15th December 2017. Vol.95. No 23 © 2005 - ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

GLOBAL FEATURES WITH IDENTICAL TWINS BIOMETRIC **IDENTIFICATION SYSTEM**

1,2,3 BAYAN OMAR MOHAMMED, 1,2 SITI MARIYAM SHAMSUDDIN

¹UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia

² Faculty of Computing Universiti Teknologi Malaysia, Johor, Malaysia.

³College of Science and Technology, University of Human Development, Sulaimani, KRG, Iraq. E-mail: ^{1,2,3} bayan.omar@uhd.edu.iq, ^{1,2} mariyam@utm.my

ABSTRACT

Studies in pattern recognition domain currently revolve around twin's biometric identification. The twins' biometric Identification system may lead to the discovery of a distinguishing pattern of a biometric of an individual. A significant improvement can also be seen in the Unimodal biometric identification; it allows accurate and reliable identification of identical twins with good performance of certain traits. However, since the similarity level is very high, Identical twins' identification is much more difficult when compared to that of non-twins. Hence, the use of more than one biometric trait with global features is proposed. Further, pattern recognition requires the extraction and selection of meaningful features, which leads to the key issue in the identification of twin handwriting-fingerprint, that is, the question of how to acquire features from many writing and styles twin handwriting-fingerprint to enable the reflection of the right person between twins. This study thus proposes the global with Aspect United Moment Invariant for global feature extractions with the application of identical twin multi-biometric identification with Inter-class and Intra-class .

Keywords: Identical Twin, Global Features, Multi-Biometric, Identification, Unique Representation, Aspect United Moment Invariant, Similarity.

1. INTRODUCTION

Biometric-based identification and verification systems will become a leading technology [2,3]. The systems are armed with applications that provide access control to buildings and computers while reducing the incidences of deceitful transactions in electronic commerce and discouraging unlawful immigration [10]. However, it is much more difficult to identify the identical twins' biometric as opposed to identifying nontwins because as stated by [7], identical twins share astounding amount of similarities. For this reason, identification of twins biometric has been the subject of research among many researchers in the domain of pattern recognition and computer vision; it should be noted that in some circumstances, it is the one method that could result in the discovery of the biometric pattern of a real person from a group of persons[1,10,11,12,13,14,24].

There appears to be considerable improvement in the unimodal biometric identification for identical twins particularly in terms of accuracy and reliability [7,15,26]. Additionally, some traits demonstrate good performance. Nonetheless, there remain issues related to the technology itself. The studies were revolving around past the identification or verification of identical twins with the use of the Unimodal biometric system such as Wonder Ears: Identification of Identical Twins from Ear Images [15], 3D Face Recognition used for distinguish face for identical twins [16], Analysis of Facial Marks to Distinguish Between Identical Twins Double Trouble: [11], Differentiating Identical Twins Face by Recognition [10].

Sharing single zygote causes the identical twins to have similar genetic makeup which makes their identification difficult (see Figure 1). The usage of more than one biometric trait with Global features is thus proposed in order to solve this problem. This brings to the multimodal biometric system that uses the physical and also the behavior trait. This system includes a mix of many sources from various biometric traits. This system allows user with no exact biometric identifier to still enroll and authenticate with other traits. Such allowance solves the issue linked with enrollment. The system is therefore universal. Thus, multimodal biometric use to analyze the similar features to extract the

15th December 2017. Vol.95. No 23 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

unique characteristics of the features for further investigation of the written texts and patterns of minutiae versus original ones. Further, the past researches did not treat the global (holistic) features of the cursive word or shape as one complete object for any twins biometric. A study by [14] can be referred for example.

Fig. 1. A Pair Of Identical Twins From The Identical Twins Dataset

2. UNIOUENESS OF TWINS MULTI-BIOMETRIC

A person's nature is represent able by his/her handwriting-fingerprint and this has been mentioned in the hypothesis of some studies [4,5,7] noting a person's individuality in their style of writing and fingerprint style; their style of writing and fingerprint style that is also consistent. Data collected in UHD for 46 twins and each individual 4 samples for each biometric, Samples from same individual in pairs of twins and samples with different pairs are presented in Figure 2. As shown, the writings and fingerprints show more similarity being produced by both individuals in a pair of twins. However, difference is shown when the writings and fingerprints are produced by the different pair. Also, there is small difference to the writings and fingerprints generated by the same individual in a pair of twins and defined difference when the writings and fingerprints are produced by the both individual in a pair, although the height of shape appears to be the same in identical twins. This means that even identical twins differ especially with respect to handwriting and fingerprint. Such difference, which his called Individuality of Handwriting-fingerprint, is measureable by the variances. In this context, the value of the person's feature or the intra-class, must be less than that of different persons or the interclass [5,6,7]. [8] reported that features that have the smallest similarity error for one individual in a pair of twins (intra-class) and largest error of similarity for both individuals in a pair of twins (inter-class) denote the soundness sand acceptableness of individual features. Thus, attaining the individual features from the handwritten-fingerprint samples is important so that the individual in a pair of twins can be identified.

Twin nur	nber a7	Twin nur	nber b7	Twin num	iber al4	Twin nun	nber b14
Handwriting	Fingerprint	Handwriting	Fingerprint	Handwriting	Fingerprint	Handwriting	Fingerprint
beeh		beeb		been	0	beeh	
bech		peek		been		beet	
bech		peen		been	0	been	
bech		beev.	43	been		been	

Fig. 2. Handwriting-Fingerprint For Both Person In Twins.

2.1 Individuality with global features in identical twin

This study introduces the global features with the capacity in handling twin multi-biometric images for the purpose of identification. As an adaptive method, this method is for feature extraction. It discretely improves the class because for the class of individual twin, the method repositions the points of feature to better places. This guarantees more efficient representation of individual characteristics for each biometric modality before they are used in the process of matching. Many pattern recognition researchers have been focusing on twin identification utilizing the handwritten and fingerprint images shape [5,26,29]. The field of visual includes the use of shape feature; shape is among the core features for the illustration of content of image [9]. Nonetheless, extracting features that precisely symbolize and illustrate the shape for a person in twins is difficult. Hence, in this study, the first objective is to introduce a new system for identical twins with Multimodal biometric identification using many modalities.

On the other hand, the second objective of this study includes an algorithm of Aspect United Moment Invariant (AUMI) [9]. AUMI has the capacity to extract a good set of global features. Such features represent the twin handwritingfingerprint from the region. They also denote the depiction of boundary of a word and shape of fingerprint. In twin identification, the features

<u>15th December 2017. Vol.95. No 23</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

extracted from the AUMI algorithm then go through the individuality test of handwriting and fingerprint.

The third objective is to perform analysis on the efficiency of global features for the purpose of variation minimization for intra-class and variation maximization for inter-class for Individuality of twins' handwriting-fingerprint in biometric Identification. For this purpose, this study uses a method that contains a procedure. It is an important method because twin identification necessitates a technique that satisfies the 'individuality' of the notion of Multimodal biometric. The proposed new procedure to improve the identification of a pair of twins' handwriting-fingerprint is presented in Figure 3.

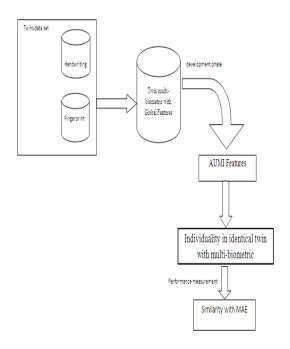


Fig. 3. New Framework For Multi-Biometric Identification For A Pair Of Twins.

2.2 Twin Multi-Biometric Shape Representations

Within the domain of pattern of recognition, there are many available shape representation methods and illustration of extraction of features from an image. The handling of the twin handwriting-fingerprint shape can generally be done using two different approaches namely the analytic (local / structural)approach and holistic (global) approach. Each approach comprises two methods namely region-based or whole region shape method and contour-based or contour only method. The holistic approach entails the representation of the entire image shape while the analytic approach entails the representation of image in sections. The holistic approach is selected in this study because in the context of this study, it is required that the twin handwriting-fingerprint shape is extracted as one single entity; is not divisible. Further, the exploration of global method is included in this study. This will ensure the most suitable technique for the preservation of concept of twin handwritingindividuality fingerprint in twin biometric identification.

2.3 Aspect United Moment Invariant with Twin multi-Biometric

Effective technique is important in extracting the individual features from Twin Multi-biometric shape. In the context of handwriting, shape shows higher level of individuality in comparison to character, [9,19]. This is the reason for selecting the United Moment Invariant (UMI) [20] for the extraction the global features from the handwriting of twin and shape of fingerprint. The creation of UMI was grounded on the Geometric Moment Invariant (GMI) [21] and the Improve Moment Invariant (IMI) [22]. In relation to this, [22] evidenced the employability of GMI for region representation in discreet setting. However, representation of boundary has high computational times and thus, IMI is suggested (for boundary and faster computation).

It should be noted however, that the extraction of the region and boundary of an image has to be done continuously and separately. This, as stated by [20], will guarantee that quality feature is obtained in image representation. [20] proposed UMI because it could effectively and continuously distinguish separate the image shape on both region and boundary. Somehow, [21] mentioned the issues associated with the factor of scaling used in UMI. For this reason, [9] suggested the application of [23] Aspect Invariant Moment (Aspect) scaling factor in Aspect United Moment Invariant. This scaling factor improves the invariant features without size normalization. Aspect's scaling is thus included in the AUMI algorithm proposed due to its ability in preserving the invarianceness of handwriting-fingerprint for twin in the direction of X and Y; this characterizes the human's handwriting-fingerprint of twin. With the usage of scaling, the global word and the shape of ISSN: 1992-8645

www.jatit.org

fingerprint features are continuously and discreetly extracted from both region and boundary representation using scale invarianceness from handwriting-fingerprint of twin.

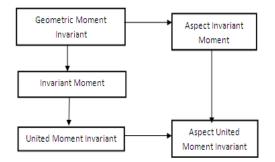
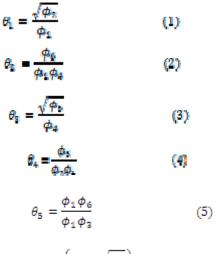



Fig. 4 Aspect United Moment Invariant

Aspect United Moment Invariant by (9) can extract global features from an object's region and boundary of (word or shape) separately and continuously manner to represent an individual in a twin. This is attainable through the creation of fusion embedded scaling factor of Aspect [23] into the UMI [20] (see Figure 4). Immediately, this assumes the capability of these two moment functions into the recommended Aspect United Moment Invariant. UMI by [20] is linked with geometrical representation that takes into account GMI's Normalized Central Moment equations (21) and IMI's Boundary Representation [22]. Finally, AUMI by [9] shows 8 features with UMI's construction [20] below:

$$\theta_6 = \frac{\left(\phi_1 + \sqrt{\phi_2}\right)\phi_3}{\phi_6} \tag{6}$$

$$\theta_7 = \frac{\phi_1 \phi_5}{\phi_3 \phi_6} \tag{7}$$

$$\phi_8 = \frac{\phi_3 + \phi_4}{\sqrt{\phi_5}} \tag{8}$$

E-ISSN: 1817-3195

As φ_i denotes large values, the natural logarithm is employed. As such, below is obtained for i = 1 to 7; $\theta_i \leftarrow log 10 \varphi_i$.

3 TWIN MULTI-BIOMETRIC WITH GLOBAL EXTRACTED FEATURE (GEF)

Tables 1, 2, 3, 4 and 5, present the sample of the extracted word images of twin's handwriting. The sample consists of the original extracted features after the global feature. Among the included are the Aspect Invariant Moment (Aspect), United Moment Invariant (UMI), Aspect United Moment Invariant (AUMI), macro feature extraction (MFE) and Geometric Moment Invariant (GMI).

Table 1. Invariant Features Of Twin Number 7 By GMI Algorithm

Image	Fl	F2	F3	F4	F5	Fő	F7
	18.9489	354.2521	2.5200	2.3977	5.7528	4.5015	9.6150
1. 1	19.5899	381.6335	2.6926	2.6496	7.0248	5.1721	6.4469
DCCh	18.8415	346.5908	2.3309	2.3254	5.4115	4.3299	1.2163
1/ \(\)	19.0825	357.3562	2.5070	2.4411	5.9627	4.6084	7.1732
1.1	18.7156	339.4583	2.3027	2.2954	5.2727	4.2285	1.6210
hoph	19.2375	361.0587	2.5265	2.4890	6.1995	4.7262	5.4285
	20.0445	392.8424	2.8450	2.8207	7.9609	5.5885	5.1561
b7	19.2749	360.1698	2.5479	2.5100	6.1995	4.7600	5.5050

 Table 2. Invariant Features Of Twin Number 7 By Aspect
 Algorithm

			Algor	unm			
Image	F1	F2	F3	F4	F5	F6	F7
	18.8347	376.2823	7.0384	7.9596	1.8833	1.5714	4.9230
1.1	18.2902	353.2250	6.4590	7.3065	1.5867	1.3663	4.1599
DCCh	18.0328	347.4064	6.1785	6.9915	1.4526	1.1928	3.8246
a7	18.3200	352.4048	6.4719	7.3206	1.5929	1.4439	4.2081
	18.7295	371.0281	6.7885	7.6793	1.7528	1.2949	4.5808
heen	18.6161	366.8255	6.7355	7.6190	1.7254	1.2656	4.4770
	18.1444	344.3009	6.4421	7.2856	1.5778	1.2334	4.1239
67	18.4553	360.0841	6.5980	7.4648	1.6561	1.1341	4.3045

 Table 3. Invariant Features Of Twin Number 7 By UMI

 Algorithm

Image	F1	F2	F3	F4	F5	F6	F7	F8
1	0.9933	0.9908	1.0003	0.9521	0.9555	1.0537	0.9610	2.0503
1.1	0.9972	0.9964	1.0003	0.9847	0.9860	1.0170	0.9882	2.0156
DCCh	0.9881	0.9882	1.0004	0.9984	1.0098	1.0023	1.0102	2.0016
a7	0.9906	0.9893	1.0003	0.9743	0.9816	1.0284	0.9849	2.0264
1.1	0.9844	0.9843	1.0004	0.9976	1.0125	1.0034	1.0135	2.0024
hook	0.9877	0.9870	1.0003	0.9858	0.9967	1.0158	0.998	2.0144
$\mathcal{V}(\mathbf{p})$	0.9888	0.9884	1.0003	0.9920	1.0023	1.0090	1.0036	2.0080
b7	0.9846	0.9839	1.0004	0.9858	0.9998	1.0159	1.0020	2.0144

<u>15th December 2017. Vol.95. No 23</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Table 4. Invariant Features Of Twin Number 7 By AUMI Algorithm

				mgon	unn			
Image	F1	F2	F3	F4	F5	F6	F7	F8
	1.028	0.0900	1.7240	0.3362	0.0096	100.9817	3.7346	5.7076
1 1	1.0288	0.0892	1.7240	0.3362	0.0095	101.9277	3.7680	5.7077
ncen	1.0227	0.0933	1.7241	0.3362	0.0101	96.9143	3.6030	5.7086
al	1.0282	0.0892	1.7239	0.3362	0.0088	100.9817	4.0847	5.7076
1 . 1	1.0299	0.1048	1.7241	0.3363	0.0112	86.8850	3.2071	5.7088
hoph	1.0299	0.1022	1.7240	0.3363	0.0110	88.8466	3.2885	5.7077
DC/	1.0336	0.0946	1.7239	0.3363	0.0100	96.5498	3.5544	5.7088
b7	1.0299	0.1077	1.7240	0.3363	0.0116	84.1434	3.1228	5.7077

Table 5. Invariant Features Of Twin Number 7 By Macro Algorithm

Image	F1	F2	F3	F4	F5	F6	F7	F8
	8.1681	2.5000	1.9624	0.7451	7.124	1.5422	0.1775	8.079
100)	4.7929	2.5500	1.8342	0.7451	7.079	1.5401	0.2057	6.526
DCCh	7.3061	3.1300	2.1606	0.7039	9.326	9.326	0.2293	8.608
a7	7.4947	2.7900	2.1044	0.7373	6.308	1.541	0.2029	8.271
101	7.6824	2.3400	1.8381	0.7216	5.871	1.5393	0.1691	6.217
PODA	5.9056	2.8600	2.0889	0.7333	5.917	1.5414	0.2208	6.555
DC ()	4.633	3.2800	2.3596	0.7196	5.355	1.5457	0.2663	7.347
b7	5.7884	2.9000	2.3194	0.7294	8.147	1.5436	0.2249	6.754

As can be seen in Tables 1, 2, 3, 4 and 5, there is low inter-features variability between the individuals in a twin. Meanwhile, there appears variability of height intra-features with the same individual in a twin.

As can be seen in Tables 6, 7, 8, 9 and10,are the extracted twin fingerprint's sample shape images. These features comprise the original extracted features as well as the global feature. Among the included are the Geometrical minute feature extraction (GMFE), United Moment Invariant (UMI), Aspect Invariant Moment (Aspect), Geometric Moment Invariant (GMI) and Aspect United Moment Invariant (AUMI).

 Table 6. Invariant Features Of Twin Number 7by GMI

 Algorithm

				mgorn			
Image	F1	F2	F3	F4	F5	F6	F7
1100	20.0601	363.5930	2.5939	2.5712	6.6206	5.8891	3.8856
	20.4327	415.2668	2.6865	2.6790	7.1855	5.1489	1.1014
1.19	21.8448	486.6713	4.4507	3.5393	1.2532	7.7199	4.7711
a7	29.3722	938.1759	1.8657	9.0555	8.2012	2.6159	6.3341
1000	34.5712	1.2134	1.9253	1.4308	2.0483	4.8979	9.0106
	48.0872	2.4909	1.5261	4.4735	2.0023	2.1919	2.3298
	39.0116	1.7261	4.8869	1.9229	3.6991	8.6324	3.4421
h7	20.2399	37.891	2.6470	2.6291	6.9262	2.3313	2.8285

Table 7. Invariant Features Of Twin Number 7 By Aspect Algorithm

Image	F1	F2	F3	F4	F5	F6	F7
1998	20.0601	363.5930	2.5939	2.5712	6.6206	5.8891	3.8856
E.S.A.	20.4327	415.2668	2.6865	2.6790	7.1855	5.1489	1.1014
CALLER .	21.8448	486.6713	4.4507	3.5393	1.2532	7.7199	4.7711
a7	29.3722	938.1759	1.8657	9.0555	8.2012	2.6159	6.3341
(Called)	34.5712	1.2134	1.9253	1.4308	2.0483	4.8979	9.0106
Sec.	48.0872	2.4909	1.5261	4.4735	2.0023	2.1919	2.3298
	39.0116	1.7261	4.8869	1.9229	3.6991	8.6324	3.4421
b7	20.2399	37.891	2.6470	2.6291	6.9262	2.3313	2.8285

Table 8. Invariant Features Of Twin Number 7 By UMI

Image	F1	F2	F3	F4	FS	F6	F7	F8
19	0.9505	1.1418	1.0007	0.9927	1.2526	8.3991	8.6942	2.0074
	0.9973	0.9406	1.0005	0.9984	0.9430	1.0633	1.0614	2.0016
	1.0099	0.9985	1.0002	0.7955	0.7786	1.2719	0.7967	2.2570
a7	1.0428	0.9835	1.0001	0.4854	0.4390	2.1846	0.4936	3.0601
133	1.0076	0.9902	1.0003	0.7436	0.7248	1.3693	0.7509	2.3450
Sec. 1	1.0379	1.0189	1.0003	0.2933	2.7728	3.4749	2.8784	4.4102
	1.0650	11.507	1.0002	0.3936	3.9924	0.2352	0.0342	3.5407
b7	0.9579	4.3810	1.0010	0.9952	4.7424	2.2014	2.2717	2.0048

 Table 9. Invariant Features Of Twin Number 7 By AUMI
 Algorithm

Image	Fl	F2	F3	F4	F5	Fő	F 7	F8
1986	1.0107	0.1690	1.7250	0.3358	0.0187	53.0042	1.9872	5.7168
	0.9910	0.1680	1.7248	0.3359	0.0193	52.2543	1.9999	5.7143
1.19	0.9783	0.1527	1.7251	0.3358	0.0180	56.7789	2.1987	5.7170
a7	1.0094	0.0849	1.7244	0.3361	0.0094	105.1433	3.9566	5.7106
(COURS)	1.0109	0.0881	1.7217	0.3369	0.0098	100.9343	3.8238	5.6906
	1.0438	0.0126	1.7229	0.3366	0.0013	732.5799	26.7907	5.6984
12397	1.0077	0.0074	1.7236	0.3364	8.2513	1.2030	45.4722	5.7035
b7	0.9404	0.1815	1.7251	0.3358	0.0232	45.9228	1.8497	5.7176

 Table 10. Invariant Features Of Twin Number 7 By
 Geometrical Minute Algorithm

Image	F1	F2	F3	F 4	F5	F6	F7	F8	F9	F10
1998.	178	162	184	190	183	168	167	159	192	209
	211	189	213	189	216	168	165	188	182	188
	213	209	174	208	210	147	153	200	209	206
a7	193	190	202	210	189	215	171	153	168	185
(mag)	181	207	206	190	140	166	149	169	224	190
	229	216	219	220	140	175	185	195	232	216
	199	166	212	209	198	200	167	182	169	192
b7	186	183	202	204	187	158	140	149	172	214

In an identification system, a set of features reflecting the individuality and characteristics of a person in a twin is followed. It is however important to extract and choose only the important features. However, in identification of twin, it is not easy to do. The features of multi-biometric in the data storage should be used in twin identification.

4 SIMULATION WITH MAE

The Mean Absolute Error (MAE) function is used to measure uniqueness. Tables 11, 12 and 13 show the example of the calculation of MAE .Here, 4 images are used to present each individual. As stated by [9], the MAE value offers the invariancenes of twin handwriting-fingerprint aside from providing the first image or reference image. 15th December 2017. Vol.95. No 23 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

Small errors mean that the image is close to the reference image. The average of MAE is calculated from the value of the overall results.

$$MAE = \frac{1}{n} \sum_{i=1}^{l} |\langle x_i - \eta \rangle|$$

Where:

n denotes the number of images;

x_i represents the current image;

 r_i denotes the image of reference or location measure;

f represents the number of features;

i denotes the feature column of image.

Since it corresponds to the measurement's individuality of the individual twin handwritingfingerprint in twin multi-biometric identification, the MAE function is used in this study. Each twin of a pair will have the unique features or characteristic in terms of handwriting-fingerprint. Using the MAE function, the variance measurement between twins' handwriting-fingerprint can be performed with two handwriting-fingerprints' similarity error gathered from detail characteristics in the column that represents feature. This allows the calculation of variance between two handwriting-fingerprint images for the features of each column from the extracted invariant feature vector of image. Low mean MAE value means high similarity to the original image (reference image or first image) while high mean MAE value means low similarity. As such, lowest value denotes the highest similarity while highest value denotes highest difference. Azah et al. (2010) mentioned the classification of MAE function under robustness theory of statistical procedure. Also, MAE function appears to be the most feasible and simplest solution.

4.1 Intra-class and Inter-class with MAE

The intra-class and the inter-class analyses were conducted on the obtained MAE value. Intra-class comprises features extracted from the same twin or one twin while inter-class comprises features extracted from either twins or different twin. Both handwriting word and shape of fingerprint of twin for intra-class requires smaller MAE value. On the other hand, larger MAE value is required for interclass. This would show the individuality of twin handwriting-fingerprint.

Tables 11 through 17 present the intra-class measurement (measurement of one individual in a

twin or one twin) and the inter-class measurement (measurement of both individuals in a twin or different twin) in terms of difference, using the MAE function for shape and word. In particular, Tables 11, 12, 14 and 16 present the intra-class (Where the MAE values are lower than the MAE values shown in Tables 13,15 and 17 (it should be noted even that the twin multi-biometric was used in all tables). Tables 11 through 17 demonstrate the analyzability of MAE values for the individuality of the verification of twin handwriting-fingerprint. Meanwhile, Tables 11 and 12, show lower MAE value. What can be inferred is that, as can be seen in Table 13, the feature between the handwriting and fingerprint from the exact individual in a twin shows close feature value when differentiated with the handwriting and fingerprint from both twins. Tables 14 and 16 show lower MAE value, demonstrating that, , as can be seen in Table 17, the feature between the handwriting and fingerprint from the both individual in a twin contains close feature value when differentiated with the handwriting and fingerprint from difference twins.

Table 11. MAE From AUMI Features For Twin Multi-Biometric For A10

			Broint		0. 111	. 0							
				Hand	writing								
Image	F1	F2	F3	F4	F5	F6	F7	F8	MAE				
name													
1a10	1.0323	0.1000	1.7242	0.3363	0.0126	76.9720	2.8343	5.7091					
2a10	1.0209	0.1055	1.7242	0.3363	0.0115	85.5333	3.1863	5.7079	2.2331				
3a10	3a10 1.0230 0.1065 1.7242 0.3363 0.0115 84.9152 3.1569 5.7078												
4a10 1.0272 0.1184 1.7242 0.3363 0.0127 76.7366 2.8398 5.7089													
Mean Ab	solute Err	or for han	dwriting	alO					1.0926				
				Fing	erprint								
Image	F1	F2	F3	F4	F5	F6	F7	F8	MAE				
name													
1a10	1.0119	0.1485	1.7240	0.3362	0.0164	60.2519	2.2644	5.7077					
2a10	1.0402	0.1253	1.7240	0.3362	0.0131	73.3963	2.6833	5.7079	3.4046				
3a10	1.0628	0.1288	1.7240	0.3362	0.0129	72.9727	2.6111	5.7079	3.2855				
4a10	1.0516	0.1496	1.7244	0.3361	0.0153	60.2519	2.2462	5.7112	0.0160				
Mean Absolute Error for fingerprint al0									1.6765				

15th December 2017. Vol.95. No 23 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

Table 12. MAE From AUMI Features For Twin Multi-Biometric For B10

				Hand	writing					
Image name	F1	F2	F3	F4	F5	F6	F7	F8	MAE	
1b10	1.0260	0.1186	1.7240	0.3362	0.0127	76.4993	2.8347	5.7085		
2b10	1.0274	0.1164	1.7240	0.3362	0.0125	78.0525	2.8889	5.7080	0.4029	
3b10	1.0230	0.1187	1.7240	0.3362	0.0128	76.1647	2.8316	5.7076	0.0855	
4b10	1.0206	0.1105	1.7240	0.3362	0.0120	81.6596	3.0431	5.7078	1.3459	
Mean Ab	solute Err	or for hand	writing b	10					0.4586	
				Finge	erprint					
Image name	F1	F2	F3	F4	F5	F6	F7	F8	MAE	
1b10	0.9765	0.1882	1.7252	0.3358	0.0223	46.0062	1.7844	5.7178		
2b10	0.9442	0.2601	1.7253	0.3356	0.0329	32.2016	1.2905	5.7202	3.6040	
3b10	1.0040	0.1724	1.7247	0.3359	0.0193	51.5573	1.9481	5.7139	1.4414	
4b10	1.0233	0.1531	1.7251	0.3358	0.0165	59.2351	2.1937	5.7166	3.4318	
Mean Ab	Mean Absolute Error for fingerprint b10									

Table 13. MAE From AUMI Features For Multi-
Biometric For Twin Number 10

				Han	dwriting	[
Image name	F1	F2	F3	F4	F5	F6	F7	F8	MAE
1a10	1.0209	0.1055	1.7242	0.3363	0.0115	89.5333	3.1863	5.7079	
2a10	1.0323	0.1000	1.7242	0.3363	0.0126	76.9720	2.8343	5.7091	1.6175
3a10	1.0230	0.1065	1.7242	0.3363	0.0115	84.9152	3.1569	5.7078	0.5813
4a10	1.0272	0.1184	1.7242	0.3363	0.0127	76.7366	2.8398	5.7089	1.6456
1b10	1.0260	0.1186	1.7240	0.3362	0.0127	76.4993	2.8347	5.7085	1.6757
2b10	1.0274	0.1164	1.7240	0.3362	0.0125	78.0525	2.8889	5.7080	1.4746
3b10	1.0230	0.1187	1.7240	0.3362	0.0128	76.1647	2.8316	5.7076	1.7176
4b10	1.0206	0.1105	1.7240	0.3362	0.0120	81.6596	3.0431	5.7078	1.0029
	Mean	Absolute I	Error for	handwri	ting al0,	b10			1.2144
				Fin	gerprint				
Image	F1	F2	F3	F4	F5	F6	F7	F8	MAE
name									
1a10	1.0402	0.1253	1.7240	0.3362	0.0131	73.3963	2.6833	5.7079	•
2a10	1.0628	0.1288	1.7240	0.3362	0.0129	72.9727	2.6111	5.7079	0.0653
3a10	1.0516	0.1496	1.7244	0.3361	0.0153	60.2519	2.2462	5.7112	1.7029
4a10	0.9765	0.1882	1.7252	0.3358	0.0223	46.0062	1.7844	5.7178	1.8386
1b10	0.9442	0.2601	1.7253	0.3356	0.0329	32.2016	1.2905	5.7202	3.5545
2b10	1.0040	0.1724	1.7247	0.3359	0.0193	51.5573	1.9481	5.7139	5.3565
3b10	1.0233	0.1531	1.7251	0.3358	0.0165	59.2351	2.1937	5.7166	2.8338
4b10	1.0119	0.1485	1.7240	0.3362	0.0164	60.2519	2.2644	5.7077	1.7023
	Mean	n Absolute	Error for	fingerpr	int al0, l	b10			2.1317

Any function is applicable in the process of similarity measurement with the condition that it adheres with the rules of similarity measurement between twin's features. The MAE function is appropriate for this study due to limited data obtained aside from the fact that MAE function matches with the individuality of the twin handwriting-fingerprint analysis. In terms of the intra-class and inter-class analysis, comparison between intra-class and inter-class, the process of similarity measurement run. In terms of this, the variance value for intra-class must be less than the variance value of inter-class to assure the fulfillment of the requirement of the individuality of twin handwriting-fingerprint so that it becomes applicable in TI.

Table 14. Intra-Class MAE From AUMI Features For
Handwriting For Twin Number 1 And 2 (A,B)

			Handw	riting Twin	1 (a,b)			
F1	F2	F3	F4	F5	F6	F7	F8	MAE
1.0354	0.1152	1.7242	0.3361	0.0122	79.4867	2.9178	5.7093	
1.0326	0.1130	1.7242	0.3361	0.0120	80.8020	2.9741	5.7093	0.1721
1.0330	0.1072	1.7242	0.3362	0.0114	85.2382	3.1368	5.7089	0.7478
1.0339	0.1018	1.7239	0.3362	0.0110	89.7995	3.3039	5.7071	1.3397
1.0358	0.1018	1.7240	0.3362	0.0110	87.6847	3.2193	5.7079	1.0645
1.0336	0.1132	1.7241	0.3362	0.0110	80.7376	2.9702	5.7084	0.1637
1.0346	0.1013	1.7239	0.3363	0.0107	90.2566	3.3188	5.7069	1.3988
1.0332	0.1068	1.7242	0.3362	0.0113	85.5679	3.1482	5.7089	0.7904
Average MAE								
			Handw	riting Twin	2 (a,b)			
F1	F2	F3	F4	F5	F6	F7	F8	MAE
1.0318	0.1098	1.7241	0.3362	0.0117	83.1055	3.0619	5.7089	
1.0347	0.0976	1.7239	0.3362	0.0103	93.6710	3.4440	5.7071	1.3708
1.0299	0.1026	1.7241	0.3362	0.0109	88.7336	3.2760	5.7082	0.7316
1.0300	0.1024	1.7241	0.3362	0.0109	88.9304	3.2831	5.7082	0.7571
1.0311	0.1046	1.7241	0.3362	0.0111	87.1319	3.2127	5.7087	0.5230
1.0322	0.1076	1.7242	0.3362	0.0114	84.8370	3.1241	5.7091	0.2246
1.0315	0.1087	1.7242	0.3362	0.0116	83.9064	3.0919	5.7091	0.1041
Average I	MAE							0.0988

© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

6426

4.2 Result, Analysis and Interpretation

The AUMI results are discussed in this study to determine if the method is suitable for Twin multibiometric identification. AUMI is also compared and analyzed with other techniques. This will ascertain the hypothesis on AUMI's positive value in TI. As shown by the MAE value results in Table 18, AUMI algorithm should be explored more in the field of TI. As indicated by the similarity error result, there appears smaller Uniqueness of authorship for intra-class (same person in twin or both in a twin) when comparison is made with that of inter-class (both persons in twin or difference twin), fulfilling the conception of individuality of twin handwriting-fingerprint in identification field. In this context, the value of MAE for intra-class is lower when as opposed to the MAE value of interclass with respect to handwriting and fingerprint because moment function is a representation of image. The Uniqueness presentation analysis therefore verifies the usefulness of AUMI in feature extraction in TMI. Moreover, in twin handwritingfingerprint, extracted feature has been shown to bring the unique features of individual.

Table 18. Uniqueness Presentation With Twin Multi-Biometric Identification

Twin	Intra-class (handwriting)	Inter-class	Intra-class (fi	ngerprint)	Inter-class	
	a	b	(handwriting)	a	b	(fingerprint)	
One twin	0.6984	0.7027	0.7557	5.5061	5.7529	6.1703	
5 twin	1.0509	1.03816	1.14926	3.15978	3.7482	4.42792	
10 twin	0.98417	1.02462	1.31034	3.82932	2.31317	4.45094	
15 twin	0.86576	1.0011	1.190767	4.544347	6.207867	9.690447	
20 twin	1.07769	1.016375	1.296195	5.292855	5.780635	9.989795	

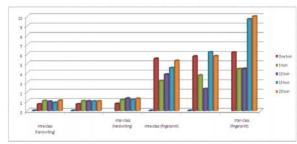


Fig. 5. Graph Of Uniqueness Presentation For AUMI

In satisfying the conception of individuality of twin handwriting-fingerprint, the similarity error has to be higher for inter-class (both twins) but smaller for intra-class (same individual), as can be referred in Figure 5. The features extracted using the AUMI algorithm seem closer for same individual in a twin but more different for different individuals in a twin, causing the production of

Table 15. Inter-Class MAE From AUMI Features ForHandwriting For Twin Number 1 And 2 (A,B)

				Handv	vriting Tv	vin 1 and 2	(a,b)		
	F1	F2	F3	F4	F5	F6	F7	F8	MAE
1.	.0347	0.0976	1.7239	0.3362	0.0103	100.6710	3.4440	5.7071	
1.	.0299	0.1026	1.7241	0.3362	0.0109	88.7336	3.2760	5.7082	0.7573
1.	.0300	0.1024	1.7241	0.3362	0.0109	88.9304	3.2831	5.7082	0.7446
1.	.0311	0.1046	1.7241	0.3362	0.0111	87.1319	3.2127	5.7087	0.8615
1.	.0322	0.1076	1.7242	0.3362	0.0114	84.8370	3.1241	5.7091	1.0106
1.	.0315	0.1087	1.7242	0.3362	0.0116	83.9064	3.0919	5.7091	1.0709
1.	.0325	0.0988	1.7240	0.3362	0.0105	92.4349	3.4045	5.7078	0.5175
1.	.0318	0.1098	1.7241	0.3362	0.0117	83.1055	3.0619	5.7089	1.1229
1.	.0354	0.1152	1.7242	0.3361	0.0122	79.4867	2.9178	5.7093	1.3583
1.	.0326	0.1130	1.7242	0.3361	0.0120	80.8020	2.9741	5.7093	1.2725
1.	.0330	0.1072	1.7242	0.3362	0.0114	85.2382	3.1368	5.7089	0.9847
1.	.0339	0.1018	1.7239	0.3362	0.0110	89.7995	3.3039	5.7071	0.6886
1.	.0358	0.1018	1.7240	0.3362	0.0110	87.6847	3.2193	5.7079	0.8261
1.	.0336	0.1132	1.7241	0.3362	0.0110	80.7376	2.9702	5.7084	1.2766
1.	.0346	0.1013	1.7239	0.3363	0.0107	90.2566	3.3188	5.7069	0.6590
1.	.0332	0.1068	1.7242	0.3362	0.0113	85.5679	3.1482	5.7089	0.9633
Ave	erage N	1AE							0.8822

Table 16. Intra-Class MAE From AUMI Features For Fingerprint For Twin Number 1 And 2 (A,B)

				0 1	Twin 1 (a,			
F1	F2	F3	F4	F5	F6	F7	F8	MAE
1.0481	0.1603	1.7238	0.3362	0.0165	57.7984	2.0979	5.7069	0
1.0169	0.1505	1.7235	0.3364	0.0165	59.6604	2.2343	5.7044	0.2553
1.0107	0.1611	1.7248	0.3359	0.0178	55.5587	2.0847	5.7148	0.2877
1.0226	0.1603	1.7259	0.3354	0.0261	37.4212	1.3818	5.7253	2.6437
0.9363	0.1749	1.7240	0.3361	0.0226	47.3295	1.9214	5.7090	1.3475
0.9024	0.2053	1.7237	0.3361	0.0285	38.8720	1.6370	5.7095	2.4491
0.9756	0.2902	1.7253	0.3355	0.0344	29.8335	1.1563	5.7221	3.6430
0.8951	0.2053	1.7240	0.3356	0.0282	39.6290	1.6370	5.7090	2.3554
Average N	ALE							1.6227
			Fi	ngerprint	Twin 2 (a,	b)		
F1	F2	F3	F4	FS	F6	F7	F8	MAE
1.0564	0.0629	1.7239	0.3363	0.0064	148.4058	5.3458	5.7064	0
1.0490	0.0616	1.7240	0.3363	0.0063	150.5808	5.4608	5.7070	0.2874
1.0644	0.0611	1.7239	0.3362	0.0061	184.0403	5.5053	5.7070	4.4756
1.0305	0.1353	1.7248	0.3359	0.0144	67.4441	2.4819	5.7149	10.4927
1.0178	0.1602	1.7237	0.3363	0.0175	56.1404	2.0994	5.7059	11.9574
1.0142	0.1418	1.7242	0.3361	0.0156	63.2681	2.3703	5.7100	11.0309
1.0305	0.0901	1.7238	0.3363	0.0096	101.1057	3.7337	5.7062	6.1211
1.0178	0.1021	1.7239	0.3362	0.0110	100.8608	3.2916	5.7073	6.2103
Average N	AE							6.3219

Table 17. Inter-Class MAE From AUMI Features For Fingerprint For Twin Number 1 And 2 (A,B)

Γ				Finge	rprint Tv	vin 1 and 2	(a,b)		
	F1	F2	F3	F4	F5	F6	F7	F8	MAE
	1.0644	0.0611	1.7239	0.3362	0.0061	184.0403	5.5053	5.7070	0
	1.0481	0.1603	1.7238	0.3362	0.0165	57.7984	2.0979	5.7069	8.1110
	1.0169	0.1505	1.7235	0.3364	0.0165	59.6604	2.2343	5.7044	7.9876
	1.0107	0.1611	1.7248	0.3359	0.0178	55.5587	2.0847	5.7148	8.2548
	1.0226	0.1603	1.7259	0.3354	0.0261	37.4212	1.3818	5.7253	9.4328
	0.9363	0.1749	1.7240	0.3361	0.0226	47.3295	1.9214	5.7090	8.7847
	0.9024	0.2053	1.7237	0.3361	0.0285	38.8720	1.6370	5.7095	9.3355
	0.9756	0.2902	1.7253	0.3355	0.0344	29.8335	1.1563	5.7221	9.9324
	0.8951	0.2053	1.7240	0.3356	0.0282	39.6290	1.6370	5.7090	9.2886
	1.0178	0.1602	1.7237	0.3363	0.0175	56.1404	2.0994	5.7059	8.2165
	1.0142	0.1418	1.7242	0.3361	0.0156	63.2681	2.3703	5.7100	7.7532
	1.0305	0.0901	1.7238	0.3363	0.0096	101.1057	3.7337	5.7062	5.2984
	1.0178	0.1021	1.7239	0.3362	0.0110	88.8608	3.2916	5.7073	6.0929
	1.0564	0.0629	1.7239	0.3363	0.0064	148.4058	5.3458	5.7064	2.2378
	1.0490	0.0616	1.7240	0.3363	0.0063	150.5808	5.4608	5.7070	2.0950
	1.0305	0.1353	1.7248	0.3359	0.0144	67.4441	2.4819	5.7149	7.4841
1	Average N	1AE	_						6.8941

15th December 2017. Vol.95. No 23 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

6427

inter-class in error measurement similarity requires the highest MAE value and lowest value of MAE for intra-class, showing that the extracted features are most associated, identical and demonstrate more individuality characteristic within a set of features. For inter-class, obtaining the largest MAE value means that the features show great level of difference as opposed to the others which leads to low level of individuality in that data set.

This section comprises the presentation of the intra-class and inter-class analysis results. Table 19-27 can be referred, Four 20 twins are shown.

Technique	Intra-class (handwriting)	Inter-class	Intra-class (fi	ngerprint)	Inter-class	
	a	b	(handwriting)	a	b	(fingerprint)	
AUMI	1.0509	1.03816	1.14926	3.15978	3.7482	4.42792	
GMI	5.01706	3.92014	3.28166	4 5.784	50.08234	33.31978	
Aspect	2.8655	2.45508	1.4808	82.39698	53.19492	46.90434	
UMI	0.01376	0.01522	0.00976	0.71568	0.45602	0.32758	
Macro	0.64576	0.54722	0.40518		-		
Geometrical minute	-	-		46.825	57.325	28.775	

Table 20 Intra-Class And Inter-Class For 10 Twins

Technique	Intra-class (handwriting)	Inter-class	Intra-class	Intra-class (fingerprint)		
	a	b	(handwriting)	a	a b		
AUMI	0.98417	1.02462	1.31034	3.82932	2.31317	4.45094	
GMI	4.19827	3.98139	3.04288	56.70813	41.93724	33.67116	
Aspect	3.41086	3.19869	1.84181	55.34073	41.42899	32.16461	
UMI	0.01515	0.01319	0.00993	0.6984	0.4537	0.49592	
Macro	0.69942	0.55316	0.41718	-			
Geometrical minute		-		57.22863	45.55857	31.39877	

Table 21. Intra-Class And Inter-Class For 15 Twins

Technique	Intra-class (handwriting)		Inter-class	Intra-class	fingerprint)	Inter-class
	a	b	(handwriting)	a	b	(fingerprint)
AUMI	0.86576	1.0011	1.190767	4.544347	6.207867	9.690447
GMI	4.313453	4.183793	3.073113	54.17597	37.29115	33.30669
Aspect	1.824	4.1085	1.5879	57.11473	34.93319	29.40897
UM	0.01562	0.015547	0.010133	0.779427	1.568773	0.64662
Macro	0.6733	0.638387	0.42918		-	
Geometrical minute				32.125	27.625	23.9688

Table 22. Intra-Class And Inter-Class For 20 Twins

Technique	Intra-class (handwriting)	Inter-class	Intra-class ((fingerprint)	Inter-class
	a	b	(handwriting)	a	b	(fingerprint)
AUMI	1.07769	1.016375	1.296195	5.292855	5.780635	9.989795
GMI	5.83541	4.333975	3.387275	47.3495	43.76792	30.59107
Aspect	4.91328	2.68737	2.200155	60.59422	44.48573	34.26115
UMI	0.025195	0.013455	0.01237	0.71044	1.26909	0.549525
Macro	0.710505	0.67443	0.433245			-
Geometrical minute	-	-	-	46.55494	42.64804	26.78768

smaller MAE value for intra-class and bigger MAE value for the inter-class. This proves the usefulness of the proposed technique in extraction of features in TI. Additionally, there have been reports from many studies (e.g. Sh. et al., 2015; Pervouchine et al., 2007)on the conceptualization of twin handwriting-fingerprint in terms of individuality. This study is therefore hoped to offer some scientific validation of individuality of twin multibiometric using the AUMI algorithm of MF in feature extraction.

Somehow, the determination of the best technique will not include the comparison and analysis of the result of this section. Comparison of technique is highlighted in the following section. This section highlights the validation of AUMI algorithm for the individuality conception of twin multi-biometric in TI field. This algorithm is applicable for both the same individual in a twin and for different individuals in a twin. With respect to the results of the other three techniques also prove their appropriateness for the concept of twin multi-biometric. This is the reason why in the context of TI, AUMI, UMI, Aspect and GMI technique of moment function and macro, geometrical minute should be explored in more depth.

PERFORMANCE BETWEEN 5 **TECHNIQUES**

The techniques of Macro, GMI, Aspect, UMI and AUMI for twin handwriting are presented in this section with respect to their results. Meanwhile, the Geometrical minute, GMI, Aspect, UMI and AUMI are highlighted in this section in the domain of twin fingerprint. Further, a comparative study is included as well. The purpose is to discover the technique that is most appropriate for twin handwriting-fingerprint individuality. Besides that, this study also examines the capacity of AUMI in extracting the features of twin handwrittenfingerprint word and shape image in TI and proved the individuality of the twin handwriting-fingerprint concept for AUMI. As opposed to the inter-class, the error of similarity for intra-class is smaller. This refers to the same individual and both individuals in a twin.

The analysis of variance between features for intra-class is lower than that of inter-class. This affirms the Individuality of twin handwritingfingerprint. This makes possible the measurement of the most sophisticated technique of individuality of twin handwriting-fingerprint with the use of the smallest MAE value for intra-class. Meanwhile,

E-ISSN: 1817-3195

<u>15th December 2017. Vol.95. No 23</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>

E-ISSN: 1817-3195

Table 23. Intra-Class And Inter-Class For 2 Twins

		Handwritin	g	Fingerprint							
Technique	Intra	-class	Inter-class	Intra- class	Inter- class	Inter-class					
	Twin 1	Twin 2	Twin 1,2	Twin 1	Twin 2	Twin 1,2					
	(a ,b)	(a ,b)	(a ,b)	(a ,b)	(a ,b)	(a ,b)					
AUMI	0.6152	0.7096	0.8822	5.8532	1.6227	6.8941					
UMI	0.0078	0.0125	0.0046	0.3803	0.1211	0.1191					
GMI	3.5732	6.2400	2.1638	15.3867	42.5897	14.8771					
Aspect	1.3741	1.2805	1.0389	4.8613	9.7129	3.6802					
Macro	0.5057	0.4358	0.2879								
Geometrical minute				32.4531	21.8125	19.6758					

Table 24. Handwriting	Intra-Class And Inter-Class For
	10 Twins

						101	w 1113				
Technique					Int	ra-class					Inter-class
	Twin 1	Twin 2	Twin 3	Twin 4	Twin 5	Twin 6	Twin 7	Twin 8	Twin 9	Twin 10	Twins
	(a ,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(a,b)	(1,2,3,4,5,6,7,8,9,10
AUMI	0.6152	0.7096	1.0564	0.5198	1.8960	0.6385	0.8575	1.6672	2.595	1.2144	2.6528
UMI	0.0078	0.0125	0.0048	0.0157	0.0082	0.0030	0.0227	0.0046	0.0046	0.0108	0.0027
GMI	3.5732	6.2400	1.7271	3.2123	2.4285	1.4264	2.3763	2.1435	2.6346	5.4397	0.6372
Aspect	1.3741	1.2805	1.6464	1.0578	2.0564	1.5887	1.8578	1.8465	3.2866	2.4345	0.2806
Macro	0.5057	0.4358	0.2741	0.4662	0.3441	0.3504	0.5341	0.3556	0.4505	0.4553	0.0776

Table 25. Handwriting Intra-Class And Inter-Class For 20 Twins

Technique	lita-d	855																			later-dass
	Trán 1 (8,3)	Tuin 2 (x,b)	Trin J (1.)	Trán 4 (a,b)	Triis 5 (8,b)	Trán 6 (1,b)	Trin 1 (1,8)	Triis 8 (s,b)	Trin 9 (1.))	Trán 10 (8,b)	Trán 11 (1,1)	Tvin 12 (4,0)	Tvia 13 (4,b)	Trin 14 (s,t)	Tris 15 (1,0)	Tria 16 (s,b)	Trán 17 (s,b)	Trin 18 (s,b)	Tria 19 (a,b)	Trin 20 (a,b)	Trins (123,45,6733, 10,11,12,13,14,15 ,16,17,18,19,20)
AUJO	0.61 52	0.70 96	1.05 64	0.51 98	1.89 60	0.63 85	0.85 75	1.66 72	2.59 5	121 44	1.14 74	1168 4	0.573 8	0.524 8	1343 7	10484	1.7835	1.0058	0.5180	0.7174	2.5505
UM	0.00 78	0.01 25	0.00 48	0.01 57	0.00 82	0.00 30	0.02 27	0.00 46	0.00 46	0.01 08	0.01 52	0.004 4	0.010 4	0.015 2	0.007 5	0.0157	0.0514	0.0065	0.0070	0.0158	0.0015
GAI	3.57 3.57	6.24 00	1.72 71	3.21 23	2.42 85	142 64	2.37 63	2.14 35	2.63 46	5.43 97	1.63 37	3.223 2	2.122 9	6.665 8	2.022 3	5.5860	7.5088	3.2277	3.0767	3.6303	0.2493
Aspect	137 41	1.28 05	1.64 64	1.05 78	2.05 64	158 87	1.85 78	1.84 65	3.28 66	2.43 45	0.77 27	2.096 1	1.534 8	1562 3	1.587 9	12292	11.2599	17519	2.2920	15182	0.1685
Macro	0.50 57	0.43 58	0.27 41	0.46 62	0.34 41	0.35 04	0.53 41	0.35 56	0.45 05	0.45 53	0.33 66	0.538 3	0.356 8	0.553 7	0.480 5	03113	0.5929	0.4178	0.5234	0.9491	0.0419

Table 26. Fingerprint Intra-Class And Inter-Class For 10

Technique	echnique Intra-class												
	Twin 1 (a ,b)	Twin 2 (a,b)	Twin 3 (a,h)	Twin 4 (2,b)	Twin 5 (a,b)	Twin 6 (a,h)	Twin 7 (a,b)	Twin S (s,b)	Twin 9 (a,b)	Twin 10 (a,b)	Tnins (1,2,3,4,5,6,7,8,9,10)		
AUMI	5.8532	1.6227	3.5767	5.2672	5.5027	5.5027	3.421	4.3481	1.8704	2.1317	6.7887		
UMI	0.3803	0.1211	0.1692	0.7717	0.1956	1.6753	0.2883	0.1631	0.2991	0.1354	0.0317		
GMI	15.3\$67	42.5897	39.5634	53.0801	15.979	26.0057	28.109	42.9508	26.3606	46.6866	4.1239		
Aspect	4.8613	9.7129	7.8165	9.6201	12.5109	40.6226	11.6471	18.2924	6.4504	10.1119	1.8467		
Geometrical minute	32.4531	21.8125	32.3594	29.7344	27.5156	25.25	33.2656	24.3281	20.9531	33.4063	3.9248		

Table 27. Fingerprint Intra-Class And Inter-Class For 20

Technique	latin-dass													Inter-class							
	Tvis 1 (s.b)	Tvis 2 (a,b)	Tvis J (8,3)	Trin 4 (8,8)	Tvis 5 (a,b)	Trin 6 (8,8)	Tuin 7 (8,b)	Trin S (s,b)	Tuin 9 (8,b)	Tvis 10 (s,b)	Tvis 11 (8,b)	Trin 12 (8,3)	Tvia 13 (a,b)	Tris 14 (8,0)	Tvis 15 (8,b)	Tvin 16 (8,2)	Tvia 17 (a,b)	Trin 18 (s,b)	Trin 19 (1,b)	Trin 20 (1,2)	Trin (123,45,67,8) (0,11,12,13,14) 16,17,18,19,20
AUM	5.853	1.622	3,576 7	5267	5302	5302 7	3.421	4348	4	7	2354	2.722	14,4458	5,4006	5,4602	2.9337	4,8807	5.5155	5.3268	5.6098	7.2035
U3.0	0380 3	0.121	0.169 2	0771 7	0195 6	1875 3	0.288 3	0.163	0.299	4	1.3931	0.2272	2.0646	0.5276	0.5276	0.1098	0.4801	0.0655	0.2864	0.3494	0.0199
GND	1538 67	42.58 97	39.58 34	53.08 01	15.97 9	26.00 57	9	42.95 08	2636 05	46.68 66	38.089 8	11.0455	35.979	35.6386	42.1358	25.6573	23.8347	10.0447	24.1364	28.5479	2.0235
Aspect	4.861 3	9.712 9	7.815	9.520	12.51 09	40.62 26	11.54 71	18.29 24	6.450 4	10.11 19	9.1913	11.0867	55.0904	17.5442	26.5758	29,4279	131,701	5.3541	11,9772	65.6292	1.2451
Geometrica 1 minute	3146 31	21.81 25	32.35 94	29.73 44	27.51 56	25.25	33.26 55	24.32 81	20.95 31	33.40 63	14.765 6	28.9219	22.5625	20.75	23.9688	15,4688	31.125	25.7188	20.125	183594	2.2957

Tables 19-27 show irregularity of the sequence of technique for the lowest MAE value. However, the AUMI technique shows exception; the smallest MAE value in nearly all tables is shown for AUMI. It is important that the technique has consistency in order to enable comparison of intra-class and interclass, which in turn will enable the evaluation of the best technique. A technique that has smallest MAE value for intra-class and largest MAE value for inter-class simultaneously is considered as the best technique. In relation to this, AUMI fits the bill; for every technique, the scale of value for extracted invariant feature vector gained from feature extraction has dissimilar nature. AUMI for example, will produce the smallest value for invariant feature vector; as opposed to other techniques. This means that AUMI will unfailingly produce the smallest MAE value for intra-class and largest value for inter-class. Table 28 can be referred.

Table 28. Mean For All Techniques

Techniques	Intra-class	Inter-class
AUMI	2.779752	4.043166
GMI	21.58155	16.18607
Aspect	23.81716	9.91411
UMI	0.398728	0.244974
Macro	0.612048	0.438097
Geometrical minute	48.30777	28.67667

© 2005 – ongoing JATIT & LLS

the

[3]

ISSN: 1992-8645

www.jatit.org

10.1109/BIOSIG.2016.7736924 [4] Ch.Kauba , A. Uhl Wavelab, E.Piciucco . E.Maiorana and P.Campisi. 2016. Advanced Variants of Feature Level Fusion for Finger , Sep.21-23, Vein Recognition IEEE Conference Publications, pp. 1-7. DOI: 10.1109/BIOSIG.2016.7736908.

SLDR Method . International Conference of Biometrics Special Interest Group

(BIOSIG), Sep. 21-23, IEEE, pp1-4. DOI:

S.Karahan, M.Kılınc, H.Kemal Ekenel.2016.

10.1109/TIFS.2016.2581306

Conference Publications,

- [5] S.Easwaramoorthy, Sophia F, Prathik A. 2016. Biometric Authentication using finger nails. International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Feb. 24-26, IEEE Conference Publications, pp: 1 - 6. DOI: 10.1109/ICETETS.2016.7603054
- [6] S.S. Patil, S.Gudasalamani, N.C. Iyer, V.G. Garagad. 2016. Tilt and Scale Invariant Iris Recognition System. IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), March. 10-11, IEEE Conference Publications, pp : 1 - 6. DOI: 10.1109/ICCTAC.2016.7567342.
- [7] Sh.Eliabeth, B.Thomas, J. J Kizhakkethottam. 2015. Analysis of Effective Biometric Identification Monozygotic Twins. on International Conference on Soft-Computing and Networks Security (ICSNS), Feb. 25-27, IEEE Conference Publications, pp : 1 - 6. URL:http://ieeexplore.ieee.org/stamp/stamp.jsp ?tp=&arnumber.
- [8] P.M.Patil, R.B. Wagh. 2016.Writer's Identification by using Word Reason Feature Transform. International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), Feb. 24-26, I EEE Conference Publications, pp: 1 - 4. DOI: 10.1109/ICETETS.2016.7602992.
- [9] Azah, K. M, S.M. Shamsuddin. And A. Abrahamz. 2010. Authorship Invarianceness for writer Identification Using Invariant discretization and Modified Immune Classifier, University Technology Malaysia, Malaysia.
- [10] Hamid B., K. Faez. 2013. Introducing a New Multimodal Database from Twins Biometric Traits. Electrical Engineering (ICEE), May. 14-16. IEEE Xplore, pp. 1-6. DOI: 10.1109/IranianCEE.2013.6599528.

6 CONCLUSION

This study brings forth a new framework for identical twins. In particular, this framework employs the technique of AUMI to determine the individuality in identical twin multi-biometric. Such method verifies twin multi-biometric in twin Identification (TI) in terms of individuality. This study brings to the table Uniqueness representation. It is to prove the individuality of twin multibiometric owing to the application of Moment Function (MF) in the task of feature extraction. The procedure of individuality representation is highlighted. The most appropriate technique is suggested. Such technique comprises the computation of mean between the smallest and largest MAE value. In extracted features, each technique obtains unique scale value. As evidenced by the results, the use of AUMI demonstrates the highest individuality. Other moment techniques in multi-biometric twin identification were also explored.

7. ACKNOWLEDGEMENT

The authors wish to thank anonymous reviewers for their valuable, insightful comments that improve the content of this review paper. The authors also wish to thank University Technology Malaysia (UTM) which provided the facilities and appropriate environments for carrying out this study.

8. FUNDING INFORMATION

This research is funded by Malaysia's Ministry of Higher Education, University Technology Malaysia (UTM).

9. ETHICS

The corresponding author confirms that the other authors have read and approved the manuscript and there is no ethical issue involved. This paper is original and contains unpublished material.

REFERENCES

- [1] B.O.Muhammed and S. M. Shamsuddin. 2017. "Twins Multimodal Biometric Identification System with Aspect United Moment Invariant" , Journal of Theoretical and Applied Information Technology, Vol.95, issue. 4.
- [2] Y.Koda, T.Higuchi and Anil K. Jain. 2016. Advances in Capturing Child Fingerprints: A High Resolution CMOS Image Sensor with

15th December 2017. Vol.95. No 23 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

6430

[20]. Yinan, S., Weijun, L. and Yuechao, W.2003. Moment Invariant United for Shape Discrimantion, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Oct. 8-13, IEEE Xplore, pp. 88 -93.

DOI: 10.1109/RISSP.2003.1285554

- [21] Hu, M.-K. 1962. Visual Pattern Recognition by Moment Invariants. IRE Transaction on Information Theory. Vol. 8. No. 2. pp. 179-187. DOI: 10.1109/TIT.1962.1057692.
- [22] Chen, C.-C. 1993. Improved Moment Invariants for Shape Discrimination. Pattern Recognition, Vol.26, No. 5. pp. 683-686. DOI: 10.1016/0031-3203(93)90121.
- [23] Feng P. and Keane, M. 1994. A New Set of Moment Invariants for Handwritten Numeral Recognition, IEEE International Conference of Image Processing, Nov. 13-16, IEEE Xplore, Vol. pp. 154 -158. DOI: 10.1109/ICIP.1994.413294.
- [24] J.Neves, H.Proenc. 2016. ICB-RW 2016: International Challenge on Biometric Recognition in the Wild. Biometrics (ICB), 2016 International Conference, June. 13-16, IEEE Xplore, DOI: 10.1109/ICB.2016.7550066.
- [25] Pervouchine, V., and Leedham, G. 2007. Extraction and Analysis of Forensic Document Examiner Features Used for Writer Identification. Pattern Recognition, Vol. 40. 1004-1013. No. 3. pp. DOI:10.1016/j.patcog.2006.08.008.
- [26] BO Mohammed* and SM Shamsuddin. 2012. Improvement in twins handwriting identification with invariants discretization. EURASIP Journal on Advances in Signal Processing, vol. 48. 1-12. pp. doi:10.1186/1687-6180-2012-48

- [11] Mjolsnes, S.F.2012 . A Multidisciplinary to Information Security introduction &Hall/CRC. ISBN:1420085905 Champan 9781420085907
- [12] Narayanan, A., & Shmatikov, V.2005. Fast dictionary attacks on password using timespace tradeoff. In proceedings of the 12th ACM conference on computer and communication security ,Nov. 07 - 11, USA, pp. 364-372. DOI:10.1145/1102120.1102168
- [13] M.K. Umair, A.K. Shoab, N. Ejaz, and R. Riaz. 2009. A Fingerprint Verification System using Minutiae and Wavelet Based Features. Conference on International Emerging Technologies, Oct. 19-20, IEEE Xplore, pp. 291-296. 2009. DOI: 10.1109/ICET.2009.5353157.
- [14] N. Nainet al., B.M. Deepak, D. Kumar, M. Baswal, and B. Gautham. 2008. Optimized Minutiae-Based Fingerprint Matching. Lecture Notes in Engineering and Computer Science, vol. 1, pp. 682-687.
- [15] W. Y. Leng and S. M. Shamsuddin. 2012. Fingerprint Identification using Discretization Technique, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol:6, No:2,pp;240-248.

URL.http://scholar.waset.org/1999.4/14511

- [16] Palhang, M. and Sowmya, A. 1999. Feature Extraction: Issues, New Features, and Symbolic Representation . Springer-Verlage Berline, Vol. 1614. pp. 418 - 427. DOI: 10.1007/3-540-48762-X 52
- [17] Jain, A. and Zongker D. 1997. Feature Selection : Evaluation, Application and Small Sample Performance. IEEE Trans . On Pattern Analysis and Machine Intelligence, Vol. 19. 2. 153 158. No. pp. DOI: 10.1109/34.574797.
- [18] Jain, A., Duin, R. and Mao, J. C. 2000, Statistical Pattern Recognition : A Review, IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 22. No.1. pp. 4-37. DOI: 10.1109/34.824819
- [19] Zhang, D.- S. and Lu, G. 2002. Generic Fourier Descriptor for Shape-based Image Retrieval, Proceeding of IEEE International Conference on Multimedia and Expo (ICME2002), Aug. 26-29 IEEE Xplore , Vol. 1. Pp: 425 – 428. DOI: 10.1109/ICME.2002.1035809

E-ISSN: 1817-3195

