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ABSTRACT 
 

Finite state automata (FSA) are computational models which are used for studying theoretical complexity 
of computational problems. The computational model of k-edge finite state automata (k-FSA) have been 
introduced to compute naturally ordered data such as data in music processing and time series domain. The 
k-edge finite state automata contain theoretical interest that numbers of their edges are bounded with a k 
value. In order to use such model in practice, some theoretical properties need to be investigated by way of 
their classes of formal languages. This paper investigates the closure properties and decidability of the class 
of formal languages recognized by k-edge finite state automata called k-acceptable languages (k-ACC). The 

results include the following: (i) for k  1, the class of k-acceptable languages is closed under complement. 

(ii) for k  2, the class of k-acceptable languages is closed under complementation, union, intersection, 
concatenation and Kleene-star operation. (iii) The infiniteness problem, membership problem, equivalence 
problem and emptiness problem of k-acceptable languages are decidable. 

Keywords: Decidability, Closure Properties, K-Acceptable Languages, K-Edge Finite State Automata 
 
1. INTRODUCTION  
 

Formal language theory is a research field 
originated from attempt to understand how human 
learns natural languages by Noam Chomsky in 
1950s [1]. The paper defined the syntax of 
languages using precise mathematical rules called 
grammars. The research results have greatly 
benefited to many fields of computer science, 
including programming languages, compiler design, 
and artificial intelligence. After the advent of 
modern electronic computers, mathematical model 
of computer known as automata plays an important 
role of model of computation. Specifically, this 
computational model can be viewed a recognizer of 
the formal languages.  

Nowadays, the formal languages and 
grammatical representations have many 
applications in other fields, including molecular 
biology and symbolic dynamic [2]. However 

theoretical properties have been studied in parallel 
to better understand the powerful of computational 
models. Some of these are closure properties and 
decidability of computational problems. 

Closure properties of various formal 
languages under different operation are of 
considered theoretical interest [3]. The closure 
properties are often useful in constructing new 
languages from existing languages. That is every 
application of the operation on languages of the 
class yield a language of the class. Moreover, the 
established closure properties could be also use to 
prove some decision problems known as 
decidability. In the field of research, various classes 
of formal languages have been investigated this 
theoretical properties, including formal language 
classes in Chomsky hierarchy (regular languages, 
context-free languages, context-sensitive languages 
and recursively enumerable languages) shown in 
Fig. 1. Moreover, other classes such as quantitative 
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languages [4], quantum Turing languages [5], and 
ordered languages [6] have also investigated their 
closer properties and decidability.  

 

 
Fig 1. Chomsky hierarchy 

 
In this paper we focus on the theoretical 

properties of class of formal languages called k-
acceptable languages denoted by k-ACC. The 
studied languages is a subclass of regular languages 
recognized by k-edge finite state automaton, shortly 
called k-FSA, has been introduced by Higuera in [7] 
to be a computational model recognized strings 
defined on an ordered alphabet. These strings can 
be found in many real-world applications. For 
example the alphabet of melody is naturally ordered 
in the case of music [8]. Another example, in time 
series domain, the discretization of original data in 
numeric to discrete data needs to keep topological 
characteristics [9]. The interesting property of k-
edge finite state automata is that its size depends on 
the k value instead of the size of alphabet. This is a 
reason why the study of k-edge finite state automata 
is useful and interesting. 

The classes of formal languages that 
recognized by k-edge finite state automata have 
been studied in [10-11] to investigate their 
learnability. The results have shown that the class 
of k-acceptable languages is shown that it is 
learnable in the limit from polynomial time and data 
from positive and negative examples. However, 
there are no literatures concerned with theoretical 
properties of the language class. Research 
objectives for this work is to investigate the closure 
properties and decidability of the class of k-
acceptable languages.  

This paper is organized as follows. In 
section 2, we give preliminaries composing of 
related definitions and some examples. Section 3 

studies algebraic properties of k-edge finite state 
automata. Section 4 investigates closure properties 
of k-acceptable languages. In section 5, we show 
that infiniteness problem, membership problem, 
equivalence problem and emptiness problem of the 
class of k-acceptable languages are decidable. The 
final section is conclusion. 

 

2. PRELIMINARIES 

The related definitions and notations used 
throughout this paper are provided in this section. 

2.1    Formal languages and automata 
Let  be an alphabet that is a finite and 

nonempty set of characters. The size of  is a 
number of letters, denoted by ||. A finite sequence 
of letters from  is called a string. Given a string w, 
the length of strings is the total number of letters 
appearing in w and it is denoted by |w|. The string 
with length zero is called the null string denoted by 
λ. The infinite set of all possible strings over , 
denoted by *, is the set of all finite-length strings 
generated by concatenating zero or more letters of 
. An alphabet  is called an ordered alphabet 
denoted by . Given an order relation  on , we 
can define a lexicographic-length order over * for 
two strings u, v  *, by setting u <lex v if and only 
if |u| < |v| or there exist strings w, u, v * and 
two letters x < y   such that | u| < | v| and u = 
wxu, v = wyv. A formal language over  denoted 
by L is any subset of *. The family of languages 
over , denoted by , is called a class of languages. 
 
Definition 2.1  
A finite state automaton (FSA) is a grammatical 
representation that is typically defined as a 5-tuple 
M = (, Q, q0, F, ), where  

  is a finite alphabet, 
 Q is a finite non-empty set of states,  
 q0  Q is an initial state,  
 F  Q is a set of final states, and  
  : Q    Q is a state transition 

function.  
 

The state transition function  can be 
extended to a mapping *: Q  * Q in the 
following inductive way:  
(i) *(q, ) = q, for each state q  Q, where  is the 
null string, and  
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(ii)  *(q, wa) =  ( *(q, w), a), for each state q  Q, 
each letter a  , and each string w   *.  

An example of a finite state automata is 
shown in Fig. 2. 

 

a b

b

a

q0 q1

 
Fig 2. a finite state automata 

 
Theoretically, an automaton plays an 

important role as a language recognizer. A string w 
is recognized by an finite state automaton M = (, 
Q, q0, F, ) if *(q, w)  F. The language 
recognized by M, denoted by L(M), is the set of all 
strings that are recognized by the automaton M and 
this set is called a regular language. A language L is 
recognizable if there exists an automaton M such 
that L = L(M).  

Because of size of finite state automata, an 
automaton called k-edge finite state automaton has 
been introduced. They contains very nice properties 
with numbers of their edges are bounded with a k 
value. The definition are shown as follows. 

 
Definition 2.2 
A k-edge finite state automaton (k-FSA) is a 6-tuple 
denoted by Mk = (Σ≤, Q, q0, FA, FR, δk) where  

 Σ≤ is a finite ordered alphabet,  

 Q is a finite set of states,  

 q0 is the initial state,  

 FA⊆Q is a set of accepting states, 

 FR⊆Q is a set of rejecting states, and 

 δk : Q × Σ≤ × Σ≤  Q is the transition 
function. 

The transition function δk  defined as q  Q, |{[x, 

y]: δk(q, x, y) ≠ }| ≤ k, and if δk(q, a1, b1) ≠ δk(q, 

a2, b2) then {z : a1 ≤ z ≤b1}{z : a2 ≤ z ≤ b2} = . 

The extended transition function δk
 *: Q×* Q is 

defined as δk
 *(q, ) = q and  δk

 *(q, aw) = δk
 *(q, w) 

where x ≤ a ≤ y and δk(q, x, y) = q such that q, q  

Q, a, x, y  Σ≤, w  Σ≤*.  

Remark : Notice that the maximum number of 
edges of a state is used to determines the value of k 
in definition of k-edge finite state automata. Thus a 
k-edge finite state automata can be also viewed as a 
m-edge finite state automata such that m > k for m, 

k  . 

Definition 2.3 
Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge finite 
state automata. The transition graph of Mk, denoted 
by (Mk), is a directed graph, where nodes are 
states from Q, and there is an edge from p to q 
labeled with an interval [a, b] if and only if  (p, a, b, 
q)  δk. A state q  Q is reachable if there is a walk 
from q0 to q in (Mk). A state q  Q is terminating 
if there is a walk from q to some f  FA. 

Definition 2.4 
Languages recognized by k-edge finite state 
automata Mk = (Σ≤, Q, q0, FA, FR, δk) are called k-
acceptable languages defined as L = {w : δk

 *(q0, w) 

 FA}. A set of all k-acceptable languages is called 
that a class of k-acceptable language denoted by k-
ACC for any integer k ≥ 0. 
 
Example 2.1 

Let L be a formal language defined over ≤ = 
{a1, a2, a3, a4, a5}. The formal language L defined 
by regular expression as  

((a1+a2+a3) + (a4+a5) a1
*(a2+a3+a4+a5))*.  

This automata accepting the language L is 2-edge 

finite state automaton because for any q  Q, |{(x, 

y) : δ2(q, x, y) ≠ }| = 2 and for state q0 : δ2(q0, a1, 

a3) ≠ δ2(q0, a4, a5) ≠  then {z : a1≤ z ≤ a3}{z : a4 

≤ z ≤ a5} =  for state q3 : δ2(q3, a1, a1) ≠ δ2(q3, a2, 

a5) ≠  then {z : a1 ≤ z ≤ a1}{z : a2 ≤ z ≤ a5} = .  
The 2-edge finite automata in this example is 
depicted in Fig. 3 

 

 
         Fig 3. 2-edge finite state automata 
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2.2    Closure properties 
  Theoretically, a set is closed under an 
operation if applying that operation to any members 
of the set yields a members of the set. In formal 
language theory, the closure is a property about 
classes of languages, not about individual strings. 

Definition 2.5 
Let be  a class of languages and L1, L2, L3,, Ln 

be languages in . The language class  is said to 
be closed under an operation op, if for all languages 

L1, L2, L3,, Ln in  then we have op(L1, L2, L3,, 

Ln) in . 
 

Investigation of the closure properties of a 
class of formal languages is one of the most 
interesting and fundamental research tasks in 
formal languages theory. Normally any progress 
leads to insights and techniques that yield a better 
understanding of the class. In case of languages in 
Chomsky’s hierarchy, the results are shown in 
Table 1 as below. 

Table 1 Closure properties of classes in Chomsky’s 
hierarchy 

 
 

2.3    Decidability 
Decidability is an important property 

concerning to ask decision problems about formal 
languages. Informally, we use the word problem to 
refer to a question such as “Is a given k-acceptable 
language finite?”. By restricting our attention to 
problems with yes-no answers and encoding 
instances of the problem by strings over some finite 
alphabet, we can transform the question to whether 
or not there exists an algorithm for solving a 
problem.  A problem whose language there exists 
an algorithm for solving is said to be decidable. 
Otherwise, the problem is undecidable. That is, a 
problem is undecidable if there is no algorithm that 
takes as input and instance of the problem and 
determines whether the answer to that instance is 
“yes” or “no”. 
 

3.     k-EDGE FINITE STATE AUTOMATA 
AND ALGEBRAIC PROPERTIES 

To investigate closure properties and 
decidability of the class of k-acceptable languages, 
some algebraic properties are needed. In this 
section we give some propositions that will be 
referred in next section. 

Proposition 3.1 Let Mk = (, Q, q0, FA, FR, k) be 
k-edge finite state automata, we can always 
construct a finite state automata represents by  Md = 
(, Qd, q0d, Fd, d) such that L(Mk) = L(Md). 
Proof: Let Mk = (, Q, q0, FA, FR, k) defined on 
the followings. 

  = {a1, a2,  , an},  
 k = {(p, a, b, q) : p, q  Q and a, b  } 

such that #(k) = k. 
From the definition 2.2, the Mk is a k-edge finite 
state automata recognizing a language L.  

We can construct a finite state automata 
recognized the language L as follows. We give a 
finite state automata defined by  

Md = (, Qd, q0d, Fd, d)  
such that   

  = {a : a  },  

 Qd = Q,  

 q0d = q0,  

 Fd = FA  and  

 d = {(p, z, q) : a  z  b for all (p, a, b, q) 

 k}.  
From this construction, it follows that Md 

recognizes L. Therefore, L(Mk) = L(Md).          
 
Proposition 3.2 For any integer k ≥ 0, a k-FSA is a 
(k+1)-FSA. 
Proof: Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge 
finite state automata.  

Suppose that q is a state in Q such that q  

Q, |{[x, y] : δk (q, x, y) ≠ }| = k and  if δk(q, a1, b1) 

≠ δk(q, a2, b2) then {z : a1 ≤ z ≤ b1}{z : a2 ≤ z ≤ 

b2} = .  
For all integer k, it is algebraically obvious 

that  
k < k + 1. 

It follows that |{[x, y] : δk(q, x, y) ≠ }| ≤ 
k+1. Therefore, Mk is a (k+1)-edge finite state 

automata by definition.                           
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Proposition 3.3 For any integer k ≥ 0, k-ACC  
(k+1)-ACC. 
Proof: Let Mk = (Σ≤, Q, q0, FA, FR, δk) be a k-edge 

finite state automata and Lk  k-ACC be a k-
acceptable language recognized by Mk.  

In order to prove this proposition, we will 
show that Lk is a language in the class (k+1)-ACC. 
In other word, we have to show there exists a (k+1)-
finite state automata to recognize the language Lk.  

Suppose Mm = (Σ≤, Q, q0, FA, FR, δm) is a 
m-edge finite state automata. We define the 
transition function δk+1 of Mm as 

δm= δk– {(q0, a0, ai, p) : ai  Σ≤, p  Q }{(q0, a0, 
a0, p), (q0, a1, ai, p)}.  
It follows that  

for all q  Q, |{[x, y] : m(q, x, y)  }| = k+1. 
It follows that Mm is a (k+1)-edge finite 

state automata recognizing the language Lk. That is 

the language Lk  (k+1)-ACC. 

Thus we can conclude that k-ACC  

(k+1)-ACCfor k ≥ 0.            

 
 The relation between classes of k-
acceptable languages and regular languages shown 
as the Venn diagram in Fig.4. 
 

 

Fig. 4 The relation between classes of k-acceptable 
languages and regular languages 

 
Definition 3.1 
A k-edge finite state automaton with null transition 
(k-FSA) is a 6-tuple Mk = ( ≤, Q, q0, FA, FR, δk

) 
where  

 Σ≤ is an ordered alphabet,  

 Q is a finite set of states,  

 q0 is the initial state,  

 FA 	Q is a set of accepting states and  

 FR Q is a set of rejecting states,  

 δk
 : Q × ≤  {}× ≤  {}  Q is the 

transition function with null defined as for 

any q  Q, #(δk
) = |{[x, y]: δk

 (q, x, y) ≠ 

}| = k, and if δk
(q, a1, b1) ≠ δk

(q, a2, b2) 

then  {z : a1 ≤ z ≤b1}{z : a2 ≤ z ≤ b2} = 

. 

The extended transition function δk
*: Q× * 

Q is defined as δk
 *(q, ) = q and  δk

 *(q, aw) =   

δk
 *(q, w) where x ≤ a ≤ y and δk

(q, x, y) = q 
such that q, q  Q, a, x, y   ≤, w   ≤

*.  

 From above definition, k-FSA can do 
transition a state to another state by null string, but 
not for k-FSA. 
 
Definition 3.2 
Let Mk = (≤, Q, q0, FA, FR, δk

) be a k-edge finite 
state automaton with null transition. We call Mk that 
a k-edge finite state automaton with null transition 
and zero successor denoted by k-FSA0

 if for all q 
FA has no successor states. 

 

(a) 3-FSA 

 

(b) 3-FSA0
 

Fig 5. Example of 3-FSA and 3-FSA0
 

 
Fig. 5 shows 3-FSA and 3-FSA0

. To 
prove equivalence, we show the equivalence in the 
below proposition. 
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Proposition 3.4 Let Mk = (≤, Q, q0, FA, FR, δk) be a 
k-edge finite state automata recognizing the 
language L(Mk). There exists a k-edge finite state 
automaton with null transition that recognizes 
L(Mk). 
Proof: To show the existence of a k-edge finite 
state automaton with null transition (k-FSA), we 
construct a k-FSA denoted by  

Mk
 = (≤, Q, q0, FA, FR, k

). 
We defined each tuples as follows. 

 F A  = {qi : qi  FA},  
 Q  = Q  F A,  
 k

 = (k  {(q i, a, b, p) : qi  FA } 
{(Pred(qi), , , q i)})  {(q, a, b, p) : 
q  FA } 

From this construction, we see that Mk
 can 

recognize L(Mk).                                        
 

4.     CLOSURE PROPERTIES OF THE 
CLASS OF k-ACCEPTABLE LANGUAGES  

 
All closure properties that we present in this 

paper are constructive: when the class of languages 

 is closed under an operator, we always constructs 

the automaton M such that L(M) give L1, 

L2. In this section, we give constructively 
proofs that the class ok k-acceptable languages (k-

ACC)is closed under complementation, union, 
Kleene-star operation, intersection and difference as 
follows. 
 
Theorem 4.1 The class of k-acceptable languages 
is closed under complement. 
Proof:  To show closure under complementation, 

we let Mk1 = (≤, Q, q0, FA, FR, δk) be a k-edge finite 

state automata that accept L1  k-ACC. Then we 
construct a k-edge finite state automata defined by 

Mk12 = (≤, Q, q0, Q  FA, Q  FR, δk) to recognize 
the complementation of L1.  

From the definition 2.2 of a k-edge finite 
state automata, we assume δk* be a total function. 

So that  δk*(q0, w) is defined for all w  ≤*. 

Consequently either δk*(q, w) is a final state, in 

which case w  L1, or which δk*(q0, w) Q - FA 

and w 
1

L .  

L(Mk12) = {w  ≤* : k*(q0, w)  Q FA} 
              = {w  ≤* : k*(q0, w)  FA} 

              = ≤*  {w  * : k*(q0, w)  FA} 
              = ≤*  L(Mk1) 

              = )(
1k

ML  

It follows that 
1

L  k-ACC., Thus, the class of k-

acceptable languages is closed under complement.                   
       

 
Theorem 4.2 The class of k-acceptable 

languagesis closed under union. 
Proof:  Let L1 =  L(Mk1) and L2 = L(Mk2) be 

languages in k-ACC, where Mk1 = (≤, Q1, q01, FA1, 

FR1, δk1) and Mk2 = (≤, Q2, q02, FA2, FR2, δk2) are k-
edge finite state automata.  

To show closure under union, we construct 

a combined k-edge finite state automata Mk12 = (≤, 
Q, q0, FA, FR, k) recognizing L1  L2 by following 
steps. 
Step 1 : From proposition 3.4, we can construct the 

k-edge finite state automata with null 

transition and zero successor   Mk1_0
 from 

Mk1 and Mk2_0
 from Mk2.  

Step 2 : Construct Q  of Mk12 as follows.  
           Q = Q1  Q2. 
Step 3 : Construct FA  = {qfinal}. 
Step 4 : Construct q0  = qini. 
Step 5 : We add q0 and the set of accepting state FA  

into Q. Now, we have  Q = Q  FA  

{qini}. 

Step 6 : Construct FR  = Q - FA. 

Step 7 : Construct the k-transition function k as 
following. 

      7.1 : Construct two null transition by linking  q0 

to initial states of Mk1_0
 and Mk2_0


. That is 

k = {(qini, , , q01),  (qini, , , q02)}. 

      7.2 : Add all transitions of  Mk1_0
 into k. We 

have k = k  k1. 
       7.3 : Add all transitions of  Mk2_0

 into k. We 

have k = k  k2. 
       7.4 : Construct two null transition by linking 

for each q  FA1 of Mk1_0
 into  k of Mk. 

Then we get k = k  {(q, , , qfinal) : q  
FA1}. 

       7.5 : Construct two null transition by linking 

for each q  FA2 of Mk2_0
 into  k of Mk. 
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Then we get k = k  {(q, , , qfinal) : q  
FA2} 

Then it is simple matter to show that w  L1 

 L2 if and only if it is accepted by Mk12. 
Consequently, L1  L2  k-ACC. Thus, the 

class of k-acceptable languages is closed under 

union.      

 
Theorem 4.3 The class of k-acceptable 
languagesis closed under intersection. 
Proof:  For proving closure property under 
intersection, we start with DeMorgan’s law, taking 
the complement of both sides. Then 

L1L2 = 21 LL   

For any language L1, L2  k-ACC. Now, if  L1 and 
L2 are k-acceptable languages, then by closure 

under complementation, so are 
1

L and 
2

L . Using 

the closure property under union (Theorem 4.2), we 

next get that 
21

LL  is k-acceptable. Using the 

closure property under complementation (Theorem 

4.1) once more, we see that 
21

LL   is k-

acceptable. Thus, the class of k-acceptable 
languages is closed under intersection.             
 
Theorem 4.4 The class of k-acceptable languages
is closed under concatenation. 
Proof:  Let L1 = L(Mk1) and L2 = L(Mk2) be 

languages in k-ACC, where Mk1 = (≤, Q1, q01, FA1, 

FR1, δk1) and Mk2 = (≤, Q2, q02, FA2, FR2, δk2) are k-
edge finite state automata.  

To show closure under concatenation, we 
construct a combined k-edge finite state automata 

Mk12 = (≤, Q, q0, FA, FR, k) recognizing L1L2 by 
following steps. 
Step 1 : From proposition 3.4, we can construct a k-

edge finite state automata with null 

transition and zero successor Mk1_0
 from 

Mk1 and a k-edge finite state automata with 

null transition and zero successor Mk2_0
 

from Mk2.  
Step 2 : Construct Q  of Mk12 as follows.  
           Q = Q1  Q2. 
Step 3 : Construct FA  = {qfinal}. 
Step 4 : Construct q0  = qini. 

Step 5 : We add q0 and the set of accepting state FA  
into Q. Now, we have  

        Q = Q  FA  {qini}. 
Step 6 : Construct FR  = Q - FA. 

Step 7 : Construct the k-transition function k as 
following. 

     7.1 : Construct a null transition by linking   

             q0 to initial states of Mk1_0


. That is k =  

             {(qini, , , q01) }. 

       7.2 : Add all transitions of  Mk1_0


 into k.     

                We have k = k  k1. 
7.3 : Construct null transition by linking  

        every final states of Mk1_0


 to the  

        initial state of Mk2_0
. That is  

        k = k  {(q, , , q02) : q  FA1}. 

  7.4 : Add all transitions of  Mk2_0


 into k.  

          We have k = k  k2. 
  7.5 : Construct null transitions by linking 

every final states of Mk2_0


 to the 

final state of Mk. That is k = k  

{(q, , , qfinal) : q  FA2}.   

Then it is simple matter to show that w  L1L2 if  
and only if it is accepted by Mk12. Consequently, the 
language L1L2 is a k-acceptable language. Thus, the 
class of k-acceptable languages is closed under 

concatenation.                   
 
Theorem 4.5 The class of k-acceptable languages
is closed under Kleene-star operation. 
Proof:  Let L1 =  L(Mk1) be a language in k-ACC, 

where Mk1 = (≤, Q1, q01, FA1, FR1, δk1). 
To show closure under Kleene-star 

operation, we construct a combined k-edge finite 

state automata Mk12 = (≤, Q, q0, FA, FR, k) 
recognizing L1* by following steps. 
Step 1 : From proposition 3.4, we can construct k-

edge finite state automata with null 

transition and zero successor Mk1_0
 from 

Mk1.  
Step 2 : Construct Q  of Mk12 as follows.  
           Q = Q1 
Step 3 : Construct FA  = {qfinal}. 
Step 4 : Construct q0  = qini. 
Step 5 : We add q0 and the set of accepting state FA  

into Q. Now, we have Q = Q  FA  {qini}.  

Step 6 : Construct FR  = Q - FA. 
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Step 7 : Construct the k-transition function k as 
following. 

   7.1 : Construct a null transition by 

linking  q0 to initial states of Mk1_0


. 

That is k = {(qini, , , q01) }. 
7.2 :  Construct a null transition by linking  
          the initial state of Mk to the final     
          state of Mk that is  

                  k = k  {(qini, ,, qfinal)}.   

  7.3 : Add all transitions of  Mk1_0


 into k.  

          We have k = k  k1. 
  7.4 : Construct a null transition by linking  
           the final state of Mk to the initial  
           state of Mk that is  

                     k = k  {(qfinal, , , qini)} 

Then it is simple matter to show that w  L1*  if and 
only if it is accepted by Mk12. Consequently, L1*  is 
k-acceptable.  

Thus, the class of k-acceptable languages 

is closed under concatenation                        
 

Theorem 4.6 The class of k-acceptable languages
is closed under difference. 
Proof:  To show closure property under 
difference, we need to show that if  L1 and L2 are k-
acceptable languages, then L1 - L2 is a k-acceptable 
language also. 
From the definition of a set difference, 

1 2 1 2L L L L   . 

The fact that  L2 is  k-acceptable implies 
2

L  is also 

k-acceptable. Then, because of the closure of k-

ACC under intersection, we know that 1 2L L  is 

k-acceptable. Therefore, L1 - L2 is k-acceptable. 
Thus, the class of k-acceptable languages 

is closed under difference                                 
 

5. DECIDABILITY OF k-ACC 
 

In this section, we consider the decidability 
status of some decision problems for k-acceptable 
languages.  

Lemma 5.1 Let Mk = (≤, Q, q0, FA, FR, δk) be a k-
edge finite state automata. Then, the language 
L(Mk) is infinite if and only if δk*(p, u) = p in Mk 

for some u  + and p  Q such that p is both 
reachable and terminating in Mk. 

Proof :  

(If part) Let Mk = (≤, Q, q0, FA, FR, δk) be a k-edge 
finite state automata such that if δk*(p, w) = p is in 

Mk for some w  + and p  Q such that p is both 
reachable and terminating in Mk.  
Then, 
 δk*(q0, w) = δk*(p, u) = δk*(p, v) = f 

where w  L(Mk), u, v  
≤, p  Q, f  FA. 

Consequently, 

 δk*(q0, w) = δk*(p, uy) = δk*(p, v) = f 

where y = yn for all n  0.  
Therefore, L(Mk) is infinite, so the if part holds. 

(Only if part) : Let Mk = (≤, Q, q0, FA, FR, δk) be a 
k-edge finite state automata such that L(Mk) is 
infinite. 
Then, 

δk*(q0, w) = δk*(p, u) = δk*(p, v) = f 

for some w  L(Mk), u, v  
≤, p  Q, f  FA.  

This implies that p is both reachable and 

terminating in Mk. Let y  
≤ be a string read by 

Mk during δk*(p, u) = δk*(p, v).Then, δk*(p, w) = p 

in Mk, so the only-if part holds.          

 

Theorem 5.2 The infiniteness problem is decidable 
for the class of k-acceptable languages. 

Proof : Let Mk = (≤, Q, q0, FA, FR, δk) be a k-edge 
finite state automata. By Lemma 5.1, L(Mk) is 
infinite if and only if δk*(p, u) = p is in Mk for some 

y  
≤ and p  Q such that p is both reachable and 

terminating in Mk. This condition can be checked 
by any graph searching algorithm, such as breadth-
first search.  

Therefore, the infiniteness problem is 
decidable for the class of k-acceptable languages. 

                 

The membership problem for L  k-ACC is 
to that test whether a given k-edge finite state 
automata M accepts a given input string w. We 
consider the language as follows.  
 
Theorem 5.3 The membership problem is 
decidable for the class of k-acceptable languages. 
Proof : The language contains the encodings of all 
k-edge finite state automata together with strings 
that the k-edge finite state automata accept.  

Let Ak-FSA = { M, w  : M is a k-edge 
finite state automata that accepts input string w}. 
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We present an algorithm that decides the language 
Ak-FSA as below. 
 
 
Input : a k-FSA Mk and a string w  * 
Output : yes or no 
Step 1 : Simulate Mk on input w. 
Step 2 : If the simulation ends in an accept state,  
              then return yes.  
              If it ends in a nonaccepting state, then  
              return no. 
 
 
Therefore, the membership problem is decidable for 
the class of k-acceptable languages.              
 

The emptiness problem for the class of k-
acceptable languages is to test whether the language 
recognized by a given k-edge finite state automata 
M is empty or not.  

 
Theorem 5.4 The emptiness problem is decidable 
for the class of k-acceptable languages. 
Proof : We consider the language of the emptiness 
problem defined as  

Ek-FSA = {M : M is a k-FSA and L(M) = }. 

We note that L(M) =  if and only if there is no 
path in the state diagram of M from the initial state 

q0 to a accepting state. If FA = , then clearly L(M) 

= .  
To show the emptiness problem is 

decidable, we present an algorithm that decides the 
language  Ek-FSA as follows. 
 
 
Input : a k-FSA Mk  
Output : yes or no 
Step 1 : Mark the initial state of Mk. 
Step 2 : Repeat until no new states get marked: 

Mark and state that has a transition coming 
into it from any that is already marked. 

Step 3 : If no accepting state is marked, then return  

                      yes; otherwise return no. 
 
 
Therefore, the emptiness problem is decidable for 

the class of k-acceptable languages..           
 

The language equivalence problem for the 
class of k-acceptable languages is to test whether 
two given k-edge finite state automata recognize the 
same language. 

 
Theorem 5.5 The equivalence problem is decidable 
for the class of k-acceptable languages. 
Proof : We consider the language of an equivalence 
problem EQk-FSA defined as  

EQk-FSA = {Mk1, Mk2 : M1 and M2 are k-edge finite 
state automata and L(Mk1) = L(Mk2)}. 

To prove EQk-FSA is a decidable language, 
we use Theorem 5.4. We construct a new k-edge 
finite state automata Mk3 from k-edge finite state 
automata Mk1 and Mk2, where accept only those 
string that are accepted by either Mk1 or Mk2 but not 
by both. Thus, if the k-edge finite state automata 
Mk1 and Mk2 recognize the same language, the k-
edge finite state automata will accept nothing. The 
language of Mk3 is  

   3 1 2 1 2( ) ( ) ( ) ( ) ( )k k k k kL M L M L M L M L M    . 

We can construct Mk3 from Mk1 and Mk2 
with the construction for proving the class of k-
acceptable closed under complementation, union 
and intersection proved in the section 4. These 
construction are algorithms that can be carried out 
by Turing machines. Once we have constructed Mk3 
we can use Theorem 5.4 to test whether L(Mk3) is 
empty. If it is empty, L(Mk1) and L(Mk2) must be 
equal. We present an algorithm that decides the 
language EQk-FSA as below. 
 
 
Input : k-FSA Mk1 and Mk2 
Output : yes or no 
Step 1 : Construct a k-FSA Mk3 as described above. 
Step 2 : Run the algorithm from Theorem    

             5.4 on the input  Mk3 . 
Step 3 : If the algorithm return yes, return yes;  
             otherwise return no. 
 
 

Therefore, the equivalence problem is decidable for 
the class of k-acceptable languages..           
 

Theorem 5.6 The disjointness problem is decidable 
for the class of k-acceptable languages. 
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Proof : We consider the language of an equivalence 
problem Dk-FSA defined as  

Dk-FSA = {Mk1, Mk2 : M1 and M2 are k-edge finite 

state automata and L(Mk1)  L(Mk2) = }.  
To prove Dk-FSA is a decidable language, 

we use Theorem 4.3 that it follows that L(Mk1)  
L(Mk2) is a k-acceptable language. Clearly, we can 
construct a k-edge finite state automata accepting 

L(Mk1)  L(Mk2). Then the algorithm in Theorem 

5.5 can be used to test the emptiness of the 

language L(Mk1)  L(Mk2). We present an 

algorithm that decides the language Dk-FSA as below. 
 
 
Input : k-FSA Mk1 and Mk2 
Output : yes or no 
Step 1 : Construct a k-FSA Mk3 that accepts       

              L(Mk1)  L(Mk2) as described above. 
Step 2 : Run the algorithm from Theorem    

             5.5 on the input  Mk3 . 
Step 3 : If the algorithm return yes, return yes;  
             otherwise return no. 
 
 

Therefore, the disjointness problem is decidable for 
the class of k-acceptable languages..           
 

6. CONCLUSION 

We were motivated by the aim to come to a 
better understanding of formal languages 
recognized by k-edge finite state automata called k-
acceptable languages. In this paper, we have 
achieved for investigation of the closure properties 
and proved that the class of k-acceptable languages 
is closed under complementation, union, 
intersection, concatenation, difference and Kleene-
star operation. Moreover, we have shown that 
infiniteness problem, membership problem, 
equivalence problem, emptiness problem and 
disjointness problem of k-acceptable languages are 
decidable. The theoretical properties obtained in 
this work benefit to better understand the powerful 
of k-edge finite state automata. 
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