
Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6893

IMPLICATIONS OF DISCRETIZATION TOWARDS
IMPROVING CLASSIFICATION ACCURACY FOR

SOFTWARE DEFECT DATA

1POOJA KAPOOR, 2DEEPAK ARORA, 3ASHWANI KUMAR
1,2Department of Computer Science & Engineering, Amity School of Engineering & Technology, Amity

University, India
3IT and Systems, Indian Institute of Management, Lucknow, India

E-mail: 1inkhanna@gmail.com, 2deepakarorainbox@gmail.com, 3ashwani@iiml.ac.in

ABSTRACT

Since the advent of new software architectures, paradigms and technologies the software design and
development has developed a cutting edge requirements of being on the right track in terms of software
quality and reliability. This leads the prediction of defects in software at its early stages of its development.
Implications of machine learning algorithms are now playing a very crucial role in classification and
prediction of the possible bugs during the systems design phase. In this research work a discretization
method is proposed based on the Object Oriented metrics threshold values in order to gain better
classification accuracy on a given data set. For the experimentation purpose, Jedit, Lucene, tomcat,
velocity, xalan and xerces software systems from NASA repositories have been considered and
classification accuracies have been compared with the existing approaches with the help of open source
WEKA tool. For this study, the Object Oriented CK metrics suite has been considered due to its wide
applicability in software industry for software quality prediction. After experimentation it is found that
Naive Bayes and Voted Perceptron, classifiers are performing well and provide highest accuracy level with
the discretized dataset values. The performance of these classifiers are checked and analyzed on different
performance measures like ROC, RMSE, Precision, Recall values in this research work. Result shows
significant performance improvements towards classification accuracy if used with discrete features of the
individual software systems.

Keywords: Discretization, Software Defect Prediction, Classification, CK metrics

1. INTRODUCTION

Software defect prediction is the process of
identifying probable defective modules in the
software, prior to the testing phase. Software defect
prediction plays an important and critical role,
especially in cases where the software development
time is a crucial issue and or where developed
software system is too large for performing
exhaustive testing [1-2]. Various Software metrics
like the size of code, complexity of code, coupling,
cohesion, Number of children, Depth of
Inheritance, previous releases of software with the
logs of defects encountered are being used to
estimate the quality of the final software system.
Efficiency of the available metrics in software
defect prediction and estimation of the final
software quality has been analyzed by various
studies in the literature [1].

Different works in the literature have tried to
address various issues related to software defect
prediction but no standard measures for
performance assessment are available for software
quality prediction and there exists a lack of generic
framework of defect prediction at the early stages of
software development. Most of the studies in
literature have used different data sets and
suggested their own methodology for solving
various problems related to software defect
prediction [3-8]. Many of the studies use the CK
defined metrics suite, considering the already
established co-relation of CK metrics with software
quality attributes like maintainability, re-usability,
testability, complexity etc. CK suggested that value
of these six metrics in suites: wmc, noc, dit, rfc,
lcom, cbo should be maintained to low, medium,
high range using software designs so that it meets
the software quality requirement specifications.
But the study does not define values for the

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6894

linguistic terms used here: low, medium, high.
Classes with large number of methods are
considered to be more application specific but
restricting the Re-use of code, so low wmc
(Weighted Methods per Class) is desirable if Re-
Usability is the desired quality attribute of the
quality requirement specifications [9].

 A threshold based discretization method
applicable on CK metric has been suggested and
described in this study. The CK metric data has
been collected from promise repository for six
metrics of CK suite. The data is in continuous form,
and the study suggests adoption of a transformation
method for discretizing this data will ensure a better
defect prediction. Two classifiers have been used
for prediction. These classifiers are the Inductive
learning systems that can be used for classification
of input data to a particular output class. The output
class in the study has True / False value for the
status of occurrences of software fault. The two
classifiers used for the work are Naive Bayes and
Voted Perceptron from the WEKA 3.6 Tool.
Various statistical measures like ROC, TP,
Accuracy, Kappa, F-measure, relative absolute error
have been used to analyze the suggested
discretization method. Threshold based
discretization show a significant improvement in
the classification performance of the two existing
learning algorithms, the Naive Bayes and the Voted
Perceptron. Though for SOM classifier, authors
didn’t find any remarkable difference. The rest of
this paper is organized as follows: In section 2,
Background studies are discussed. In section 3, the
proposed discretization method for data
transformation is presented. In section 4, data set
description is discussed for the analysis of the
proposed method. In section 5, experimental design
is discussed .Results of the proposed methodology
are discussed and compared using the various
statistical measures in section 6. Section 7 finally
presents the conclusions of the study.

2. BACKGROUND

A large amount of the total development
cost is kept aside for the testing phase. But
sometimes due to size complexity exhaustive
testing becomes a hard problem with time and cost
constraints Software Defect Prediction (SDP) is an
important activity before the testing phase that
identifies probable defective modules. But defect
prediction is not always an easy job to do [10].
Software Defect prediction (SDP) faces various
issues to come up with an accurate Defect
Prediction model [1]. The study has done an

exhaustive research on how to address those issues
like: Relationship between Attributes and Fault, No
Standard Measures for Performance Assessment,
Issues with Cross-Project Defect Prediction, No
General Framework Available, Economics of
Software Defect Prediction and the Class
Imbalance Problem [11and 13]. Various studies on
prediction models have been reported in the
literature [12, 14 and 16]. An important study [14]
presented a model that can predict the defective
module on the basis of complexity metric like size
complexity. The study proposed a direct relation
between the complexity of code and defects.
Though the paper was unable to present an accurate
model, it raised many research questions. The paper
also concluded that better metric for defect
prediction model need to be identified and a
standard process should be evolved, that can be
integrated with the software development process
to ensure a better software defect prediction at early
stages of software development [14]. Another study
[6] presents a data mining approach that can predict
the defective state of software modules. The study
shows better prediction capabilities when all the
algorithms are combined using weighted votes. In
the paper, the authors have introduced kernel-based
asymmetric learning for software defect prediction.
To eliminate the negative effect of class imbalance
problem, the author proposed two algorithms called
the asymmetric kernel partial least squares
classifier and the asymmetric kernel principal
component analysis classifier [6]. The use of the
CK software metric suite in predicting the
maintainability of object oriented software metrics
threshold has been presented in another study [19].
The paper identified that the maintainability can be
predicted on the basis of the most effective metric
out of the dozens available metrics [19]. In survey
it is found that researchers have explored all
possible area to improve classification accuracy for
software fault prediction. In study supervised
discretization technique developed by Fayyad and
Irani was used to see the effect of discretization
process on classification accuracy using Naïve
Bayes and J48 classifiers. The study concluded
significant improvement in classification accuracy
of the two classifiers used the study [25].

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6895

sorting the continuous values of the
feature to be discretized

evaluating a cut-point for splitting
or adjacent intervals for merging

according to some criterion,
splitting or merging intervals of

continuous value

finally stopping at some
point.(Stopping criteria)

Continuous DATA

Discretized DATA

Figure1: Steps involved in Discretization process

3. PROPOSED DISCRETIZATION

METHOD TRANSFORMATION

Discretization is the process of transferring
continuous functions, models, and equations into
equivalent discrete values. Discretization of
continuous features or attributes, play an important
role in the Machine learning data pre-processing
phase. Many machine learning algorithms even
perform their own discretization technique for
classification. In WEKA, various classification
techniques perform the Discretization
transformation before actually performing
classification. However, deciding a CUT-Point for
discretization is most crucial issue for good
classification accuracy and achieving a better
efficiency of any Machine learning algorithm.
CUT-POINT can be defined as a real value from
the range of continuous values such that it divides
the range into two intervals. Various studies have
achieved better classification accuracy on the basis
of discretized data [17]. A Discretization process
generally includes four basic steps as depicted in
Figure 1:

The first step requires the data to be in order, than a
CUT POINT is selected to split the ordered data. A
control strategy is decided for actually splitting of
the data. Equal width binning and equal frequency
binning, Error based discretization, Recursive
minimal entropy partitioning are some of the
discretization methods used by various studies in
the literature for continuous feature discretization
[21, 23]. A special case of discretization
“Dichotomization” in which the number of discrete
classes is 2, which can approximate a continuous
variable as a binary variable. Dichotomization
divides the entire range of the feature in 2 classes,

making the data set more suitable for binary
classification [18, 21].

---------------(1)

where i={1.....n}, n total number of rows in data
set, j={1.....m}, m attributes in the data set.

In equation (1), x_ij, x represents value of ith row
data and jth attribute. {T1, T2} are defined as
MMV± Deviation of jth attribute of the data set.
Consider a case from Jedit3.2 data set, x2wmc=14
where j is wmc and i=2. MMV for wmc as given by
the study is 13, if deviation for this wmc attribute
comes out to be 3, then f(x2wmc) = 1, as T1= (13-
3=10) and T2 = (13+3=16). Using this method, the
entire data set is transformed and the efficiency of
two different classifiers has been checked and the
results compared using the different statistical
measures.

Table 1: Mean Metrics value identified by the study using
the Naive Bayes Classifier [15].

Metric Mean Metrics Values (MMV)
WMC(mean) 11
DIT 2
NOC .5
CBO 13
RFC 40
LCOM -

Instances 900

4. DATA SET DESCRIPTION

The software defect data set for the study has been
collected from the NASA repository (promise
repository)[24]. The data set contains a total of 21
attributes, but for the current study 5 metrics of the
CK metric suite i.e. wmc, dit, noc, cbo, rfc along
with the output class attribute fault have been
considered. Majority of the researchers have used
CK metric for quality prediction for design purpose.
CK metric suites are widely accepted for checking
the quality of the final product. CK suite is a
collection of six metrics, however only five metrics
of CK metrics suite have been considered as
suggested [15]. Five metrics chosen for the study
from the CK metric suite are of Numeric type.
Table 2 lists all the eighteen defect data sets used in
the study. Attributes considered in the table are No
of instances in each data set (#) and total distinct
values for each metric in the eighteen different data
sest. For example Jedit 3.2 has 287 as the total no of

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6896

instances (#) and distinct values for each column,
while WMC=44, DIT=11, NOC=13, CBO=46,
RFC=93.

Table 2: Description of the eighteen defect data sets used
for the study

 WMC DIT NOC CBO RFC

DEFECT SET # distinct
values

distinct
values

distinct
values

distinct
values

distinct values

Jedit 3.2 287 44 11 13 46 93
Jedit 4.0 306 43 8 12 45 97
Jedit 4.1 312 46 8 12 46 92
Jedit 4.2 369 53 8 12 55 114
Jedit 4.3 492 54 8 12 60 127
Lucene 2.0 195 30 5 10 34 57
Lucene 2.2 247 33 5 11 40 65
Lucene 2.4 340 39 5 12 43 73
tomcat 858 76 6 16 52 136
Velocity 1.4 196 34 4 7 39 65
Velocity 1.6 229 35 5 9 39 65
Xalan 2.4 723 69 8 20 76 122
Xalan 2.5 803 73 8 21 74 123
Xalan 2.6 885 76 8 21 72 125
Xalan 2.7 911 75 9 21 79 133
Xerces 1.2 440 52 6 11 35 82
Xerces 1.3 453 56 5 11 35 81
Xerces 1.4 588 50 5 12 45 87

5. EXPERIMENTAL DESIGN

The primary objective of the study is to discretize
the CK metric using the proposed discretization
method. For the purpose of study the we are
concentrating on CK metric namely cbo, rfc, wmc,
dit and noc. In the study, a co-relation between
these five metrics and occurrence of fault has been
established. lcom is not considered because of its
unpredictable response to fault. The study also
suggested a Mean Metrics Value (MMV) on the
basis of the Naive Bayes classifier and study
established a relation that if over all distribution of
CK metrics suite for a system is as per MMV, it
ensures less occurrence of faults [15]. This MMV
has been used as CUT-POINT for discretizing the
data. The value of f(x_ij) is set 1 if x_ij lies
between T1 and T2. Value of T1 and T2 is (MMV±
deviation).

Figure 2 represents the output after the
discretization f(x_ij) is applied on a set of ten
instances {I1,I2,I3,I4,I5,I6,I7,I8,I9,I10} and five
attributes{X1=wmc,X2=dit,X3=noc,X4=cbo,X5=rf
c}. The deviation corresponds to each attribute
column calculated considering all the 340 instances.
WEKA 3.6 has been used for the empirical study,
using the Naive Bayes and Voted perceptron
classifiers. The primary objective of the study is to
discretize the continuous features of the data and

then analyze the performance of the Naive Bayes
and voted perceptron classifier.

6. RESULTS AND DISCUSSION

Eighteen different defect data sets, collected from
the NASA repositories of six different systems and
their versions, have been used to test the effect of
the proposed process of discretization of continuous
features of the data set. Looking at the continuous
data set, it is visible that in some cases the number
of distinct values for a feature is too high, and for
classifiers like Naive Bayes and neural network it
increases the computational complexity [23]. Jedit
3.2 has 196 as total number of instances and RFC
feature contain 97 different values i.e 32% different
values of total instances. Similarly in case of
velocity 1.4, RFC feature contains 33% distinct
values.

The classifiers were run for eighteen different
defect sets and different statistical measures are
recorded, in Table 3 for Naive Bayes and Table 4
for Voted Perceptron. The statistical measures:
ROC, TP, Accuracy, Kappa, F-measure, relative
absolute error, recall have been considered for
comparing the classifier performance [20].
Accuracy is a measure of correctness of the
classifier i.e. a classifier is able to predict an
instance to TRUE class given it is TRUE and an
instance predicted to False class given it is actually
FALSE. Figure 3, Figure 4 and Figure 5 represents
the accuracy performance of Naive Bayes, Voted
perceptron and SOM.

Figure 3 represents the accuracy comparison of
discrete and continuous data obtained using th e
Naive Bayes classifier. Graph presents better
accuracy in case of discretized data for both the
classifiers. Though from Figure 3, it is quite
obvious that in some cases like for lucene 2.0, the
Naive Bayes classifier accuracy for continuous data
is better than the accuracy obtained through
discredited data set. Similarly, results obtained in
Figure 4 for Voted Perceptron classifier indicates an
overall accuracy improvement, except few cases
like in xerces 1.4, where the graph shows better
results for continuous data set in this case.

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6897

Figure 2: To show transformation of continuous data into discrete data by using the proposed discretization function

f()

Fig 3: Accuracy comparison of Discrete and continuous data using the Naive Bayes classifier

Figure 4: Represents accuracy comparison of Discrete and continuous data using Voted Perceptron classifier

In case of SOM, Figure 5 show almost similar
accuracy output performance for both data set i.e
discrete and continuous. But sometimes the
accuracy is faced with the accuracy paradox.
Consider a situation when TP =0, FP=0,
TN=115,FN=15, this says that the classifier unable
to predict TRUE class (TP=0), but can Classify
FALSE class well (TN=115). In such a case,

accuracy comes out to be 88%. To deal with this
kind of situation, many other measures are consider
to check the performance of classifier. Table 3 and
Table 4 lists various other statistical measures like
precision and RMSE. Precision is measure the
percentage of actual correct samples out of all the
examples labeled as positive by the classifier.
Whereas RMSE is a measure of the correctness of

wmc dit noc cbo rfc fault Wmc Dit noc cbo rfc Fault

5 2 0 19 18 y 1 1 1 1 0 Y

10 3 0 13 41 y 1 0 1 1 1 Y

10 1 0 4 38 n 1 0 1 0 1 N

4 4 0 3 7 n 1 0 1 0 0 N

25 2 2 20 82 y 0 1 0 1 0 Y

5 1 3 13 6 n 1 0 0 1 0 N

13 1 0 13 61 y 1 0 1 1 0 Y

17 2 0 6 34 y 1 1 1 1 1 Y

13 1 0 8 36 n 1 0 1 1 1 N

8 1 0 30 8 n 1 0 1 0 0 N

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6898

classifier. It explains how distinct the classification
model is from the actual prediction. RMSE is a
good predictor of model about a Binary Classifier.
RMSE varies from 0.0 to 1.0. and low values of
RMSE for prediction of a good classifier model are
desirable. Figure 5, Figure 6 and Figure 7 represents

the RMSE value comparison for discrete and
continuous data of the tthree classifiers: Naive
Bayes, Voted Perceptron and SOM, used in the
study.

Figure 5: Represents accuracy comparison of Discrete and continuous data using SOM classifier

Table 3: Statistical measures of Naive Bayes Classifier
for discretized (Dis.) and continuous (Conts.) features

Defect set Data Type Correctly

class ified
TP FP ROC Precision Recall RMSE

Jedit 3.2. Dis. 72.05 0.72 0.38 0.74 0.71 0.72 0.43
Conts. 71.7 0.717 0.42 0.75 0.7 0.71 0.45

Jedit 4.0. Dis. 77.45 0.775 0.586 0.57 0.74 0.77 0.42
Conts. 78.4 0.78 0.54 0.68 0.76 0.78 0.43

Jedit 4.1. Dis. 79.16 0.79 0.53 0.62 0.78 0.79 0.42
Conts. 77.2 0.78 0.55 0.72 0.74 0.77 0.42

Jedit 4.2. Dis. 86.6 0.87 0.57 0.63 0.85 0.87 0.33
Conts. 86.3 0.86 0.65 0.72 0.84 0.86 0.35

Jedit 4.3. Dis. 96.9 0.97 0.978 0.722 0.95 0.97 0.156
Conts. 95.5 0.96 0.71 0.59 0.97 0.96 0.2

Lucene 2.0. Dis. 63.5 0.63 0.38 0.63 0.67 0.67 0.48
Conts. 69.7 0.697 0.32 0.755 0.71 0.7 0.33

Lucene 2.2. Dis. 55 0.55 0.51 0.57 0.53 0.55 0.48
Conts. 55.4 0.56 0.36 0.61 0.64 0.55 0.55

Lucene 2.4. Dis. 63.2 0.63 0.41 0.61 0.62 0.63 0.48
Conts. 57.6 0.58 0.32 0.68 0.69 0.57 0.59

Tomcat. Dis. 90.7 0.91 0.91 0.74 0.82 0.91 0.28
Conts. 87.8 0.88 0.62 0.78 0.88 0.88 0.33

Velocity 1.4. Dis. 74.4 0.74 0.75 0.65 0.56 0.74 0.42
Conts. 78 0.78 0.45 0.72 0.76 0.78 0.42

Velocity 1.6. Dis. 64.1 0.64 0.53 0.597 0.61 0.64 0.47
 Conts. 67.2 0.672 0.54 0.65 0.64 0.67 0.54
Xalan 2.4. Dis. 84.5 0.85 0.84 0.6 0.76 0.85 0.35
 Conts. 82.7 0.827 0.67 0.7 0.79 0.82 0.4
Xalan 2.5. Dis. 54.6 0.55 0.47 0.56 0.55 0.55 0.5
 Conts. 56.1 0.56 0.46 0.59 0.79 0.56 0.6
Xalan 2.6. Dis. 59.7 0.6 0.42 0.611 0.6 0.6 0.49
 Conts. 59.7 0.59 0.45 0.63 0.65 0.59 0.6
Xalan 2.7. Dis. 98.7 0.99 0.99 0.56 0.97 0.98 0.02
 Conts. 61.8 0.61 0.27 0.71 0.98 0.61 0.58
Xerces 1.2. Dis. 80.2 0.8 0.755 0.647 0.75 0.82 0.38
 Conts. 79 0.79 0.74 0.57 0.74 0.79 0.43
Xerces 1.3. Dis. 83.2 0.83 0.74 0.62 0.78 0.83 0.37
 Conts. 81 0.81 0.66 0.59 0.79 0.81 0.41
Xerces 1.4. Dis. 70.4 0.7 0.48 0.7 0.7 0.7 0.41
 Conts. 65.9 0.66 0.22 0.79 0.78 0.66 0.53

Table 4: Statistical measures of Voted Perceptron
Classifier for discretized (Dis.) and continuous (Conts.)

features
Defect set Data Type Correctly

classi fied
TP FP ROC Precision Recall RMSE

Jedit 3.2 Dis. 72.05 0.72 0.38 0.74 0.71 0.72 0.43
Conts. 71.7 0.717 0.42 0.75 0.7 0.71 0.45

Jedit 4.0 Dis. 77.45 0.775 0.586 0.57 0.74 0.77 0.42
Conts. 78.4 0.78 0.54 0.68 0.76 0.78 0.43

Jedit 4.1 Dis. 79.16 0.79 0.53 0.62 0.78 0.79 0.42
Conts. 77.2 0.78 0.55 0.72 0.74 0.77 0.42

Jedit 4.2 Dis. 86.6 0.87 0.57 0.63 0.85 0.87 0.33
Conts. 86.3 0.86 0.65 0.72 0.84 0.86 0.35

Jedit 4.3 Dis. 96.9 0.97 0.978 0.722 0.95 0.97 0.156
Conts. 95.5 0.96 0.71 0.59 0.97 0.96 0.2

Lucene 2.0 Dis. 63.5 0.63 0.38 0.63 0.67 0.67 0.48
Conts. 69.7 0.697 0.32 0.755 0.71 0.7 0.33

Lucene 2.2 Dis. 55 0.55 0.51 0.57 0.53 0.55 0.48
Conts. 55.4 0.56 0.36 0.61 0.64 0.55 0.55

Lucene 2.4 Dis. 63.2 0.63 0.41 0.61 0.62 0.63 0.48
Conts. 57.6 0.58 0.32 0.68 0.69 0.57 0.59

tomcat Dis. 90.7 0.91 0.91 0.74 0.82 0.91 0.28
Conts. 87.8 0.88 0.62 0.78 0.88 0.88 0.33

Velocity 1.4 Dis. 74.4 0.74 0.75 0.65 0.56 0.74 0.42
Conts. 78 0.78 0.45 0.72 0.76 0.78 0.42

Velocity 1.6 Dis. 64.1 0.64 0.53 0.597 0.61 0.64 0.47
Conts. 67.2 0.672 0.54 0.65 0.64 0.67 0.54

Xalan 2.4 Dis. 84.5 0.85 0.84 0.6 0.76 0.85 0.35
Conts. 82.7 0.827 0.67 0.7 0.79 0.82 0.4

Xalan 2.5 Dis. 54.6 0.55 0.47 0.56 0.55 0.55 0.5
Conts. 56.1 0.56 0.46 0.59 0.79 0.56 0.6

Xalan 2.6 Dis. 59.7 0.6 0.42 0.611 0.6 0.6 0.49
Conts. 59.7 0.59 0.45 0.63 0.65 0.59 0.6

Xalan 2.7 Dis. 98.7 0.99 0.99 0.56 0.97 0.98 0.02
Conts. 61.8 0.61 0.27 0.71 0.98 0.61 0.58

Xerces 1.2 Dis. 80.2 0.8 0.755 0.647 0.75 0.82 0.38
Conts. 79 0.79 0.74 0.57 0.74 0.79 0.43

Xerces 1.3 Dis. 83.2 0.83 0.74 0.62 0.78 0.83 0.37
 Conts. 81 0.81 0.66 0.59 0.79 0.81 0.41
Xerces 1.4 Dis. 70.4 0.7 0.48 0.7 0.7 0.7 0.41

Conts. 65.9 0.66 0.22 0.79 0.78 0.66 0.53

Figure 6: RMSE value comparison for Discrete and Continuous data for Naive Bayes

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6899

Figure 7: RMSE value comparison for Discrete and Continuous data for voted perceptron

Figure 8: Represents RMSE value comparison for Discrete and Continuous data for SOM

Figure 6, generated using Naive Bayes classifier,
indicates better RMSE curve for discretized data.
Generally for all systems under study, it shows
better classification and prediction model using the
discretized data set. But for the Voted Perceptron
(Figure 7), there is no remarkable difference in the

RMSE curve using both discretized and continuous
data sets. Similarly for SOM, in Figure 8, except
for few values RMSE for both the data set shows
similar output.

Figure 9: Kappa statistics for discrete and continuous data as result of the Naive Bayes Classifier

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6900

Figure 10: Kappa statistics for discrete and continuous data as result of the Voted Perceptron Classifier

Figure 10 show comparison of kappa statics for
discrete and continuous data as a result of voted
Perceptron classifier. The kappa curve for both
discrete data and continuous is found to be similar
except in two or three defect data sets like jedit 3.2,
jedit 4.0, jedit 4.1and xerces 1.4.

7. CONCLUSION

This research work, has proposed a discretization
method, in order to increase the overall efficiency
of the existing CK Metrics prescribed for object
oriented systems. The proposed discretization
method is applied on, in total eighteen different
systems taken from NASA repositories. During
experimentation it is found that the threshold
identified in the study in terms of MMV can be
used to change the nature of continuous features
into two classes {0,1}[15]. The discretization of
values so preformed can help in increasing
efficiency of classifiers like the Naive Bayes and
the Voted Percepton in an significant manner [8].
The study suggests that by using certain threshold
value of metrics, the efficiency of CK metrics in
prediction of software quality can be increased
towards predicting software defects at an early
stages of its development. Out of eighteen data sets
considered under experiment, the overall increase
in accuracy after the proposed descretization,
comes out in a range of 0.4% - 8%, if used for
Naive Bayes and perceptron, which is most likely
as both classifiers already have proven prediction
capabilities. Majorly improvements can be seen but
in case of support vector machine doesn't give
prominent results. Future dimension of the
proposed research work could be identifying
ensemble classifiers or inclusion of genetic
algorithm, towards direction of building of novel
methods for gaining more prompt predictive
capabilities. Genetic algorithms can be more

helpful in optimizing the threshold parameters used
for discretization. The threshold values are
dependent on various factors related to software
development environment and the software quality
requirement of the system, so dynamic adoptability
of these parameters could be the one of the most
deciding factors.

REFRENCES:

[1] Deepak Arora, Pooja Khanna and

AlpikaTripathi, Shipra Sharma and Sanchika
Shukla, Software Quality Estimation through
Object Oriented Design Metrics, IJCSNS
International Journal of Computer Science
and Network Security, Vol.11 NO.4, April
2011.

[2] Zimmermann, T., Premraj, R., & Zeller, A.
(2007, May). Predicting defects for eclipse. In
Proceedings of the third international
workshop on predictor models in software
engineering (p. 9). IEEE Computer Society.

[3] Jiang Y, Cukic B, Menzies T. Fault prediction
using early lifecycle data. In: 18th IEEE
International Symposium on Software
Reliability.Trollhattan; 2007. p. 237-246.

[4] Emam KE, Melo W, Machado JC. The
prediction of faulty classes using object-
oriented design metrics. Journal of Systems
and Software2001; 56:63-75.

[5] Sandhu PS, Brar AS, Goel R, Kaur J, Anand
S. A model for early prediction of faults in
software systems. In: 2nd International
Conference on Computer and Automation
Engineering. Singapore; 2010. p. 281-285.

[6] Jiang Y, Cukic B, Menzies T. Cost curve
evaluation of fault prediction models. In: 19th
International Symposium on Software

Journal of Theoretical and Applied Information Technology
31st December 2017. Vol.95. No 24

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6901

Reliability Engineering. Seattle; 2008. p. 197-
206.

[7] Jiang Y, Lin J, Cukic B, Menzies, T. Variance
analysis in software fault prediction models.
In: 20th International Symposium on
Software Reliability Engineering. Mysuru;
2009. p. 99-108.

[8] Menzies T, Greenwald J, Frank A. Data
mining static code attributes to learn defect
predictors. IEEE Transactions on Software
Engineering2007; 33:2-13. 22.

[9] Chidamber, Shyam , Kemerer, Chris F. "A
Metrics Suite for Object-Oriented
Design."M.I.T. Sloan School of Management
E53-315, 1993.

[10] A Systematic Literacture Review of Software
Defect Prediction: Research Trends, Datasets,
Methods and
Frameworks,JournalOfSoftwareEngineering,
April2015.

[11] Ishani Arora a, Vivek Tetarwala, Anju Sahaa ,
Open issues in software defect prediction,
Elsevier, 2015

[12] Ahmed H. Yousef, Extracting software static
defect models using data minig, Elsevier ,
2015.

[13] Wang, Shuo, and Xin Yao. "Using class
imbalance learning for software defect
prediction." IEEE Transactions on Reliability
62.2 (2013): 434-443.

[14] Ren, J., Qin, K., Ma, Y., & Luo, G. (2014).
On software defect prediction using machine
learning. Journal of Applied Mathematics,
2014.

[15] P. Kapoor, D.Arora, Ashwani, Effects of
Mean Metric Value Over CK Metrics
Distribution Towards Improved Software
Fault Predictions, proc Springer's
International Conference IC4S 2016.

[16] Rish, Irina. "An empirical study of the naive
Bayes classifier." IJCAI 2001 workshop on
empirical methods in artificial intelligence.
Vol. 3. No. 22. IBM New York, 2001.

[17] Garcia, Salvador, et al. "A survey of
discretization techniques: Taxonomy and
empirical analysis in supervised learning."
IEEE Transactions on Knowledge and Data
Engineering 25.4 (2013): 734-750.S.

[18] Kotsiantis, D. Kanellopoulos Discretization
techniques: A recent survey GESTS Int.
Trans. Computer Sci. Eng., 32 (2006), pp. 47–
58

[19] A.D. Bakar, A. Sultan, H. Zulzalil and J. Din,
2014. Predicting Maintainability of Object-
oriented Software Using Metric Threshold.

Information Technology Journal, 13: 1540-
1547.

[20] Metz, CE (October 1978). "Basic principles of
ROC analysis" (PDF). Semin Nucl Med. 8
(4): 283–98.

[21] Kaya, Fatih. "Discretizing continuous features
for naïve Bayes and C4. 5 classifiers."
University of Maryland publications: College
Park, MD, USA (2008).

[22] Kohavi, Ron, and Mehran Sahami. "Error-
Based and Entropy-Based Discretization of
Continuous Features." KDD. 1996.

[23] Rish, Irina. "An empirical study of the naive
Bayes classifier." IJCAI 2001 workshop on
empirical methods in artificial intelligence.
Vol. 3. No. 22. IBM New York, 2001.

[24] http://promisedata.googlecode.com
[25] P. Singh and S. Verma, "An Investigation of

the Effect of Discretization on Defect
Prediction Using Static Measures," 2009
International Conference on Advances in
Computing, Control, and Telecommunication
Technologies, Trivandrum, Kerala, 2009, pp.
837-839.

