory, 1956.

[2] C.D. Higuera, Grammatical inference: Learning
Automata and Grammars, Cambridge
University Press, Cambridge, 2010.

[3] L. Peter, An Introduction to Formal Languages
and Automata, Third Editions, Jones & Bartlett,
2001.

[4] K. Chatterjee, L. Doyen, T.A. Henzinger,
“Expressiveness and Closure Properties for
Quantitative Languages”, Proceedings of the
24th Annual Symposium on Logic in Computer
Science (LICS-09), 2009.

[5] T. Shang, X. Lu, R. Lu, “Closure Properties of
Quantum Turing Languages”, Proceedings of
the Computability in Europe 2012 (CiE2012),
2012.

[6] H. Fernau, “Closure Properties of Ordered
Languages”, EATCS Bullentin, Vol. 58, 1996,
pp. 162-165.

[7] C. D. Higuera, “Ten open problems in
grammatical inference”, Proceedings of 8th
International Colloquium on Grammatical
Inference, 2006.

[8] P. Cruz-Alc´azar, E. Vidal, “Two grammatical
inference applications in music processing”,
Applied Artificial Intelligence, Vol. 22(1–2),
2008, pp. 53–76.

[9] N. Abe, H . Mamitsuka, “Predicting protein
secondary structure using stochastic tree
grammars”, Machine Learning Journal, 1997
pp. 275-30.

[10] A. Jitpattanakul, A. Surarerks, “The study of
learnability of the class of k-acceptable
languages on Gold’s learning model”, Chiang
Mai Journal of Science, Vol. 40, No.2, 2013,
pp. 248-260.

[11] A. Jitpattanakul, “Learnability of strictly k-
acceptable languages”, Far East Journal of
Mathematical Science, Vol. 71, No.1, 2012, pp.
169-184.

