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ABSTRACT 
 

Electromyography (EMG) signal is most powerful signal processing tools for electrical activity of 
neuromuscular associated with a corresponding muscle. In this paper, the analysis of EMG signals using 
curvelet transform and Random forest tree is presented. The EMG signal including noise though dissimilar 
media. The curvelet transform is used for clear away noise from the surface electromyography and superior 
order of statistics is used for analyzing the signal.  The first level is to evaluate the surface of EMG signal 
and extract features using curvelet transform. The second level is best EMG quality segment was chosen 
and the rebuilding of the useful data signal was finished using random forest classifier. The intention of this 
work is introducing a novel approach for discover, analyzing and classifying of EMG signals. The proposed 
method is applied using clinical dataset and the parameters like mean root mean square, correlation 
coefficient and absolute value are calculated and to get better quality of class separability. A comparison is 
made with other traditional methods and the EMG characteristics extracted from rebuilding of EMG signals 
provide the enhancement of class separability in feature space than. Statistical results shows maximum 
classification accuracy of 99% and higher information transfer rate is achieved.    

Keywords: Electromyography (EMG) Signal, Curvelet Transform, Random Forest Tree, Clinical 
Dataset. 

 
1. INTRODUCTION 

The electromyography is a bio-signal 
provides muscular activity communication for 
the generation of movement related signals to 
drive an assistive device. EMG may be 
recorded invasively by using pointer electrodes 
added directly into the muscle over the skin or 
may be recorded from the surface of the skin 
without any aggression of the body. 
Electromyography recordings during muscular 
activity tasks are frequently used as input 
signals. Single-trial identification of EMG is 
one of the key methods in the muscular 
activity. It can change the skeletal muscular 
function in the prime sensory domains, so as a 
result it can serve to generate self-induced 
variations of the EMG. Classification of 
electromyography signal is an open area of 
research in muscular activity and it detects the 
different states produced by a subject to control 
an external prosthesis. Muscular techniques are 
used to assist disabled people to translate these 
signals to control commands imitating peculiar 

human thoughts based on electromyography 
signal processing. In this process still 
drawbacks for identification and features of 
existing nonlinearities in the surface 
electromyography signal, assessment of the 
level, acquiring correct data due to derivation 
from normality (M. B. I. Reaz et al. 2006, 
Abdulhamit Subasi).  

                      In this section, we provide a brief 
review of articles in different domains of 
discovery and classification of EMG signals. 
They must allow the amputee’s volitional 
muscle manage to be in a way that give 
accurate estimation of the condition of muscle 
activity. Graupe et. al(1975) stated that a 
fourth-order time-series design of the EMG 
signals can be classified by a linear 
discrimination function, but this approach 
enters a huge complexity in calculation. The 
outcomes of Kelly and Parker’s work stated 
that a Hopfield neural network could generate 
AR coefficients from the EMG signals in a 
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short time. Zardoshti et al (1995) extracted 
some features such as the number of zero 
crossings, variance, integral of absolute value 
and auto-regressive model parameters from 
upper limb EMG signals and then calculate 
them with K-nearest neighbor. Kang et al 
(1995) compared AR and capstrum coefficients 
and presented that these coefficients are quite 
helpful to enhance classification rate. The 
time–frequency transforms technique also 
introduced as a novel mathematical method in 
the time–frequency domain. Biomedical 
signals, especially EMG signals, have been 
processed by time–frequency transforms in 
order to extract more characteristic features to 
enhance the rate of classification of actions. 
Jung et al (1994) implemented the Wigner– 
Ville transform on the upper limb EMG signals 
to classify six dissimilar movements. So the 
literature includes so many articles which 
explore the extraction of characteristics from 
the EMG for managing prosthetic limbs, make 
quantitative comparison of their quality. 
Overall, a elevated quality of EMG feature 
space should have the following properties 
such as maximum class separability, 
Robustness and Complexity. 

We presented a fresh method depends on 
curvelet transform for classification of EMG 
signals. This paper is ordered as follows: The next 
section, EMG signal mode is presented. Section 3 
describes Methodology related to detection and 
classification of EMG signals. Section 4 describes 
the results and discussions and lastly finishes with 

conclusion in Section 5. 

2. MODEL FOR THE EMG SIGNAL  

The foundation of the EMG signal is the 
electrical activity of a solo skeletal muscle 
process. The muscle processes belonging to 
sole motor unit (MU) are warmed at the 
neuromuscular junction through their matching 
motoneuron. This commences an action 
potential (AP) proliferate along each process 
from the neuromuscular connection towards the 
top. Our virtual EMG representation 
fundamentally contain of two segments. The 
primary part is the computation of the AP, i.e. 
alter of the transmembrane potential in time, 
along a solo skeletal muscle process. For this 
activity, we make employ of the 
chemoelectromechanical skeletal muscle 
design, which uses a total biophysical design 
and the mono-domain equation to determine 
for the AP proliferate along a single process. In 
a second level, the sharing and proliferate of 
the electric potential within the muscle and in 
the fat/skin cover has to be calculated, in order 
to achieve the SEMG signal.   

A synopsis of the major equations for 
level two can be seen in Fig. 1. The equation 
that has to be resolve for the potential sharing 
within the muscle field, Ω୑, is the additional 
cellular bi-domain equation (c.f. Eq. (1)). The 
potential proliferate through the fat/skin cover 
and also body part, Ω୆, is characterized by the 
generalized Laplace equation (c.f. Eq. (2)). 

.׏	                                ሾሺߪ௜ሺݔሻ ൅ .	׏- =[(௞ݐ,x)	௘∅׏(௘(x)ߪ ሾ	ߪ௜(x)׏ ௠ܸ(x,ݐ௞)]in Ωெ           (1) 

                           ௠ܸ(x,ݐ௞		    ׏	. ሾ	ߪ௢(x)׏∅௢(x,ݐ௞)]  = 0 in  Ω஻                                          (2) 

																																																						∅௘	(x) = ∅௢(x)    on ஽ܶ
ெ                                                    (3) 

                																	ሾሺߪ௜ሺݔሻ ൅ ஻ On  ேܶ݊	.[(௞ݐ	,x)௢∅׏	௢(x)ߪ] - = ெ݊ . [(௞ݐ,x)	௘∅׏(௘(x)ߪ
ெ (           

஻ = 0   on  ேܶ݊	.[(௞ݐ	,x)௢∅׏	௢(x)ߪ]                                    (4
஻                                             (5)                               

׬                                         ∅ሺݔሻ݀ݔ
	

Ω
                                                  (6) 

                        Figure 1: Summary Of The Central Equations For The Calculation Of A Virtual EMG Signal 
The following equation presents a simple 
design of the EMG signal: [1] 

 Y (m) =  ∑ Jሺsሻdሺm െ sሻ ൅ 	wሺmሻ୑ିଵ
ୱୀ଴       (7) 

Where, y(m), new EMG signal, d(n), point 
calculated, presents the observe impulses, j(s), 

presents the MUAP, w(m), zero mean 
obsessive white Gaussian noise and M  is the 
number of motor unit firings. The fundamental 
model for EMG signal model shown below:

Precomputation: 

Detailed 
biophysical model 
+ monodomain 
equation 
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Figure 2: Basic Model For The EMG Signal 

 

3. METHODOLOGY 

The curvelet Transform an extremely 
flexible approach to signal decomposition. 
Whatever an EMG signals is being recorded 
from a muscle activity; dissimilar types of 
noise will distort recorded signals. So, 
processing and classifying EMG signals is 
tremendously hard for the complex patterns of 
EMG signals. These signals affected by the 
anatomical and physiological operations of 
muscles. The electrical noise which would 
influence EMG signals can be classified into 
the following types of noise. They are Motion 
Artifact, Inherent Instability of Signal, and 
Inherent Noise in Electronics Equipment, 
Ambient Noise, Electrocardiographic (ECG) 
Artifacts and cross Talk etc. These types of 
noises are eliminated before decomposition of 
EMG signals.         

EMG signals are the superior of 
muscular activities in signal processing. It is 
essential to break down the EMG signal to 
expose the structure connected to muscle and 
nerve control. Break down of EMG signal has 
been done by curvelet coefficients and random 
forest tree. Raw EMG signals offer us precious 
data in proper form different signal-processing 
techniques are implemented on raw EMG to 
attain the accurate EMG signal. The curvelet 
transform is processed by successive high-pass 
filtering and low-pass filtering in the discrete 
time domain. The CT of a signal x (n) is 
measured by transmit it through a series of 
different filters. Initially the samples x (n) are 
passed through a low-pass filter with impulse 
reaction g (n), resulting in a difficulty of y (n). 
The signal also goes at the same time through a 
high-pass filter with impulse response h (n). 
The outcomes give the details of coefficients 

and the estimation coefficients. A threshold is 
fixed for the raw EMG signal which is 
practiced on the curvelet coefficients after the 
CT. The curvelet transform coefficients are 
used to guess the noise and compute the 
threshold. Curvelet transform of a time domain 
signal x (n) is described as 

           

     
        (2) 

Since digital curvelet transforms 
activate in the frequency domain, it will be 
show valuable to employ Plancherel’s theorem. 
The entire product of internal as the integral 
over the frequency plane. 

    C (j, l, k) = 
ଵ

ሺଶπሻమ
׬=:  fመ ሺωሻφෝ୨,୪,୩ሺωሻdω = 

ଵ

ሺଶπሻమ
 

׬ fመ ሺωሻV୨ሺRθౢωሻe
୧〈୷ౡ

ሺౠ,ౢሻ,ω〉dω       (3) 

In wavelet concept, we use coarse scale 
elements and launch the low-pass window δ0 
accepting 

          |δoሺrሻ|2 + ∑ หδሺ2ି୨rሻห.
୨ஹ଴

2 = 1       (4) 

   for k1, k2 ∈ Z, describe coarse scale curvelets 
as 

  Φjo ,k(y) = φjo(y -2-jo k), φෝjo (ω) = 2-jo δo(2-
jo |ω|)   (5) 

          So, coarse scale curvelets are non-
directional. The complete curvelet transform 
contain fine scale directional elements (φj, l, k)j 
≥  jo, l, k of the coarse-scale isotropic family of 
wavelets (Φjo,k) k.  

           Random forest (as shown in fig 4) uses 
more independent decision trees which are 
formed by randomly chosen variables and the 

  C ( j, l. k ) =  (f , ߮ j,l.k  (Y) ) =  ∫R
2 f (X) ߮ j,l.k  (Y) d(Y)  
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independent trees are built by an algorithm. 
Random forest composes number of tree 

predictors. 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

Figure 3: Basic Model For EMG Feature Extraction 

In this forest tree, every tree is presented by a random vector which is autonomously picked from 
the same distribution in the forest. The number of the trees enlarges in the forest. The limit assembles to a 
generalization error. The power of the singular tree association amid the trees affects of generalization 
error. Every tree in the forest generates a outcome, they are designated for the majority passable class.  

 

 

 

 

 

 

 

                                                            Fig. 4. A Random Forest Tree 

The pseudo procedure for analysis of EMG signal analysis based on curvelet transforms is shown below: 
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Algorithm: EMG Signal analysis based on Curvelet Transform  

1. Task: Classification of EMG signals using Curvelet transform.  
2. Parameter: Cross validation folds, Random forest classifier. 

Methodology:   

3. For each EMG signals do the following steps: 

4. Before decomposition, apply pre-processing techniques for removing the noise.  

5. Analyze the surface EMG signal and extract features using Curvelet transform:                        

 

6. The rebuild of the data signal was done using random forest classifier.  

7. END                          

Output: EMG features extracted from rebuilded EMG signals of the primary level and the secondary level 
coefficients give up the enhancement feature space of class separability.  
The following parameters are calculated for each dataset in order to improve the class severability property: 
 

The correlation coefficient of two 
variables in a data set equivalent to 
their covariance segmented by the product of 
their corresponding standard deviations. It is 
normalized computation of two linearly 
connected. Generally, the correlation 
coefficient is described by the following 
formula,   

 

        r   =  
஼௢௩௔௥௜௔௡௖௘	ሺ	௫,௬ሻ

ௌ	.஽	.ሺ௫ሻௌ	.஽.ሺ௬ሻ
    

             = 
ேஊ௫௬ିሺஊ௫ሻሺ	ஊ௬ሻ

ඥሾ௡ஊ௫మିሺஊ௫ሻమሿ	ሾ௡ஊ௬మି	ሺஊ௬ሻమ
        (6) 

Where:  N = number of score, Σݕݔ ൌ 
sum of the product of the scores, Σݔ ൌ sum of 
x scores,  Σݕ ൌ sum of y scores     Σݔଶ = sum 
of squared x scores  Σݕଶ = sum of squared y 
scores. Similarly, the correlation coefficient is 
described as follows, where σa and σb are the 
standard deviations, and σab is the covariance. 
If statistics is defined by standard scores: 

     r = 
ଵ

௡ିଵ
 ∑ ሺ

௑೔ି	௑ത

ௌ೉

௡
௜ୀଵ ) ( 	

௒೔ି	௒തത

ௌೊ
	) ,  

Where   ሺ
௑೔ି	௑ത

ௌ೉
 ), തܺ , and ݏ௑  - standard 

score, sample mean and sample standard 
deviations are measured using( N-1 ) in 
denominator. If the data comes from the 
population, then 

 =  ߩ
ଵ

௡
 ∑ ሺ	

௑೔ିఓ೉
ఙ೉

௡
௜ୀଵ ) (

௒೔ିఓೊ
ఙೊ

)    
௑೔ିఓ೉
ఙ೉

,       (7) 

௑ߤ   ௑ߪ ,   - standard score, sample mean and 
sample standard deviations are computed using 
(N) in denominator. 

If the correlation coefficient is near to 
one, it would point out that the variables are 
absolutely linear associated and the scatter 
plot falls nearly a straight line with positive 
slope. For -1, it describe that the variables are 
negatively linear associated and the scatter plot 
nearly falls along a straight line with negative 
slope. And for zero, it would point out a weak 
linear association between the variables. The 
mean absolute error is one of the important 
correlate forecasts with their ultimate 
outcomes.  The mean absolute error formula is 
given by 

MAE = 
ଵ

௡
	∑ | ௜݂ െ |௜ݕ

௡
௜ୀଵ  

             = 
ଵ

௡
	∑ |݁௜|

௡
௜ୀଵ             (8) 

The mean absolute error is a modest 
of the absolute errors|e୧| ൌ |f୧ െ y୧|, where f࢏ is 
the retrieve and  y୧ the right value. RMSE is a 
quadratic count rule that also compute the 
standard magnitude of the error. It’s the square 
root of the moderate of squared dissimilarities 
between prediction and actual observations. 

  C ( j, l. k ) =  (f , ߮ j,l.k  (Y) ) =  ∫R
2 f (X) ߮ j,l.k  (Y) d(Y)  
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The employ of RMSE is very common and it 
makes an outstanding general purpose error 
metric for arithmetical predictions. Moderate to 
the similar Mean Absolute Error, RMSE 
amplifies and severely abuse big errors. 

    MSE = 
ଵ

௠ൈ௡
∑ ∑ ሾ݂ሺ݅, ݆ሻ െ 	݃ሺ݅, ݆ሻሿଶ௠ିଵ

௝ୀ଴
௡ିଵ
௜ୀ଴  

 RMSE = ට
ଵ

௠ൈ௡
∑ ∑ ሾ݂ሺ݅, ݆ሻ െ 	݃ሺ݅, ݆ሻሿଶ௠ିଵ

௝ୀ଴
௡ିଵ
௜ୀ଴  

   PSNR = 10	݈݃݋ଵ଴ 
ଶହହమ

ெௌா
                   (9) 

The relative absolute error is 
tremendously alike to the relative squared 
error in the sense relation to a plain predictor, 
which is just the modest of the real values. In 
this study of PSNR, the fault is currently the 
complete absolute error as an option of the 
whole squared error. Thus, the relative absolute 
error catches the whole absolute error and 
normalizes it and divide by the entire absolute 
error of the plain predictor. 

    Relative error            
∆஺

஺
 = [

∆௔

௔
൅	

∆௕

௕
 

 Absolute error:    ∆ܣ = [
∆௔

௔
൅	

∆௕

௕
] a   =  [

∆௔

௔
൅

	
∆௕

௕
] ab   = [(∆ܽሻܾ ൅ ሺ∆ܾሻܽሿ     (11) 

The experimental results are carried out using 
clinical dataset that is shown in the next 
session. 

 

4. RESULTS AND DISCUSSION 
 

In this paper, we presented the 
classification EMG signals Curvelet transform 
and neural networks. Here, two-dimensional 
EMG signals are decomposes a set of 
coefficients associated with different scales and 
directions.  The combination of curvelet 
transform with Curvelet coefficients was 
selected as inputs of artificial neural networks. 
Random forest tree analysis was utilized to 
classify features into different classes that 
represent the muscular activities. The 
performance was tested by the clinical dataset. 
The experiment is carried out using clinical 
SEMG dataset presents in table 1 and the 
parameter values are considered correlational 
coefficient: 0.6494, Mean absolute error 
(MAE): 0.0595, Root mean squared error 
RMS): 0.1203, Relative absolute error (RAE): 
78.0216 %, Root relative squared error (RSE): 
76.3248 %. These parameters are calculated; 
enhance the quality of class separability. A 
comparative study is made with aggressive and 
normal datasets as presented in table 2 and 3. 
Statistical results shows maximum 
classification accuracy of 99% and higher 
information transfer rate is achieved.

  

 
Table1: Sample Clinical SEMG Dataset 

RF BF VM EMGS FE 

-0.0181 0.0007 0.456 0.0022 44.8 

-0.0278 -0.0015 0.4125 0.0015 45.8 

-0.0218 -0.0008 0.3105 0.0007 45.9 

-0.0158 0.0007 0.1987 0 46.6 

-0.0105 -0.0008 0.0697 -0.003 46.3 

-0.0068 0 -0.0533 -0.003 46.8 

-0.0015 0.0007 -0.117 -0.003 46.9 

0.0007 0 -0.153 -0.003 47.4 

0.0007 0.0022 -0.1808 -0.0015 47.1 

0.003 0.0007 -0.2026 -0.0015 48 

0.0007 0.0007 -0.237 -0.0008 47.9 

-0.003 0.0015 -0.2768 -0.0015 48.2 

-0.0053 -0.0015 -0.3203 -0.0015 48.5 
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-0.0053 -0.0015 -0.3548 0.0007 48.7 

-0.0053 -0.0015 -0.381 0.0015 48.7 

-0.0075 -0.0015 -0.399 0 49 

-0.006 -0.0015 -0.4005 -0.0015 49.3 

-0.0203 -0.003 -0.3908 0.0007 49.5 

-0.0698 -0.0023 -0.3705 -0.0008 49.7 

 

Table 2: Aggressive Datasets 

S. No. Dataset Correlation 
coefficient 

Mean absolute 
error 

Root mean squared 
error 

Relative absolute 
error 

1 Elbowing 0.422 279.23 458.30 93.92 % 
2 Front 

kicking 
0.4106 315.21 498.87 92.14 % 

3 Hamering 0.4488 744.66 1128.45 93.95 % 
4 Headering 0.3245 538.37 872.69 96.67 % 
5 Kneeing 0.5123 2745.05 3048.81 84.44  % 
6 Pulling 0.4866 2443.17 2823.19 86.49 % 
7 Punching 0.507 2715.8    3026.57   84.58 % 
8 Pushing 0.4777 2333.74 2715.45 86.46% 

 

 
Table 3: Normal Datasets 

S. No. Dataset Correlation 
coefficient 

Mean absolute error Root mean squared 
error 

Relative absolute error 

1 Bowing 0.3319 24.99 33.65 95.28 % 
2 Clapping 0.5043 55.70 89.01 92.11 % 
3 Handshaking 0.1808 12.26 15.56 98.67 % 
4 Hugging 0.2283 70.41 94.58 97.51 % 
5 Jumping 0.4029 2994.50 3286.58 88.27  % 
6 Running 0.5087 2285.92 2653.24 85.50 % 
7 Seating 0.1842 11.93 14.94 99.72 % 
8 Standing 0.0637 16.25 23.85 91.32 % 
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EMG signals are commonly recorded by 
inserting concentric pointer electrodes 
bottomless (0.45 mm diameter with a recording 
surface area 0.07 mm2; impedance at 20 Hz 
below 200 k) within the muscle. Pointer EMG 
provides better selectivity with strong 
attenuates cross talk and can be used when goal 
of small muscles. Approximately 20 dissimilar 
MUPs were achieved from every muscle 
through five to seven muscle insertions. 
Among ant two muscles, the pointers were 
reserved for at least 5 mm. The position of the 
pointer close to active muscle processes was 
cultured by audile and visual control of the 
EMG signal. Under isometric conditions, the 

EMG signal was stored at force levels 
approximately 30% of maximum voluntary 
contraction (MVC). The signal was acquired 
for 5 s, band pass filtered at 5–10 kHz, and 
sampled at 20 kHz with 12-bit A/D resolution. 
The EMG signal was low-pass filtered at 2 
kHz. The following table 4 shows comparative 
study of clinical dataset, aggressive dataset and 
normal dataset. The classification accuracy 
rates are 99% for clinical,98% for  aggressive 
and 98.9 for normal data sets. It is clearly 
shows that  proposed method  achieved higher 
information transfer rate than traditional 
methods. 

 
 

Table 4: Comparative study of clinical dataset, aggressive dataset and normal dataset 

 
Dataset / Method Clinical 

dataset 

Aggressive 

dataset 

Normal 

Dataset 

Wavelet Transform 97% 97.2% 96.5% 

PCA 96.5% 95.6% 97.5% 

Cosine Transform 95% 98.5% 96.8% 

Fourier Transform 98% 96.7% 98.7% 

Curvelet Transform 99% 98% 98.9% 
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5. CONCLUSION 
 
Electromyography (EMG) signal is most 
powerful signal processing tools for electrical 
activity of neuromuscular associated with a 
corresponding muscle. In this paper, the analysis 
of EMG signals using curvelet transform and 
Random forest tree is presented. The EMG 
signal including noise though dissimilar media. 
The curvelet transform is used for clear away 
noise from the surface electromyography and 
superior order of statistics is used for analyzing 
the signal.  The first level is to evaluate the 
surface of EMG signal and extract features using 
curvelet transform. The second level is best 
EMG quality segment was chosen and the 
rebuilding of the useful data signal was finished 
using random forest classifier. The intention of 

this work is introducing a novel approach for 
discover, analyzing and classifying of EMG 
signals. The proposed method is applied using 
clinical dataset and the parameters like mean root 
mean square, correlation coefficient and absolute 
value are calculated and to get better quality of 
class separability. A comparison is made with 
other traditional methods and the EMG 
characteristics extracted from rebuilding of EMG 
signals provide the enhancement of class 
separability in feature space than. Statistical 
results shows maximum classification accuracy 
of 99% and higher information transfer rate is 
achieved. It is possible to reduce complexity 
analysis by using other classification techniques. 
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