
Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6950

ECLIPSE JDT-BASED METHOD FOR DYNAMIC ANALYSIS
INTEGRATION IN JAVA CODE GENERATION PROCESS

1A. ELMOUNADI, 2N. BERBICHE, 3F.GUEROUATE, 4N. SEFIANI

System Analysis, Information Treatment and Industrial Management Laboratory,

Mohammed V University in Rabat, Morocco.

E-mail : 1a.elmounadi@gmail.com, 2nberbiche@hotmail.com, 3guerouate@gmail.com,
4nasefiani@gmail.com

ABSTRACT

In software engineering, The Unified Modeling Language (UML) is generally used as the de facto standard notation for
modeling in the analysis and the design of the object oriented software systems. As known, throughout the
modeling phase, the structural and behavioral elements go together, because they have complementary
relationship in the understanding of systems architecture. However, structural analysis has always attracted the
interest of designers more than the behavioral analysis, due to its prominent role in the code generation processes. This
vision influenced the computer-aided software engineering (CASE) tools and the model-driven engineering (MDE)
approach. As a result, by using CASE tools and taking up MDE approach as it is, the obtained code artefacts are
incomplete and become the developers responsibility. Therefore, the model’s abstraction is broken, which leads to a
paradoxical situation while adopting model-driven development. To cope with this challenge, the purpose of our paper
is to bring balance to the design stage by integrating the behavioral analysis into the code generation processes, in order
to empower and promote delivering applications without the need for hand coding.

Keywords: MDE, UML, Dynamic Analysis, Abstract Syntax Tree, Code Generation.

1. INTRODUCTION

The latest versions of the Object Management
Group (OMG) [1] standards provide well-
established notations to the platforms specification
of structural and behavioral design of software.
Thereby, in UML[2], graphical notations have
become good enough for a detailed modeling and a
simplified human communication. For example, the
activity diagram meta-model [2] actually proposes
all the elements needed for describing, at the
smallest detail, the body of methods in a software
architecture. In parallel, the modeling tools vendors
were in the obligation to follow this evolution in
alignment with the newest possibilities proposed by
the specifications. Therefore, models become
productive elements instead of being
contemplative, as they start to participate in the
development lifecycle thanks to the rise of Model-
driven engineering [3], which focuses on direct
code generation from models. Thus, in model-
driven engineering context, models incur a number
of operations in order to produce executable source
code, this process is commonly called the Model-
to-text transformation. Many approaches allow
achieving the model transformations. However,

these approaches stay not suitable to handle the
behavioral modeling aspect even if they allowed a
considerable advance besides structural modeling.
Therefore, the transformation processes based on
these approaches remain incomplete, which
requires the intervention of developers teams. The
described situation is out of keeping with the
Model-driven engineering approach that calls to
protect the model’s abstraction. The aim of this
paper is twofold: first, it introduces a new model
transformation method based on abstract syntax
tree [4], which allows an end-to-end integration of
the activity diagram in the model transformation
process. This will help to handle the behavioral
modeling aspect and perform a full-featured code
generation process from UML models. Then, the
paper presents the implementation of this method
and simulates a concrete case study. The rest of this
paper is organized as follows: The second section
presents model-driven engineering and models
transformation as the research context. Then,
multiple previous researches are highlighted in the
background part. Section 3 presents the assimilated
methodology in the current study. Section 4
describes the Eclipse JDT-based transformation
method and discusses the functioning of the given

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6951

method through the implementation part
consolidated by the experimental validation, before
moving to the conclusion and the future works.

2. RESEARCH BACKGROUND

2.1 Model-driven engineering
When model-centric development [5]

meets the software engineering concepts, we obtain
the model-driven engineering approach. In this
approach, models play a prominent role, reducing
by this fact the complexity of software development
process and promoting communication among the
several stakeholders. This implies a remarkable
gain in productivity by maximizing compatibility
between systems. Model-driven engineering
assumes that models are sustainable over time,
while development technologies are constantly

changing. Thus, models become productive
elements and become the primary artifacts that
drive the whole development process also, in
opposite to the code-centric approach, known by
limiting the models to a descriptive role only.
Several MDE initiatives exist, like OMG’s Model-
Driven Architecture (MDA) [6] and Microsoft
software Factories [7].
The model transformations are the key concept in
model-driven engineering. They constitute the most
important operations applied to models in order to
automate creation of target models from source
models.
Model transformations have been classified in
many ways [8]–[10]. In general-purpose, two kinds
of model transformations exist:
 Model-to-model transformations (M2Mt),
 Model-to-text transformations (M2Tt).

Figure 1: Simplified MDE transformation process

In one hand, a model-to-model transformation is
generally horizontal (i.e. acts at the same
abstraction level) and it can be either endogenous
or exogenous, according to the corresponding meta-
models of the source and target model. In fact, a
model transformation is endogenous when the same
meta-model defines both the source and the target
model. Whereas, a model transformation is

exogenous when the source and the target model
complies with two distinct meta-models. This kind
of model transformation usually involves a
refinement or customization to an execution
platform. On the other hand, a model-to-text
transformation represents code generation from the
model. It consists to translate the input model into a
concrete syntax, thereby producing code artifacts
ready to compilation and execution.

Figure 2: Example of the OMG stack meta-model compliance

The next section highlights several
previous researches in the same context, with a
view to bring out the multiple motivations that lead
us to this work.

2.2 Motivations
The main purpose of the current study is to

allow an end-to-end activity diagram integration in
the code generation process. Activity diagram will
represent the behavioral aspect in the current study.
While adopting model-driven development in a

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6952

software engineering process, the use of a
Computer Aided Software Engineering (CASE)
tool is unavoidable. Thus, the first step was to
check either if these tools allow code generation
from behavioral diagrams realized during the
modeling phase. CASE Tools that have been tested
for this purpose are: MagicDraw [11], IBM
Rhapsody [12], Enterprise-Architect [13],

Objecteering [14], Modelio [15], Papyrus [16],
Bouml [17] and UMLDesigner [18]. However, after
testing these CASE tools, we found that they all
integrate only the class diagram in their code
generation process, whereas the other diagrams
remain unexploited. As known, class diagram is the
eponymous structural diagram in UML.

Table 1: Tested modeling tools

Name License Diagrams used in the code generation
process

MagicDraw Commercial Class diagram
IBM Rhapsody Commercial Class diagram
Enterprise-Architect Commercial Class diagram
Objecteering Commercial Class diagram
Modelio General Public License / Commercial Class diagram
Papyrus Eclipse Public License Class diagram
BOUML GPL / Commercial Class diagram
UMLDesigner EPL Class diagram

Commercial tools (MagicDraw, IBM Rhapsody,
Enterprise-Architect and BOUML) offer the
possibility to incorporate method definitions via the
modeler itself. Independent changes to the model
and code can be merged without destroying data in
both code and model. Once again, such a technique
causes the model’s abstraction breaking, due to the
interweaving between modeling operations and
coding lifecycle, which goes against the Model-
driven engineering philosophy.
Therefore, in order to overcome this situation, it
was necessary to understand the model
transformation concepts. In previous works [10],
[19]–[21], the authors have presented the
classifications of the model transformation
approaches. They also presented some of the suited
tools and languages dedicated for these
transformation approaches. Figure 3 gives a
summary of this classification. By analyzing the
Figure 3, it is obvious that M2T transformations
area is still failing to gain the interest of researchers
and tools vendors. In fact, template method is the
exclusive approach used for executing this kind of
transformations. However, this approach entails
several disadvantages: it is somewhat error prone
because the target source-code file is treated as a
flat-file. Therefore, the manufacturer of the
transformation must have expertise regarding the

target language; he must also be a modeler and
developer at the same time. Nevertheless, due to the
amount of work that has to be done, sometimes
error can skip into the heap. In addition, the
transformation patterns could become obsolete if
they do not follow the evolution of the target
language versions, which causes another downside
of this approach: the lack of scalability.
At the same time, several works [22]–[25] have
been made to get the activity diagram
transformation in the model transformation process.
The most interesting idea was presented in [23], the
authors considered the source programming
language (Java in this case) as a model too. A meta-
model for the Java language was provided, and the
transformation rules were written in Atlas
transformation language (ATL) [26]. Indeed, the
work was clever by adopting this technic. However,
the idea of treating a programming language as a
model was not good enough. In fact, the best way
of representing a program loaded in memory is the
abstract syntax tree. Therefore, we gathered all the
necessary elements to warrant the proposition of a
new M2T transformation approach that could rely
on the issues discussed above. The next section
presents the methodology and basic concepts of the
proposed JDT-based transformation method.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6953

Figure. 3: Classification of the model transformation approaches

3. METHODOLOGY

3.1. UML2 Activity Diagram

Activity diagram is one of the behavioral
diagrams proposed by UML. Originally intended
for workflow description, it has evolved to allow
also algorithmic translation of use cases, providing
a microscopic view of the system. Therefore, an
activity diagram can graphically represent the
behavior of a method, and this is the most
interesting reason to choose it as the input diagram
of our model transformation process.
There are seven levels for activity diagrams
representation [27]:
 Fundamental: The fundamental level defines

activities as containing nodes and edges.
 Basic: This level includes data flow between

actions, and includes InitialNode and
ActivityFinalNode.

 Intermediate: The intermediate level supports
fundamental and basic levels, and includes
decision nodes.

 Complete: The complete level supports edge
weights.

 Structured: supports sequences and loops.
 CompleteStructured: adds support for data flow

output pins of sequences, conditionals, and
loops.

 Extra-Structured: includes exception handling
as found in object-oriented programming
languages.

The Figure 4 presents a part of an adapted version
of activity diagram meta-model for Java
programming from completeStructured level.

3.2. Abstract Syntax Tree:

Compilation is the set steps for translating
human readable source code, to executable binary
code intended to run on a computer processor [4].
The compilation process takes place in three key
steps:
 Lexical analysis: this stage is about scanning

the source code to identify symbols that
represent identifiers, constants, variables,
language keywords and eliminate unnecessary
elements considered as comments and line
breaks, etc.

 Syntax analysis: also called grammatical
analysis, it constitutes the parsing phase. The
parser handles the tokens produced during the
lexical analysis phase and must verify that it
can be generated by the grammar. In grammar,
two types of symbols can be distinguished:
terminal and non-terminal. Terminal symbols
are the language keywords. The non-terminal
symbols represent variables, constants and
functions created by the developer. At this
level, the parser attempts to build an in-
memory structure representation. This structure
is called abstract syntax tree (AST). An AST is
a tree representation of data structure of a
program. It consists of a set of instances from
abstract syntax language elements.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6954

Figure: 4: Activity diagram meta-model adapted to Java programming, completeStructured level.

Figure 5: Example of an Abstract Syntax Tree

 Semantic analysis: at this stage, the compiler
inspects if the program is written in a logical
way. For example, it is inappropriate to use a
variable before its declaration or try to affect a
string value to an integer variable.

3.3. Java Development Tools

Java development tools (JDT) [28] is an
integrated plugin to the Eclipse platform that allows
managing Java projects. Syntax coloration, syntax
error detection and project overview are all full-
featured Java IDE added to the Eclipse platform
with this plugin.
The project is organized into five main packages:
 JDT-APT: for JDT Annotation Processing

Tool, it provides the capability to recognize
and process annotations. Annotations appeared
for the first time in Java 5.

 JDT-Debug: implements Java debugging
support.

 JDT-Text: manages the text editing into the
IDE. It facilitates the text manipulation and
offers support for text formatting, auto-
completion, hover help, rule based styling and
more.

 JDT-UI: represents the implementation of Java
IDE user interface.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6955

Figure 6: JDT packages organization

 JDT-Core: The package JDT-Core contains a

set of classes, which represent an API for
manipulating the source code of a Java file as a
structured document. The Java file is loaded
into memory as an Abstract Syntax Tree
(AST). An AST is the abstract representation
of the source code structure as a tree. JDT-Core

contains a sub-package called DOM/AST. It
contains all the classes that represent the Java
meta-model, where each element of the
abstract syntax tree instantiates a given class.
The Figure 7 below shows a class diagram that
represents a part of the meta-model class
hierarchy.

Figure 7: A part of Java meta-model

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6956

Table 2: A part of the Java meta-model elements description

 Name Description
1 ASTNode Abstract superclass of all AST nodes
2 ASTVisitor Abstract visitor of each node in the AST
3 CompilationUnit Representation of the Java file as a compilation unit
4 MethodDeclaration Method declaration AST node type
5 VariableDeclaration Variable declaration concept, could handle multiple variable declarations.
6 SingleVariableDeclaration A single variable declaration, allow specifying method parameters also.
7 Expression Notion of abstract expression
8 Statement Notion of abstract statement, the smallest standalone element of Java

language
9 Block Represent code block type
10 MethodInvocation Represent method calling
11 VariableDeclarationExpression Variable declaration expression which consists of variable declaration

fragments
12 ClassInstanceCreation Creation of an object with the ‘new’ operator
13 Assignment An Expression based on ‘=’ operator with 2 hand sides
14 PrefixExpression An expression prefixed by an operator, generally increment or decrement

operator
15 PostfixExpression An expression post fixed by an operator, generally increment or

decrement operator
16 IfStatement Represent the if-then-else statement
17 ForStatement Represent the for loop statement
18 WhileStatement Represent the while loop statement
19 TryStatement These two elements go generally together to represent the try-catch

statement in exceptions processing 20 CatchClause
21 ThrowStatement Rising exception statement
22 ReturnStatement Return statement in a method body

The table above gives the technical description of
each element in the Java meta-model [29].

4. EXPERIMENTAL VALIDATION

Now, to give you an insight about the
interest of using the JDT-based transformation
method, the following section will show how to
accept an Activity Diagram as an input model to
produce the corresponding Java source code as
target text, thus demonstrating the benefit of the
chosen method. Indeed, this approach can work
with any other programming language.

4.1. Implementation

The JDT-based transformation method is
intended to realize model-to-text transformations.
This method is based on the abstract syntax tree’s
concept. Unlike the template approach, the
proposed method is less error prone and offers
more scalability. This method uses the JDT API
described above, which allows to manipulate the
internal structure of a Java program. However, this
method is based on an AST-based transformation
approach, which can be considered as a new
approach. In this context, JDT API will be used to
build the code structure. The Figure 8 illustrates the

positioning of the new approach, vis-à-vis the
different existing model transformation approaches.

As known, UML meta-model is conformed to
Meta-Object Facility (MOF) [30] standard. In the
same context, OMG proposes a serialization
standard for serializing MOF objects called XML
Metadata Interchange (XMI) [31]. This
serialization format offers an XML representation
of the diagram elements. The Figure 10 below
shows an activity diagram and the corresponding
XMI representation of each graphical notation in
the diagram. The JDT-based transformation method
operates on the XMI file as an input file in order to
extract the model elements then to perform the
suitable transformation for each element.

Step 1: The XMI file parsing

The input XMI file undergoes a parsing step in
order to perform the diagram nodes selection. Then,
we proceed to the diagram nodes browsing by
invoking the visitor design pattern [32]. The
implementation of such a mechanism required
introducing some adjustments on the activity
diagram meta-model. Figure 11 below illustrates a
part of the modified activity diagram meta-model.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6957

Figure 8: Positioning of the AST-based transformation approach.

Figure 9: The Eclipse JDT-based code generator tool architecture.

Step 2: From activity diagram to AST
conversion

Afterwards, the visiting mechanism is coupled to
the using of the JDT API. The construction of the
AST, corresponding to the visited nodes of the
activity diagram given as input, is among the
objectives to be achieved. The following table 3
shows some of the activity diagram meta-model’s
elements and their corresponding Java language
elements. We can observe that an UML element is
not necessary represented by a Java element
(InitialNode, ActivityFinalNode), and vice-versa
(Assignment, PostfixExpression…). Thereby, the

M2T transformation concerning UML Activity
diagram to Java language is not bijective. Once
again, the template approach will not be suitable to
perform such a case, because it will be difficult for
it to handle the transformation with this multitude
of scattered elements. The JDT-based
transformation method shows its efficiency by
handling the same cases to obtain rigorous results.
The main class in our implementation is
XMIVisitor class. This abstract class defines the
visit methods as advocated in the visitor design
pattern [32] for all XMI elements related to the
UML standard.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6958

Figure 10: UML graphical notations vs XMI serialization example

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6959

Figure 11: The modified Activity diagram meta-model

Table 3: Basic UML activity diagram actions & Java language elements matching

 UML Activity diagram
elements

Java language elements General concept

1 InitialNode - Method beginning
2 ActivityFinalNode - Method ending
3 CallOperationAction MethodInvocation Method calling
4 CreateObjectAction ClassInstanceCreation Object instantiation
5 AddVariableValueAction VariableDeclarationExpression Variable declaration
6 ConditionalNode/DecisionNode IfStatement If-then-else statement
7 - Assignment Assigning a value to a variable or an

object
8 Activity/ Composite Activity Block Block statement
9 - PostfixExpression Increment or decrement a variable
10 - PrefixExpression Increment or decrement a variable
11 LoopNode WhileStatement Loop statement

ForStatement
12 InputPin SingleVariableDeclaration Temporary variable declaration
13 OutPutPin

14 ActivityParameterNode SingleVariableDeclaration Method parameters
ReturnStatement Return statement when the direction’s

parameter is return

We can observe that an UML element is
not necessary represented by a Java element
(InitialNode, ActivityFinalNode), and vice-versa
(Assignment, PostfixExpression…). Thereby, the
M2T transformation concerning UML Activity
diagram to Java language is not bijective. Once

again, the template approach will not be suitable to

perform such a case, because it will be difficult for
it to handle the transformation with this multitude
of scattered elements. The JDT-based
transformation method shows its efficiency by
handling the same cases to obtain rigorous results.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6960

The main class in our implementation is
XMIVisitor class. This abstract class defines the
visit methods as advocated in the visitor design
pattern [32] for all XMI elements related to the
UML standard. The ActivityDiagramVisitor class
redefines the XMIVisitor visit methods related to
the activity diagram elements only, as described in
the UML standard too. By the way, this class
contains five main properties:
 A compilation unit: this property represents the

compilation unit that will be useful for the
serialization of the generated code.

 An AST: this property represents the abstract
syntax tree that holds the code instructions.

 A type declaration: this field represents the
wrapping class of the activity/method.

 A method declaration: this property defines the
method declaration and prepares the diagram
transformation.

 A block: the block of instructions contained
between { }.

The activity node visit means the creation of a new
method. The following code snippet shows how to
create a new method.

The child nodes of the activity accept the visitor.
For example, the visiting of an InitialNode means
the beginning of the method definition that will be

contained in a block instruction.

With the same logic, the visiting of an
ActivityFinalNode constitutes the method ending.

During the nodes visiting step, when the visitor
encounters a DecisionNode (which generally
represents an if-then-else statement in programming
languages), the visitor behaves as follows:

At the end of the activity node visiting, the
following actions are performed.

Concerning the variable typing, we established a
table mapping between UML typing and Java
typing related to the primitive types. The table 4
below shows the types mapping:

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6961

Table 4: Table mapping between UML primitive types and Java primitive types

UML primitive type Java primitive type
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#Boolean boolean
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#Integer int
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#Real float
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String String
pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#UnlimitedNatural int

Figure 12: Serialization of Node type in XMI

Step 3: The AST serialization

Finally, the concrete syntax is obtained from the

AST built previously through the following
serialization mechanism.

4.2. Experimental results

We implemented a series of tests in order
to provide scientific proof to the good functioning
of the given approach. The following activity

diagram represents an arithmetic method that
returns the addition of two integers. The obtained
source code in Java language after the model
transformation is described below. Therefore, we
can notice that the obtained results are congruent.

Figure 13: Example of JDT-based transformation method application

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6962

5. CONCLUSION AND FUTURE WORKS

This paper has introduced the new JDT-
based transformation method as a new AST-based
transformation approach in model-to-text
transformations, which is intended to bridge the gap
between the behavioral diagrams in UML modeling
and Java code generation. This method comes to
compete with the concept of executable UML
models [33]–[36], which require more maturity. It
is now possible to graphically represent a method-
body of a given class and generate the
corresponding source code like in visual
programming [37], but in a more professional
context. Among all UML diagrams available, the
choice fell on the activity diagram because it is
best-suited one to represent code instructions.
Nevertheless, some points require more attention;
the method must allow managing higher levels of
activity diagram meta-model to reach advanced
coding levels. It must also ensure generation for
multi-threading and exception handling. The aim of
the future work is to bring together the work
presented in [38] and the work presented in this
paper with improvements in order to provide a new
software engineering tool that will allow a full
round-trip engineering related to Java technologies
in a Model-driven software engineering context.

REFRENCES:
[1] Object Management Group,

“http://www.omg.org/,” OMG TM, 10-Mar-
2016. [Online]. Available:
http://www.omg.org/. [Accessed: 22-Jan-2017].

[2] Object Management Group, “OMG Unified
Modeling Language TM (OMG UML) Version
2.5,” Object Manag. Group Pct07-08-04, 2015.

[3] Douglas C. schmidt, “Model Driven
Engineering,” IEEE computer society, 2006.

[4] A. JavadiAbhari et al., “ScaffCC: A Framework
for Compilation and Analysis of Quantum
Computing Programs,” in Proceedings of the
11th ACM Conference on Computing Frontiers,
New York, NY, USA, 2014, pp. 1:1–1:10.

[5] A. Forward and T. C. Lethbridge, “Problems
and opportunities for model-centric versus
code-centric software development: a survey of
software professionals,” in Proceedings of the
2008 international workshop on Models in
software engineering, 2008, pp. 27–32.

[6] Nawfal El Moukhi, Ikram El Azami, and Aziz
Mouloudi, “Towards a new method for
designing multidimensional models (in press),”

International Journal of Business Information
Systems.

[7] J. Greenfield and K. Short, “Software factories:
assembling applications with patterns, models,
frameworks and tools,” in Companion of the
18th annual ACM SIGPLAN conference on
Object-oriented programming, systems,
languages, and applications, 2003, pp. 16–27.

[8] C. K. and H. S., “Feature-based survey of model
transformation approaches.,” IBM Systems
Journal 45 (3), pp. 621–645, 2006.

[9] P. Stevens, “A landscape of bidirectional model
transformations.,” Generative and
transformational techniques in software
engineering II, Springer, pp. 408–424.

[10] L. Tratt and M. Gogolla, Eds., Theory and
practice of model transformations: third
international conference, ICMT 2010, Malaga,
Spain, June 28-July 2, 2010: proceedings.
Berlin ; New York: Springer, 2010.

[11] N. Magic, Inc., MagicDraw: Architecture
Made Simple. 2011.

[12] IBM, “IBM Rhapsody.” [Online].
Available: http://www-
03.ibm.com/software/products/en/ratirhapfami.
[Accessed: 25-Mar-2017].

[13] Sparx systems, “Enterprise architect.”
[Online]. Available:
http://www.sparxsystems.com.au/products/ea.
[Accessed: 22-Mar-2017].

[14] Objecteering, “Objecteering, the model
driven development tool.” [Online]. Available:
http://www.objecteering.com/. [Accessed: 15-
Feb-2017].

[15] Modeliosoft, the open source modeling
environment, “Modelio.” [Online]. Available:
https://www.modelio.org/. [Accessed: 25-Mar-
2017].

[16] A. Lanusse et al., “Papyrus UML: an open
source toolset for MDA,” in Proc. of the Fifth
European Conference on Model-Driven
Architecture Foundations and Applications
(ECMDA-FA 2009), 2009, pp. 1–4.

[17] “BoUML.” [Online]. Available:
http://www.bouml.fr/. [Accessed: 08-Mar-
2017].

[18] Obeo, “UML Designer,” 2017. [Online].
Available:
http://www.umldesigner.org/overview/.
[Accessed: 25-Mar-2017].

[19] T. Mens and P. Van Gorp, “A taxonomy
of model transformation,” Electron. Notes
Theor. Comput. Sci., vol. 152, pp. 125–142,
2006.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6963

[20] N. Koch, “Classification of model
transformation techniques used in UML-based
Web engineering,” IET Softw., vol. 1, no. 3, pp.
98–111, 2007.

[21] A. Kalnins, J. Barzdins, and E. Celms,
“Model transformation language MOLA,” in
Model Driven Architecture, Springer, 2005, pp.
62–76.

[22] P. Tonella, “Reverse engineering of object
oriented code,” in Proceedings of the 27th
international conference on Software
engineering, St. Louis, MO, USA, 2005, pp.
724–725.

[23] L. Martinez, C. Pereira, and L. Favre,
“Reverse Engineering Activity Diagrams from
Object Oriented Code: An MDA-Based
Approach,” Comput. Technol. Appl., vol. 2, no.
012, pp. 969–978, 2011.

[24] M. Usman and A. Nadeem, “Automatic
generation of Java code from UML diagrams
using UJECTOR,” Int. J. Softw. Eng. Its Appl.,
vol. 3, no. 2, pp. 21–37, 2009.

[25] M. Rahmouni and S. Mbarki, “Combining
UML Class and Activity Diagrams for MDA
Generation of MVC 2 Web Applications,” Int.
Rev. Comput. Softw. IRECOS, vol. 8, no. 4,
2013.

[26] F. Jouault, F. Allilaire, J. Bézivin, and I.
Kurtev, “ATL: A model transformation tool,”
Sci. Comput. Program., vol. 72, no. 1–2, pp.
31–39, Jun. 2008.

[27] Object Management Group, “OMG
Unified Modeling Language TM (OMG UML),
superstructure.” 2007.

[28] Eclipse Foundation, “Eclipse Java
Developement Tools,” 2017. [Online].
Available: http://www.eclipse.org/jdt/.
[Accessed: 25-Mar-2017].

[29] “Java Metamodel.” [Online]. Available:
http://help.eclipse.org/mars/index.jsp?topic=%2
Forg.eclipse.modisco.java.doc%2Fmediawiki%
2Fjava_metamodel%2Fuser.html. [Accessed:
18-Mar-2017].

[30] Object Management Group, “OMG Meta
Object Facility (MOF) Core Specification.”
2013.

[31] Object Management Group, “MOF 2 XMI
Mapping, Version 2.4.” 2010.

[32] S. J. Metsker and W. C. Wake, Design
patterns in java. Addison-Wesley Professional,
2006.

[33] Object Management Group, “Semantics of
a Foundational Subset for Executable UML
Models (fUML).” 16-Jan-2016.

[34] Object Management Group, “Action
Language for Foundational UML (Alf)
Concrete Syntax for a UML Action Language
Version 1.0.1.” 09-Jan-2013.

[35] E. Seidewitz and J. Tatibouet, “Tool
Paper: Combining Alf and UML in Modeling
Tools–An Example with Papyrus–,” in OCL
2015–15th International Workshop on OCL and
Textual Modeling: Tools and Textual Model
Transformations Workshop Proceedings, 2015,
p. 105.

[36] A. Bergmayr, H. Bruneliere, J. Cabot, J.
García, T. Mayerhofer, and M. Wimmer,
“fREX: fUML-based reverse engineering of
executable behavior for software dynamic
analysis,” 2016, pp. 20–26.

[37] B. Walters and V. Jones, “Middle school
experience with visual programming
environments,” in Blocks and Beyond Workshop
(Blocks and Beyond), 2015 IEEE, 2015, pp.
133–137.

[38] A. Elmounadi, N. Berbiche, F. Guerouate,
and N. Sefiani, “Smart Text to Model
Transformation a Graph Based Approach to
Cover Dynamic Analysis,” Int. Rev. Comput.
Softw. IRECOS, vol. 11, no. 4, p. 344, Apr.
2016.

