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ABSTRACT 
 

Deep Learning for plant leaf analysis has been recently studied in various works. In most cases, Transfer 
Learning has been utilized, where the weights of networks, which are stored in the pre-trained models, are 
fine-tuned to use in the considered task. In this paper, Convolutional Neural Networks (CNNs), are 
employed to classify tomato plant leaf images based on the visible effects of diseases.  In addition to 
Transfer Learning as an effective approach, training a CNN from scratch using the Deep Residual Learning 
method, is experimented. To do that, an architecture of CNN is proposed and applied to a subset of the 
PlantVillage dataset, including tomato plant leaf images. The results indicate that the suggested architecture 
outperforms VGG models, pre-trained on the ImageNet dataset, in both accuracy and the time required for 
re-training, and it can be used with a regular PC without any extra hardware required. A common feature 
visualization and verification technique is also applied to the results and further discussions are made to 
imply the importance of background pixels surrounding the leaves.     
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1. INTRODUCTION 
 

Plants are among the important elements 
of human life. Existing diseases disrupt the growth 
of plants and cause economic, social and ecological 
losses. Most of them, produce some form of 
manifestation in the visible portions of plants. 
Correct recognition of diseases when they first 
appear, is a crucial step for effective disease 
management. In most cases, human experts identify 
diseases visually, who may be efficient in the 
recognition and quantification of diseases, but, they 
are engaged with some difficulties that may harm 
their efforts. In this context, diagnosing diseases in 
an exact and timely way is of the great importance. 

There are various types of diseases that 
harm the quality of tomatoes. Some of them have 
visible symptoms on the plant leaves such as 
Bacterial Spot [1]. The disease starts by touching 
the leaves and yields of the tomato plants and 
continues, resulting in complete defoliation and sun 
scalded fruits. As the disease extends leaves and 
parts appear as they were slightly burned, foliage 
turns yellowish and dies, with severe defoliation 
exposing fruits and stems. Other types of tomato 
diseases that affect leaves, include Early Blight, 
Late Blight, Septoria leaf spot and etc. 

Hand-engineered features, including SIFT 
[2], HoG [3], SURF [4], have been the foundation 

of the traditional methods for image classification 
tasks. These features, after extraction from the 
images, are fed into a learning algorithm like 
support vector machines (SVM). The performance 
of these approaches heavily depends on the selected 
features. In disease recognition, these approaches 
have been applied for classification of tomato 
powdery mildew against healthy leaves using 
thermal and stereo images [5], detection of tomato 
yellow leaf curl virus by using a set of classic 
feature extraction steps, classified by SVM pipeline 
[6], recognition of greenhouse tomato disease [7] 
and etc. Smart phone based applications for shape 
and disease identification in plant leaves have been 
developed [8, 9]. The use of machine learning on 
plant leaf analysis has been discussed in [10]. 

Engineering and selecting efficient 
features is a complex and tedious process which 
needs to be revisited every time the existing 
problem or its associated dataset, changes 
considerably. Learning robust and invariant 
representation has been a long-standing goal in 
computer vision. Features learned by deep neural 
networks (DNNs) compared to, the hand-crafted 
visual features, have been proven more capable of 
capturing abstract concepts invariant to various 
phenomenon in visual world [11, 12].  

In the recent past, Convolutional Neural 
Networks (CNNs), a specific type of DNNs, have 
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emerged as a powerful framework for feature 
representation and recognition for a variety of 
image domains [13]. CNNs have been studied and 
applied in the field of computer vision for a long 
time. More than a decade ago, LeCun et al. [14] 
trained a multilayer neural networks with the back-
propagation algorithm and the gradient learning 
technique, and demonstrated its effectiveness on the 
handwritten digit recognition. Deep learning has 
provide good generalization power in vision 
applications. In 2012, Krizhevsky et al. [11] 
achieved a breakthrough by outperforming the 
existing handcrafted features on Large Scale Visual 
Recognition Challenge (ILSVRC) [15]. The task 
includes recognition of 1000 object classes which 
was a very difficult problem to solve with the 
approaches of the time. Since 2012, CNNs have 
drawn a resurgence of attention in various tasks 
such as image classification [11, 16], semantic 
segmentation [17], object recognition [18], video 
analysis [19], etc. Recently the networks are going 
deeper from a depth of sixteen [41] to thirty [16] 
and with the Deep Residual Learning methodology 
[20] this is extremely facilitated even to 152 layers 
which won the first place in the ILSVRC 2015 
classification competition. 

One of the applications, which CNNs are 
recently introduced in, is plant leaf image 
recognition. In [21] deep learning was used to 
identify type of plants based on their leaf vein 
patterns. They classify three legume species, 
including white bean, red bean and soybean using 
CNNs having up to 6 layers. In [22], the well-
known CNN architectures, AlexNet [11], 
GoogLeNet [16], and VGGNet [12], were 
experimented to identify the plant species captured 
in photographs. Using the plant task datasets of 
LifeCLEF 2015 [23] augmented by rotation, 
translation, reflection, and scaling, they applied 
Transfer Learning [24] to fine-tune these pre-
trained models. Furthermore, the parameters of the 
networks were adjusted and different classifiers 
fused to improve the overall performance.  

Recently the deep CNNs have been used to 
diagnose crop leaf disease [25] where the 
classification of 26 diseases in 14 crop species in 
54,306 images of PlantVillage dataset [26], using 
two popular CNN architectures, AlexNet and 
GoogLeNet, was reported. In their work three 
different versions of the whole PlantVillage dataset 
were used; original colorful, gray-scale and 
background-removed. Similar to that work, but 
applied on the different dataset, is [27] where the 
authors used CaffeNet which is a slightly changed 

version of AllexNet, pre-trained on the ImageNet 
dataset [28] and available in Caffe [29] deep 
learning framework. The dataset used in the task 
contains numerous infected leaf images of various 
plants, downloaded from the Internet, including 
Peach, Apple, Grapevine and etc. CNNs also have 
been introduced in identification of rice diseases 
[30] where a dataset of 500 natural images of 
diseased and healthy rice leaves and stems was 
captured from rice experimental field. Another very 
recently published work in the literature is [31], 
where transfer learning of pre-trained models has 
been used to identify specifically tomato plant 
diseases of the PlantVillage dataset, similar to the 
experiments of this paper. In that paper, a common 
visualization method of deep features based on [32] 
was used, which is also adopted in this work. 

In this paper, an application of 
Convolutional Neural Networks (CNNs) with a 
customized architecture, in the leaf disease 
recognition is experimented. Specifically a CNN 
architecture, based on the residual learning 
approach, is proposed to classify leaves of tomato 
plants, infected with various diseases, including 
Bacterial Spot, Early Blight, Late blight, Septoria 
leaf spot, Spider mites (Two-spotted spider mite), 
Tomato mosaic virus, Leaf Mold, Target Spot and 
Tomato Yellow Leaf Curl disease. The used dataset 
is a part of the PlantVillage image dataset [26], 
including 19742 images of tomato leaves. These 
images are resized to 280×180 pixels which is a 
fraction of the average size of all images. The size 
is chosen to minimize the amount of squash and 
stretch in images. 20% of the samples are firstly 
separated from the dataset and the remaining are 
divided into the training and validation sets. The 
accuracy on the validation set is tracked to choose 
the best state of the trained architecture and the 
parameters of the model. An issue with the residual 
networks is to prepare shortcut connections, in the 
cases of different sizes and number of filters. The 
appropriate decision is made in the design of the 
architecture. 

Although the pre-trained deep models, 
applying on various problems have provided good 
results, fine-tuning them on a new dataset using a 
regular PC without GPU, requires a long time to 
complete. The questions that this paper considers 
include, how VGG networks perform in the task of 
identification of tomato plant diseases and is there 
exists a simpler network that works better in terms 
of accuracy and speed of training? The objective is 
to propose a CNN with a lighter and customized 
architecture, in comparison with the previously 
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known deep models, to be easier to retrain (in order 
to further learning from newly presented data) by 
means of a regular PC, without any special 
hardware requirements. The suggested CNN 
architecture is specifically designed for the 
mentioned size of colorful images. The accuracy of 
the proposed model is compared with the well-
known VGG models pre-trained on ImageNet and 
fine-tuned on the considered dataset. The results 
show that, training such a network from scratch can 
provide the same accuracy as a large pre-trained 
models in less training time, thus the network can 
be rapidly retrained as the size of the dataset grows. 
The results are investigated with a visualization 
approach to answer the questions: Which part of the 
image is more effective to distinguish diseased leaf 
images? The visualizations reveals the importance 
of background pixels even if they contain simple 
patterns. The visualization method, used in this 
paper, is originally suggested by [32] and further 
applied on leaf image analysis in [21] and [31]. The 
main contributions of this paper are summarized as 
follows: 

• Application of pre-trained VGG models fine-
tuned on the dataset to classify tomato leaf 
images according the disease it infected.  

• Proposing a simplified CNN architecture based 
on the residual learning the competes with VGG 
architectures in terms of classification accuracy 
and speed of training 

• Analysis of results using an occlusion based 
visualization method 

This paper is mainly inspired by [25] 
where well-known CNNs were used to classify 
diseases on all plant leaf images of the PlantVillage 
dataset. But in this paper, the dataset is restricted to 
the specific type of plants, tomato, and aims to 
suggest a classifier with a simpler architecture, 

specific to the dataset and re-trainable by means of 
a regular PC in CPU mode. Although a similar 
work has been published [31] very recently, the 
experiments of this paper were done separately, and 
this work has some extra experiments including 
training of a plain and residual CNN architectures 
from scratch, and some argues about the 
visualization results.  

The rest of the paper is organized as follows. 
Section 2 briefly describes CNNs and the proposed 
architectures. In section 3, the experimental results 
and discussions are presented. Section 4 concludes 
the paper. 

2. CONVOLUTIONAL NEURAL NETWORKS 
 

A convolutional neural network (CNN) is 
a type of deep neural networks (DNNs), inspired by 
the human visual system and designed for image 
understanding. A CNN is constructed of a series of 
alternatively stacked convolutional layers and 
spatial pooling layers. The convolutional layer is 
devised to extract feature maps by linear 
convolutional filters followed by nonlinear 
activation functions (e.g., rectifier, sigmoid, tanh, 
etc.). The spatial pooling layer is used to aggregate 
the local features extracted from spatially adjacent 

 

Figure 1. A building block of residual learning 

 
Figure 2. Samples of the datasets 
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pixels. This layer is typically added to improve the 
robustness to slight deformations of objectives. 
These levels build deeply abstract representations 
of the input pattern: the first might be sensitive to 
edges, the second to corners and intersections and 
so on. These representations become more and 
more abstract and invariant as the pattern data goes 
deeper into the CNN. The output of the last stage is 
usually a vector (not an image) that is fed to a 
multi-layer perceptron (MLP) that produces the 
final output of the network, usually a class label. 

Various CNN architectures have been 
proposed to be used in object recognition. Among 
them LeNet [14] and AlexNet [11] are considered 
as a baseline for various tasks. The former, was 
used to classify tiny images of handwritten digits 
(28×28 pixels) while the latter is more complicated 
and has been considered as a breakthrough in object 
recognition tasks in colorful medium sized images 
(256×256 pixels). AlexNet was designed in the 
context of ILSVRC 2012 [15] for the ImageNet 
dataset [28].  

Deep residual learning [20] framework, 
provides a solution to vanishing or exploding 
gradients [33] occurred in very deep networks and 
allows the networks to have very deep architectures 
such as a network with 152 layers. The idea is to let 
the layers fit to a residual mapping (F(x)) rather 
than the original one (H(x)):  

     .F x H x x    (1) 

It has been shown that for a very deep 
model it is easier to optimize F(x) rather than H(x) 
[20]. The realization of (1) is carried out by shortcut 
connections as illustrated in Figure 1.  

In this work, leaf disease classification 
using four CNN architectures is experimented. The 
first two are the well-known VGG architectures 
with 16 and 19 layers, pre-trained on ImageNet, and 
the remaining two are customized simpler 
architectures, one with residual shortcut 
connections (Residual CNN) and the other without 
(Plain CNN). The proposed models are aimed to be 
simplified and easier to retrain with a regular PC 
without degradation of the accuracy. The details of 
the models are described in the following section. 

3. EXPERIMENTS AND RESULTS 

In this section, the CNN-based classifiers 
are tested on a subset of the PlantVillage leaf 
diseases dataset, including tomato plant leaf 
diseases. The dataset consists of 9 leaf diseases of 
tomato plant, including Bacterial Spot (2,127 

samples), Early Blight (2,579 samples), Late Blight 
(3,575 samples), Septoria Leaf Spot (1,771 
samples), Spider Mites (Two-Spotted Spider Mite) 
(1,676 samples), Tomato Mosaic Virus (373 
samples), Leaf Mold (952 samples), Target Spot 
(1,404) and Tomato Yellow Leaf Curl disease 
(5,357). Adding healthy tomato leaf images, the 
used dataset contains 19742 images in 10 
categories. A few samples of these datasets are 
depicted in Figure 2. 

The preliminary preparation and 
augmentation are applied to the dataset. The images 
of the dataset are resized to fit into 280×180 
dimensions which are chosen to be relatively small 
and close to a fraction of the average size of all 
images.  After excluding 20% of the images as test 
set, the remaining images as training set are 
augmented, in order to reduce overfitting, by adding 
horizontally flipped copy of the images, then a 
portion of these images is further separated as the 
validation set.  

Several CNN models are used in this paper 
to identify tomato disease from their leaves, 
including VGG architectures with 16 and 19 layers 
(VGG16 and VGG19), pre-trained on ImageNet 
and fine-tuned on the dataset, and the proposed 
CNN architecture with and without residual 
learning. Firstly, the pre-trained VGG models, are 
fine-tuned on the dataset to be considered as a 
baseline for comparison. Then a simplified CNN 
architecture is proposed and trained with and 
without the residual learning framework (residual 
and plain CNN) to compare the results. The details 
of the models are illustrated in Figure 3. 

VGG16 architecture contains a number of 
convolutional layers with filter size of 3×3 and 
padding 1 (Conv3s), max-pooling layers with size 
of 3×3 and stride 2 (Pool2s), and fully-connected 
layers (FCs). After each Conv layer a ReLU 
nonlinearity function is applied. The architecture is 
divided into 6 blocks. First two blocks contain the 
two Conv3s following by a Pool2. Each of next 
three blocks contain three stacked Conv3s followed 
by one Pool2. The last block contains three FCs. 
Number of units in Conv3 layers in the first to fifth 
blocks are 64, 128, 256, 512, 512, accordingly. Two 
FC layers before the last layer (output) contains 
4096 units. Input data (images) are of the size 
254×254 color pixels and the output layer contains 
1000 units, according to the number of target 
categories of ImageNet. VGG19 is similar to 
VGG16 but with additional 3 layers scattered in 
third to fifth blocks as shown in figure 3.  In the 
experiments of this paper, the input and output 
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layers are replaced according to the selected input 
size and existing target classes. In order to transfer 
learning, the fully-connected layers of the models 
are replaced with two FC layers with 1024 and 10 
units, respectively, and for fine-tuning the last 
convolutional block of the models are allowed to 
update during training. 

The proposed CNN architecture consists of 
four blocks. In the first block a convolutional layer 
with filter size 11×11 and stride 3 (Conv11) 
followed by a max-pooling layer with filter size 
3×3 and stride 3 (Pool3) is utilized. The next three 
blocks contain two Conv3s followed by a pooling 
layer each of filter size of 5×3 and stride 2 
(Pool5_2) except the first one which has stride 3 
(Pool5_3).  After each Conv layer a ReLU 
nonlinearity function is applied. The outcome of the 
hierarchy after getting flattened is fed into the two 
FC layers. The number of filters in Conv11, Conv3s 
and FCs are 64, 128 and 1024, respectively, except 
for the last FC which is 10, corresponding to the 

number of diseases. 

The most distinctive parts of the residual 
learning framework are shortcut connections. 
Adding data from previous layers to the current 
(using equation (1)) when its dimensions are 
changed causes difficulties. This occurs when either 
the size of the filters or the number of them are 
changed. It is a common practice that when data 
goes deeper into the architecture, the filter sizes are 
decreased and the number of them is increased. For 
the prior issue we can zero-pad the smaller data to 
be the same size of the larger, and for the latter, one 
can use a Conv layer with filter size 1×1 (Conv1) to 
propagate the historical data to a new group of units 
[20, 32]. As shown in the figure 3, the proposed 
residual CNN uses shortcut connections so that they 
are not disturbed by the filter size changes, but in 
the case of change on the number of filters, a Conv1 
is used. The Conv1 layer is just used one time 
because this layer adds more parameters for 
learning thereby increasing the time. Therefore the 

 
Figure 3: Details of the CNN architectures
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number of filters in all Conv3 layers is left 
unchanged.  

The hyper-parameters of the CNNs are set 
as follows. Networks are trained by stochastic 
gradient descent with 0.9 momentum. The learning 
rate is set to be 0.001. The weight decay parameter 
is 1e-6. Initial weights are selected randomly from 
standard normal distribution, multiplied by the 
factor of 0.01. The mini-batch size is set to 100. 

Keras [34], a Python based deep learning 
library, with Theano [35] backend, is used in the 
experiments. Keras is a wrapper for another deep 
learning framework aimed to facilitate working 
with those. It currently supports Theano and 
TensorFlow [36], but it is rapidly extending to 
include others. One of the helping features of 
Keras, especially when working with low equipped 
systems, is processing images without loading the 
whole dataset in RAM, which saves the system 
from a crash during processing large number of 
images.  

The experiments are done using a PC with 
8GB RAM and Core i5 CPU. The trained models 
are selected according to the best validation 
accuracies through 25 epochs, except for the pre-
trained VGGs that the FC layers were trained until 

50 epochs. For the proposed models the training 
process took almost two days and for the fine-tuned 
model this time was doubled. The proposed model 
contains about 2.8 million trainable parameters, but 
that of the VGG16 model (three bottom FC layers 
substituted with two FC layers in order to transfer 
learning) is about 28 million parameters, thus the 
proposed model is much lighter than the original 
VGGs. 

The comparison of the average 
classification accuracy of the models on the test set 
is presented in Table 1. The detailed results of 
classification of leaf disease by the proposed 
residual CNN are shown in Table 2. The results are 
shown as top 1 and top 3 classification accuracy. 
The model better classifies Tomato Mosaic Virus, 
Yellow Leaf Curl disease and healthy images. The 
best and the worst classification accuracy belongs 
to Tomato Mosaic Virus and Target Spot, 
respectively. 

In order to understand that the proposed 
CNN is sensitive to which part of the input samples, 
an experiment based on the idea of [32], is 
performed similar to [21] and [31]. In this approach 
different parts of an input image are occluded with 
a gray or black patch and the variation in the output 

Table 1. The classification accuracy of the experimented CNNs (%) 

Models 
Pre-trained 

VGG16 
Fine-tuned 

VGG16 
Fine-tuned 

VGG19 
The Proposed 

Pure CNN 
The Proposed 
Residual CNN 

Top 1 Accuracy 94.31 96.55 97.50 96.78 97.53 
Top 3 Accuracy 99.42 99.89 99.84 99.84 99.89 

Table 2. Classification accuracy on each class of the dataset and on average (%) 

Class 
Bacterial 

Spot 
Early 
Blight 

Late 
Blight 

Septoria 
Leaf 
Spot 

Spider 
Mites 

Tomato 
Mosaic 
Virus 

Leaf 
Mold 

Target 
Spot 

Yellow 
Leaf 
Curl 

Healthy 

Top 1 
Accuracy 

95.75 95 96 98.33 95.67 100 98 91.5 99.8 99.33 

Top 3 
Accuracy 

99.75 100 99 100 100 100 100 99 100 100 

 
Figure 4. Samples of the dataset and the corresponding visualization by sliding 7×7 black patch. 
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probability of the correct class is traced. In this 
work the size of the occlusion patch is selected as 
7×7 pixels, but this size can be arbitrarily changed. 
The result is a heat map indicating the locations of 
the image where the output is more sensitive to. 
The procedure is described in [31] as: “… we slide 
black rectangle over an image, and afterward, we 
run CNN to calculate the probability of correct 

classes of current image ,i jPC
 . The indexes (i, j) 

indicate the occlusion rectangle position in the 
image. Then, we visualize the negative log 

likelihood ( ,log( )i jP
 ) of these probabilities using 

heat map.” Figure 4 shows some randomly 
investigated example images of each category. 
Yellow colored regions correspond to the decrease 
in the output probability.  

In the recent similar work [31], it was 
stated that the areas highlighted by visualization 
method are directly matched with an expert’s 
descriptions about the diseases, that is the 
highlighted points in the visualized image show the 
diseased area and the background information is 
ignored. But the experiments of this paper show 
that this is not always true because it depends on 
the areas of the image that differentiate it from 
others. As you can see in Figure 4, in most samples, 
significantly in 1 and 10, the highlighted points in 
the visualized images, are falling in the background 
of the image. And when the background is replaced 
with a solid color like black, the highlighted points, 
direct us to the infected area (as in sample 4). In 
Figure 5 background of some samples replaced by 
black color. 

It is observed that the background 
information can help the classifier to choose the 
right class. For example, in sample 2 (in Figure 4), 
where the classifier’s confidence (the value of 
corresponding output unit) is low (less that 0.1), if 
we replace the background with black color, the 
classifier cannot determine the correct class, or in 
sample 10 where the classifier’s confidence is 
rather high (over 0.9), the classifier can still find the 

correct class but with lower confidence. As you can 
see in Figure 5, the overall colors involved in the 
visualized images in lighter (low confidence) and 
this time (compared with the corresponding sample 
in Figure 4) the area within the leaf is highlighted. 
Although the background pattern in most samples 
of the dataset is simple, but this background has an 
important role in differentiating the overall shape of 
the leaf. These examples, suggest the importance of 
the background pixels in categorizing images using 
CNNs. 

4. CONCLUSION 
 

In this paper, based on deep residual 
learning methodology, a CNN architecture was 
suggested to apply to tomato disease classification 
task. The results show that the proposed model can 
compete with VGG networks pre-trained on the 
ImageNet dataset, with the advantage of lighter 
training time on a PC with regular hardware 
abilities. This paper also confirms the usefulness 
and effectiveness of Transfer Learning on the task 
of tomato plant disease identification. In 
comparison with the recent similar work, in 
addition to fine-tuning existing deep models, in this 
work a new CNN architecture is proposed and 
trained from scratch to classify potato diseases and 
also more investigations of the results are done. 
With help of the visualization technique, it’s 
discussed that the measure for the network to 
correctly classify leaf disease is not only the correct 
recognition of diseased area, but sometimes is the 
diagnosis of clues in the background and other not 
obviously related parts of the leaf image. The 
reason is that the important thing for the network, is 
to find distinctive parts of images, not actually 
infected regions. However, in some cases the 
distinctive parts of the images match the infected 
regions. 

This work improves the current state-of-
the-art in terms of proposing a model for the new 
area of plant leaf disease classification, lighter than 
current general object detection models, specifically 
VGGs, both in time of training and classification 
accuracy. Setting appropriate parameters to define 
CNN architectures is still a challenging issue, to 
tackle the real-world problems. Therefore, instead 
of empirically assessing different CNN settings, 
future works can be focused on devising methods to 
automate this process. 
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