
Journal of Theoretical and Applied Information Technology 
31st December 2017. Vol.95. No 24 

                       © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
6893 

 

IMPLICATIONS OF DISCRETIZATION TOWARDS 
IMPROVING CLASSIFICATION ACCURACY FOR 

SOFTWARE DEFECT DATA 
 

1POOJA KAPOOR, 2DEEPAK ARORA, 3ASHWANI KUMAR 
1,2Department of Computer Science & Engineering, Amity School of Engineering & Technology, Amity 

University, India 
3IT and Systems, Indian Institute of Management, Lucknow, India 

E-mail:  1inkhanna@gmail.com, 2deepakarorainbox@gmail.com, 3ashwani@iiml.ac.in   
 
 

ABSTRACT 
 

Since the advent of new software architectures, paradigms and technologies the software design and 
development has developed a cutting edge requirements of being on the right track in terms of software 
quality and reliability. This leads the prediction of defects in software at its early stages of its development. 
Implications of machine learning algorithms are now playing a very crucial role in classification and 
prediction of the possible bugs during the systems design phase. In this research work a discretization 
method is proposed based on the Object Oriented metrics threshold values in order to gain better 
classification accuracy on a given data set. For the experimentation purpose, Jedit, Lucene, tomcat, 
velocity, xalan and xerces software systems from NASA repositories have been considered and 
classification accuracies have been compared with the existing approaches with the help of open source 
WEKA tool. For this study, the Object Oriented CK metrics suite has been considered due to its wide 
applicability in software industry for software quality prediction. After experimentation it is found that 
Naive Bayes and Voted Perceptron, classifiers are performing well and provide highest accuracy level with 
the discretized dataset values. The performance of these classifiers are checked and analyzed on different 
performance measures like ROC, RMSE, Precision, Recall values in this research work. Result shows 
significant performance improvements towards classification accuracy if used with discrete features of the 
individual software systems. 

Keywords: Discretization, Software Defect Prediction, Classification, CK metrics 
 
1. INTRODUCTION  
 

Software defect prediction is the process of 
identifying probable defective modules in the 
software, prior to the testing phase. Software defect 
prediction plays an important and critical role, 
especially in cases where the software development 
time is a crucial issue and or where developed 
software system is too large for performing 
exhaustive testing [1-2]. Various Software metrics 
like the size of code, complexity of code, coupling, 
cohesion, Number of children, Depth of 
Inheritance, previous releases of software with the 
logs of defects encountered are being used to 
estimate the quality of the final software system. 
Efficiency of the available metrics in software 
defect prediction and estimation of the final 
software quality has been analyzed by various 
studies in the literature [1].  

Different works in the literature have tried to 
address various issues related to software defect 
prediction but no standard measures for 
performance assessment are available for software 
quality prediction and there exists a lack of generic 
framework of defect prediction at the early stages of 
software development. Most of the studies in 
literature have used different data sets and 
suggested their own methodology for solving 
various problems related to software defect 
prediction [3-8]. Many of the studies use the CK 
defined metrics suite, considering the already 
established co-relation of CK metrics with software 
quality attributes like maintainability, re-usability, 
testability, complexity etc. CK suggested that value 
of these six metrics in suites: wmc, noc, dit, rfc, 
lcom, cbo should  be maintained to low, medium, 
high  range using  software designs so that it meets 
the software  quality requirement specifications. 
But the study does not define values for the 
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linguistic terms used here: low, medium, high. 
Classes with large number of methods are 
considered to be more application specific but 
restricting the Re-use of code, so low wmc 
(Weighted Methods per Class) is desirable if Re-
Usability is the desired quality attribute of the 
quality requirement specifications [9]. 

 A threshold based discretization method 
applicable on CK metric has been suggested and 
described in this study. The CK metric data has 
been collected from promise repository for six 
metrics of CK suite. The data is in continuous form, 
and the study suggests adoption of a transformation 
method for discretizing this data will ensure a better 
defect prediction. Two classifiers have been used 
for prediction. These classifiers are the Inductive 
learning systems that can be used for classification 
of input data to a particular output class. The output 
class in the study has True / False value for the 
status of occurrences of software fault. The two 
classifiers used for the work are Naive Bayes and 
Voted Perceptron from the WEKA 3.6 Tool. 
Various statistical measures like ROC, TP, 
Accuracy, Kappa, F-measure, relative absolute error 
have been used to analyze the suggested 
discretization method. Threshold based 
discretization show a significant improvement in 
the classification performance of the two existing 
learning algorithms, the Naive Bayes and the Voted 
Perceptron. Though for SOM classifier, authors 
didn’t find any remarkable difference. The rest of 
this paper is organized as follows: In section 2, 
Background studies are discussed. In section 3, the 
proposed discretization method for data 
transformation is presented. In section 4, data set 
description is discussed for the analysis of the 
proposed method. In section 5, experimental design 
is discussed .Results of the proposed methodology 
are discussed and compared using the various 
statistical measures in section 6. Section 7 finally 
presents the conclusions of the study. 

2. BACKGROUND 

A large amount of the total development 
cost is kept aside for the testing phase. But 
sometimes due to size complexity exhaustive 
testing becomes a hard problem with time and cost 
constraints Software Defect Prediction (SDP) is an 
important activity before the testing phase that 
identifies probable defective modules. But defect 
prediction is not always an easy job to do [10]. 
Software Defect prediction (SDP) faces various 
issues to come up with an accurate Defect 
Prediction model [1]. The study has done an 

exhaustive research on how to address those issues 
like: Relationship between Attributes and Fault, No 
Standard Measures for Performance Assessment, 
Issues with Cross-Project Defect Prediction, No 
General Framework Available, Economics of 
Software Defect Prediction and the Class 
Imbalance Problem [11and 13]. Various studies on 
prediction models have been reported in the 
literature [12, 14 and 16]. An important study [14] 
presented a model that can predict the defective 
module on the basis of complexity metric like size 
complexity. The study proposed a direct relation 
between the complexity of code and defects. 
Though the paper was unable to present an accurate 
model, it raised many research questions. The paper 
also concluded that better metric for defect 
prediction model need to be identified and a 
standard process should be evolved, that can be 
integrated with  the software development process 
to ensure a better software defect prediction at early 
stages of software development [14]. Another study 
[6] presents a data mining approach that can predict 
the defective state of software modules. The study 
shows better prediction capabilities when all the 
algorithms are combined using weighted votes. In 
the paper, the authors have introduced kernel-based 
asymmetric learning for software defect prediction. 
To eliminate the negative effect of class imbalance 
problem, the author proposed two algorithms called 
the asymmetric kernel partial least squares 
classifier and the asymmetric kernel principal 
component analysis classifier [6]. The use of the 
CK software metric suite in predicting the 
maintainability of object oriented software metrics 
threshold has been presented in another study [19]. 
The paper identified that the maintainability can be 
predicted on the basis of the most effective metric 
out of the dozens available metrics [19]. In survey 
it is found that researchers have explored all 
possible area to improve classification accuracy for 
software fault prediction. In study supervised 
discretization technique developed by Fayyad and 
Irani was used to see the effect of discretization 
process on classification accuracy using Naïve 
Bayes and J48 classifiers. The study concluded 
significant improvement in classification accuracy 
of the two classifiers used the study [25]. 
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sorting the continuous values of the 
feature to be discretized 

evaluating a cut-point for splitting 
or adjacent intervals for merging 

according to some criterion, 
splitting or merging intervals of 

continuous value 

finally stopping at some 
point.(Stopping criteria) 

Continuous DATA 

Discretized  DATA 

 
Figure1: Steps involved in Discretization process 

 
3. PROPOSED DISCRETIZATION 

METHOD TRANSFORMATION 

Discretization is the process of transferring 
continuous functions, models, and equations into 
equivalent discrete values. Discretization of 
continuous features or attributes, play an important 
role in the Machine learning data pre-processing 
phase. Many machine learning algorithms even 
perform their own discretization technique for 
classification. In WEKA, various classification 
techniques perform the Discretization 
transformation before actually performing 
classification.  However, deciding a CUT-Point for 
discretization is most crucial issue for good 
classification accuracy and achieving a better 
efficiency of any Machine learning algorithm. 
CUT-POINT can be defined as a real value from 
the range of continuous values such that it divides 
the range into two intervals.  Various studies have 
achieved better classification accuracy on the basis 
of discretized data [17]. A Discretization process 
generally includes four basic steps as depicted in 
Figure 1: 

The first step requires the data to be in order, than a 
CUT POINT is selected to split the ordered data. A 
control strategy is decided for actually splitting of 
the data. Equal width binning and equal frequency 
binning, Error based discretization, Recursive 
minimal entropy partitioning are some of the 
discretization methods used by various studies in 
the literature for continuous feature discretization 
[21, 23]. A special case of discretization 
“Dichotomization” in which the number of discrete 
classes is 2, which can approximate a continuous 
variable as a binary variable. Dichotomization 
divides the entire range of the feature in 2 classes, 

making the data set more suitable for binary 
classification [18, 21]. 

                             

---------------(1) 

 
where i={1.....n}, n  total number of rows in data 
set, j={1.....m}, m  attributes in the data set. 
 

In equation (1), x_ij, x represents value of ith row 
data and jth attribute. {T1, T2} are defined as 
MMV± Deviation of jth   attribute of the data set. 
Consider a case from Jedit3.2 data set, x2wmc=14 
where j is wmc and i=2. MMV for wmc as given by 
the study is 13, if deviation for this wmc attribute 
comes out to be 3, then f(x2wmc ) = 1, as T1= (13-
3=10) and T2 = (13+3=16). Using this method, the 
entire data set is transformed and the efficiency of 
two different classifiers has been checked and the 
results compared using the different statistical 
measures. 

Table 1: Mean Metrics value identified by the study using 
the Naive Bayes Classifier [15]. 

Metric Mean  Metrics  Values  (MMV)
WMC(mean) 11
DIT 2
NOC .5
CBO 13
RFC 40
LCOM -

Instances 900 

 

4. DATA SET DESCRIPTION 

The software defect data set for the study has been 
collected from the NASA repository (promise 
repository)[24]. The data set contains a total of 21 
attributes, but for the current study 5 metrics of the 
CK metric suite i.e. wmc, dit, noc, cbo, rfc along 
with the output class attribute fault have been 
considered. Majority of the researchers have used 
CK metric for quality prediction for design purpose. 
CK metric suites are widely accepted for checking 
the quality of the final product. CK suite is a 
collection of six metrics, however only five metrics 
of CK metrics suite have been considered as 
suggested [15]. Five metrics chosen for the study 
from the CK metric suite are of Numeric type. 
Table 2 lists all the eighteen defect data sets used in 
the study. Attributes considered in the table are No 
of instances in each data set (#) and total distinct 
values for each metric in the eighteen different data 
sest. For example Jedit 3.2 has 287 as the total no of 
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instances (#) and distinct values for each column, 
while WMC=44, DIT=11, NOC=13, CBO=46, 
RFC=93.   

Table 2: Description of the eighteen defect data sets used 
for the study 

 
  WMC DIT NOC CBO RFC

DEFECT SET # distinct 
values 

distinct 
values 

distinct 
values 

distinct 
values 

distinct values 

Jedit 3.2 287 44 11 13 46 93 
Jedit 4.0 306 43 8 12 45 97 
Jedit 4.1 312 46 8 12 46 92 
Jedit 4.2 369 53 8 12 55 114 
Jedit 4.3 492 54 8 12 60 127 
Lucene 2.0 195 30 5 10 34 57 
Lucene 2.2 247 33 5 11 40 65 
Lucene 2.4  340 39 5 12 43 73 
tomcat 858 76 6 16 52 136 
Velocity 1.4 196 34 4 7 39 65 
Velocity 1.6 229 35 5 9 39 65 
Xalan 2.4 723 69 8 20 76 122 
Xalan 2.5 803 73 8 21 74 123 
Xalan 2.6 885 76 8 21 72 125 
Xalan 2.7 911 75 9 21 79 133 
Xerces 1.2 440 52 6 11 35 82 
Xerces 1.3 453 56 5 11 35 81 
Xerces 1.4 588 50 5 12 45 87 
  

 

5. EXPERIMENTAL DESIGN 

The primary objective of the study is to discretize 
the CK metric using the proposed discretization   
method.  For the purpose of study the we are 
concentrating on CK metric namely cbo, rfc, wmc, 
dit and noc. In the study, a co-relation between 
these five metrics and occurrence of fault has been 
established. lcom is not considered because of its 
unpredictable response to fault. The study also 
suggested a Mean Metrics Value (MMV) on the 
basis of the Naive Bayes classifier and study 
established a relation that if over all distribution of 
CK metrics suite for a system is as per MMV, it 
ensures less occurrence of faults [15]. This MMV 
has been used as CUT-POINT for discretizing the 
data. The value of f(x_ij) is set 1 if  x_ij lies 
between T1 and T2. Value of T1 and T2 is (MMV± 
deviation). 
 

Figure 2 represents the output after the 
discretization f(x_ij) is applied on a set of ten 
instances {I1,I2,I3,I4,I5,I6,I7,I8,I9,I10} and five 
attributes{X1=wmc,X2=dit,X3=noc,X4=cbo,X5=rf
c}. The deviation corresponds to each attribute 
column calculated considering all the 340 instances. 
WEKA 3.6 has been used for the empirical study, 
using the Naive Bayes and Voted perceptron 
classifiers. The primary objective of the study is to 
discretize the continuous features of the data and 

then analyze the performance of the Naive Bayes 
and voted perceptron classifier. 
 
6. RESULTS AND DISCUSSION 

Eighteen different defect data sets, collected from 
the NASA repositories of six different systems and 
their versions, have been used to test the effect of 
the proposed process of discretization of continuous 
features of the data set. Looking at the continuous 
data set, it is visible that in some cases the number 
of distinct values for a feature is too high, and for 
classifiers like Naive Bayes and neural network it 
increases the computational complexity [23]. Jedit 
3.2 has 196 as total number of instances and RFC 
feature contain 97 different values i.e 32% different 
values of total instances. Similarly in case of 
velocity 1.4, RFC feature contains 33% distinct 
values.  

The classifiers were run for eighteen different 
defect sets and different statistical measures are 
recorded, in Table 3 for Naive Bayes and Table 4 
for Voted Perceptron. The statistical measures: 
ROC, TP, Accuracy, Kappa, F-measure, relative 
absolute error, recall have been considered for 
comparing the classifier performance [20]. 
Accuracy is a measure of correctness of the 
classifier i.e.  a classifier is able to predict an 
instance to TRUE class given it is TRUE and an 
instance predicted to False class given it is actually 
FALSE.  Figure 3, Figure 4 and Figure 5 represents 
the accuracy performance of Naive Bayes, Voted 
perceptron and SOM.  

Figure 3 represents the accuracy comparison of 
discrete and continuous data obtained using th e 
Naive Bayes classifier. Graph presents better 
accuracy in case of discretized data for both the 
classifiers. Though from Figure 3, it is quite 
obvious that in some cases like for lucene 2.0, the 
Naive Bayes classifier accuracy for continuous data 
is better than the accuracy obtained through 
discredited data set. Similarly, results obtained in 
Figure 4 for Voted Perceptron classifier indicates an 
overall accuracy improvement, except few cases 
like in xerces 1.4, where the graph shows better 
results for continuous data set in this case. 
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Figure 2: To show transformation of continuous data into   discrete data by using the proposed discretization function 

f( ) 

 

 

Fig 3: Accuracy comparison of Discrete and continuous data using the Naive Bayes classifier 
 

 

 
 

Figure 4: Represents accuracy comparison of Discrete and continuous data using Voted Perceptron classifier 
 
 

In case of SOM, Figure 5 show almost similar 
accuracy output performance for both data set i.e 
discrete and continuous.   But sometimes the 
accuracy is faced with the accuracy paradox. 
Consider a  situation when TP =0, FP=0, 
TN=115,FN=15, this says that the classifier unable 
to predict TRUE class (TP=0), but can Classify 
FALSE class well (TN=115). In such a case, 

accuracy comes out to be  88%. To deal with this 
kind of situation, many other measures are consider 
to check the performance of classifier. Table 3 and 
Table 4 lists various other statistical measures like 
precision and RMSE. Precision is  measure the 
percentage of actual correct samples out of all the 
examples  labeled as positive by the classifier. 
Whereas RMSE is a measure of the correctness of 

wmc  dit  noc  cbo  rfc  fault  Wmc  Dit  noc  cbo  rfc  Fault 

5  2  0  19  18  y  1  1  1  1  0  Y 

10  3  0  13  41  y  1  0  1  1  1  Y 

10  1  0  4  38  n  1  0  1  0  1  N 

4  4  0  3  7  n  1  0  1  0  0  N 

25  2  2  20  82  y  0  1  0  1  0  Y 

5  1  3  13  6  n  1  0  0  1  0  N 

13  1  0  13  61  y  1  0  1  1  0  Y 

17  2  0  6  34  y  1  1  1  1  1  Y 

13  1  0  8  36  n  1  0  1  1  1  N 

8  1  0  30  8  n  1  0  1  0  0  N 
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classifier. It explains how distinct the classification 
model is from the actual prediction. RMSE is a 
good predictor of model about a Binary Classifier. 
RMSE varies from 0.0 to 1.0. and low values of 
RMSE for prediction of a good classifier model are 
desirable. Figure 5, Figure 6 and Figure 7 represents 

the RMSE value comparison for discrete and 
continuous data of the tthree classifiers: Naive 
Bayes, Voted Perceptron and SOM, used in the 
study. 

 

 

 
Figure 5: Represents accuracy comparison of Discrete and continuous data using SOM classifier 

Table 3: Statistical measures of Naive Bayes Classifier 
for discretized (Dis.) and continuous (Conts.) features 

 
Defect set Data  Type Correctly  

class ified 
TP FP ROC Precision Recall RMSE

Jedit 3.2. Dis. 72.05 0.72 0.38 0.74 0.71 0.72 0.43 
Conts. 71.7 0.717 0.42 0.75 0.7 0.71 0.45

Jedit 4.0. Dis. 77.45 0.775 0.586 0.57 0.74 0.77 0.42 
Conts. 78.4 0.78 0.54 0.68 0.76 0.78 0.43

Jedit 4.1. Dis. 79.16 0.79 0.53 0.62 0.78 0.79 0.42 
Conts. 77.2 0.78 0.55 0.72 0.74 0.77 0.42

Jedit 4.2. Dis. 86.6 0.87 0.57 0.63 0.85 0.87 0.33 
Conts. 86.3 0.86 0.65 0.72 0.84 0.86 0.35

Jedit 4.3. Dis. 96.9 0.97 0.978 0.722 0.95 0.97 0.156 
Conts. 95.5 0.96 0.71 0.59 0.97 0.96 0.2

Lucene 2.0. Dis. 63.5 0.63 0.38 0.63 0.67 0.67 0.48 
Conts. 69.7 0.697 0.32 0.755 0.71 0.7 0.33

Lucene 2.2. Dis. 55 0.55 0.51 0.57 0.53 0.55 0.48
Conts. 55.4 0.56 0.36 0.61 0.64 0.55 0.55

Lucene 2.4. Dis. 63.2 0.63 0.41 0.61 0.62 0.63 0.48 
Conts. 57.6 0.58 0.32 0.68 0.69 0.57 0.59

Tomcat. Dis. 90.7 0.91 0.91 0.74 0.82 0.91 0.28 
Conts. 87.8 0.88 0.62 0.78 0.88 0.88 0.33 

Velocity 1.4. Dis. 74.4 0.74 0.75 0.65 0.56 0.74 0.42
Conts. 78 0.78 0.45 0.72 0.76 0.78 0.42

Velocity 1.6. Dis. 64.1 0.64 0.53 0.597 0.61 0.64 0.47 
 Conts. 67.2 0.672 0.54 0.65 0.64 0.67 0.54
Xalan 2.4. Dis. 84.5 0.85 0.84 0.6 0.76 0.85 0.35
 Conts. 82.7 0.827 0.67 0.7 0.79 0.82 0.4
Xalan 2.5. Dis. 54.6 0.55 0.47 0.56 0.55 0.55 0.5 
 Conts. 56.1 0.56 0.46 0.59 0.79 0.56 0.6
Xalan 2.6. Dis. 59.7 0.6 0.42 0.611 0.6 0.6 0.49 
 Conts. 59.7 0.59 0.45 0.63 0.65 0.59 0.6
Xalan 2.7. Dis. 98.7 0.99 0.99 0.56 0.97 0.98 0.02
 Conts. 61.8 0.61 0.27 0.71 0.98 0.61 0.58
Xerces 1.2. Dis. 80.2 0.8 0.755 0.647 0.75 0.82 0.38 
 Conts. 79 0.79 0.74 0.57 0.74 0.79 0.43
Xerces 1.3. Dis. 83.2 0.83 0.74 0.62 0.78 0.83 0.37 
 Conts. 81 0.81 0.66 0.59 0.79 0.81 0.41 
Xerces 1.4. Dis. 70.4 0.7 0.48 0.7 0.7 0.7 0.41
 Conts. 65.9 0.66 0.22 0.79 0.78 0.66 0.53

 

Table 4: Statistical measures of Voted Perceptron 
Classifier for discretized (Dis.) and continuous (Conts.) 

features 
Defect set Data Type Correctly 

classi fied 
TP FP ROC Precision Recall RMSE

Jedit 3.2 Dis. 72.05 0.72 0.38 0.74 0.71 0.72 0.43 
Conts. 71.7 0.717 0.42 0.75 0.7 0.71 0.45

Jedit 4.0 Dis. 77.45 0.775 0.586 0.57 0.74 0.77 0.42 
Conts. 78.4 0.78 0.54 0.68 0.76 0.78 0.43

Jedit 4.1 Dis. 79.16 0.79 0.53 0.62 0.78 0.79 0.42 
Conts. 77.2 0.78 0.55 0.72 0.74 0.77 0.42

Jedit 4.2 Dis. 86.6 0.87 0.57 0.63 0.85 0.87 0.33 
Conts. 86.3 0.86 0.65 0.72 0.84 0.86 0.35

Jedit 4.3 Dis. 96.9 0.97 0.978 0.722 0.95 0.97 0.156
Conts. 95.5 0.96 0.71 0.59 0.97 0.96 0.2

Lucene 2.0 Dis. 63.5 0.63 0.38 0.63 0.67 0.67 0.48 
Conts. 69.7 0.697 0.32 0.755 0.71 0.7 0.33

Lucene 2.2 Dis. 55 0.55 0.51 0.57 0.53 0.55 0.48
Conts. 55.4 0.56 0.36 0.61 0.64 0.55 0.55

Lucene 2.4  Dis. 63.2 0.63 0.41 0.61 0.62 0.63 0.48 
Conts. 57.6 0.58 0.32 0.68 0.69 0.57 0.59

tomcat Dis. 90.7 0.91 0.91 0.74 0.82 0.91 0.28 
Conts. 87.8 0.88 0.62 0.78 0.88 0.88 0.33 

Velocity 1.4 Dis. 74.4 0.74 0.75 0.65 0.56 0.74 0.42
Conts. 78 0.78 0.45 0.72 0.76 0.78 0.42

Velocity 1.6 Dis. 64.1 0.64 0.53 0.597 0.61 0.64 0.47 
Conts. 67.2 0.672 0.54 0.65 0.64 0.67 0.54

Xalan 2.4 Dis. 84.5 0.85 0.84 0.6 0.76 0.85 0.35
Conts. 82.7 0.827 0.67 0.7 0.79 0.82 0.4

Xalan 2.5 Dis. 54.6 0.55 0.47 0.56 0.55 0.55 0.5 
Conts. 56.1 0.56 0.46 0.59 0.79 0.56 0.6

Xalan 2.6 Dis. 59.7 0.6 0.42 0.611 0.6 0.6 0.49 
Conts. 59.7 0.59 0.45 0.63 0.65 0.59 0.6

Xalan 2.7 Dis. 98.7 0.99 0.99 0.56 0.97 0.98 0.02
Conts. 61.8 0.61 0.27 0.71 0.98 0.61 0.58

Xerces 1.2 Dis. 80.2 0.8 0.755 0.647 0.75 0.82 0.38 
Conts. 79 0.79 0.74 0.57 0.74 0.79 0.43

Xerces 1.3 Dis. 83.2 0.83 0.74 0.62 0.78 0.83 0.37 
 Conts. 81 0.81 0.66 0.59 0.79 0.81 0.41 
Xerces 1.4 Dis. 70.4 0.7 0.48 0.7 0.7 0.7 0.41

Conts. 65.9 0.66 0.22 0.79 0.78 0.66 0.53

 
 

 
 

 
Figure 6: RMSE value comparison for Discrete and Continuous data for Naive Bayes
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Figure 7: RMSE value comparison for Discrete and Continuous data for voted perceptron 

  

 
 

Figure 8: Represents RMSE value comparison for Discrete and Continuous data for SOM 
 
 
Figure 6, generated using Naive Bayes classifier, 
indicates better RMSE curve for discretized data. 
Generally for all systems under study, it shows 
better classification and prediction model using  the 
discretized data set. But for the Voted Perceptron 
(Figure 7), there is no remarkable difference in the 

RMSE curve using both discretized and continuous 
data sets. Similarly for SOM, in Figure 8, except 
for few values RMSE for both the data set shows 
similar output.   
 

 

 
 

Figure 9:  Kappa statistics for discrete and continuous data as result of the Naive Bayes Classifier 
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Figure 10:  Kappa statistics for discrete and continuous data as result of the Voted Perceptron Classifier 

 
 
Figure 10 show comparison of kappa statics for 
discrete and continuous data as a result of voted 
Perceptron classifier. The kappa curve for both 
discrete data and continuous is found to be similar 
except in two or three defect data sets like jedit 3.2, 
jedit 4.0, jedit 4.1and xerces 1.4. 
 
7. CONCLUSION 

This research work, has proposed  a discretization 
method, in order to increase the overall efficiency 
of the existing CK Metrics prescribed for object 
oriented systems. The proposed discretization 
method is applied on, in total eighteen different 
systems taken from NASA repositories. During 
experimentation it is found that the threshold 
identified in the study  in terms of MMV can be 
used to change the nature of continuous features 
into two classes {0,1}[15]. The discretization of 
values so preformed can help in increasing 
efficiency of classifiers like the Naive Bayes and 
the Voted Percepton in an significant manner [8]. 
The study suggests that by using certain threshold 
value of metrics, the efficiency of CK metrics in 
prediction of software quality can be increased 
towards predicting software defects at an early 
stages of its development. Out of eighteen data sets 
considered under experiment, the overall increase  
in accuracy after the proposed descretization, 
comes out in a range of 0.4% - 8%, if used for 
Naive Bayes and perceptron, which is most likely 
as both classifiers already have proven prediction 
capabilities. Majorly improvements can be seen but 
in case of support vector machine doesn't give 
prominent results. Future dimension of the 
proposed research work could be identifying 
ensemble classifiers or inclusion of genetic 
algorithm,  towards direction of building of novel 
methods for gaining more prompt predictive 
capabilities. Genetic algorithms can be more 

helpful in optimizing the threshold parameters used 
for discretization. The threshold values are 
dependent on various factors related to software 
development environment and the software quality 
requirement of the system, so dynamic adoptability 
of these parameters could be the one of the most 
deciding factors.  
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