
Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6398

TOWARD SECURE COMPUTATIONS IN DISTRIBUTED
PROGRAMMING FRAMEWORKS:

FINDING ROGUE NODES THROUGH HADOOP LOGS

1N. MADHUSUDHANA REDDY,2Dr. C. NAGARAJU, 3Dr. A.ANANDA RAO
1Assoc.Prof, RGM College of Engineering and Technology, Nandyal, AP, India.

2Assoc.Prof, YSR Engg.College of Yogi Vemana University, Proddatur, AP, India.

3Professor of CSE and Director of Academic and Planning, JNT University Ananatapur, AP, India.

E-mail: 1madhusudhan.nooka@gmail.com, 2cnrcse@yahoo.com, 3akepogu@gmail.com

ABSTRACT

MapReduce programming paradigm is used to process big data in large number of commodity computers
where parallel processing is leveraged. In this kind of programming phenomenon, users do not have control
over distributed computations. Therefore it is quite natural for users having privacy and security concerns.
The nodes involved in MapReduce computations may become malicious and cause security issues.
Different attacks are possible on distributed environment. The nodes that cause such attacks are known as
rogue nodes. In this paper a methodology is proposed based on analysis of Hadoop log files to find rogue
nodes that are malicious and launch attacks for disturbing normal functioning of MapReduce framework. In
other words, the methodology aims at integrity verification of computations in MapReduce environment.
This is achieved without having any cryptographic primitives or other computational operations. Hadoop
logs and low-level system calls are utilized and correlated in order to obtain operations performed by
different nodes. This knowhow is then matched with system calls and invariants in program to find out
malicious operations and the rogue nodes that cause such operations. The proposed methodology is
evaluated with real Hadoop cluster environment to demonstrate proof of the concept. The empirical results
revealed the significance of using this approach towards secure computations in distributed programming
frameworks while processing big data.

Keywords: Mapreduce, Hadoop, Detection Of Rogue Worker Nodes, Hadoop Logs, System Calls

1. INTRODUCTION

Ever since the invention of MapReduce
programming model [1] which is the paradigm
shift in the way programs are executed, it is
adapted by big companies like Amazon, Yahoo,
Facebook and Google to mention few. It is the
programming model for processing massive
amount of data by supporting parallel processing
executed by thousands of commodity computers
and distributed file system (DFS) for supporting
storage and retrieval of data. Hadoop [2] is one
of the open source implementations of
MapReduce programming. In spite of scalable
and flexible computing services offered by
MapReduce, it is known for vulnerabilities that
cause attacks from adversaries. In the wake of
increased cyber-attacks recent observations made
by NCDRC assume significance. National Cyber
Defence Research Centre (NCDRC) of India

conducted National Cyber Safety and Security
Standards (NCSSS) summit 2007 at Bits Pilani,
Hyderabad in which the summit considered
cyber-attacks as one of the cyber-crimes
intentionally targeted at national assets or critical
digital infrastructure [3].

As users do not have much control over
outsourced MapReduce applications, it is
essential to have mechanisms to secure
computations in distributed programming
frameworks like Hadoop. Moreover, many
deceptive or malicious attempts may go
undetected as the users do not have much
knowledge on such activities. A survey on secure
computations in distributed programming
frameworks is found in [4]. Many security issues
with HadoopMapReduce and possible solutions
are observed in [5]. In the presence of untrusted
mappers or reducers, differential privacy is used

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6399

to protect privacy of big data [6]. Many
researchers contributed to have secure
computations. However, their study focused
more on activities that need change in Hadoop
framework or MapReduce operations. The effort
of this paper is to devise an alternative
methodology that is purely based on logs
generated from time to time and system calls
without indulging into the modifications of the
framework.

In this paper, the main focus is on the finding of
malicious activities of adversaries with deceptive
and malicious behaviours by utilizing Hadoop
logs and system call logs and correlating them.
Without changing Hadoop framework, this paper
aims to have investigations against different
kinds of attacks and deceptive behaviours.
Generic flow of MapReduce applications is
studied with Hadoop and used it as baseline for
detection of malicious or deceptive behaviour.
Different invariants are used pertaining to
MapReduce program execution for doing the
same. Log files associated with NameNode,
DataNode, JobTracker and TaskTracker are used
to correlate with system call logs to find
anomalous behaviour exhibited by rogue nodes.
Deceptive behaviour is differentiated from
malicious behaviour and explored three kinds of
malicious attacks. It is obsesrved with an
empirical study that execution traces of a multi-
node Hadoop system can be used to find
malicious worker nodes in the distributed
environment. WordCount application is used as
case study with a huge collection of e-Books
considering as big data given input to the
MapReduce application. The three attacks and
difference between the deceptive and malicious
nodes are demonstrated for proof of the concept.

In the literature it is found that many researchers
[22], [23], [27], [28], [29] and [30] explored
MapReduce programming and security of in one
way or other. Out of them [22] focused on log
analysis for identifying threats to MapReduce
paradigm. The problem with existing works is
that there needs to be a comprehensive approach
that makes use of system calls and Hadoop
configuration files besides logs in methodology
that is missing. This paper throws light on this
issue. Our contributions in this paper are as
follows.

1. Review of literature is made on secure
computations in MapReduce
programming paradigm. These insights

helped to work on rough nodes
problem.

2. A methodology is proposed to identify
rogue nodes that involve in MapReduce
computations.

3. A threat model is used to detect
different kinds of attacks on mapper and
reducer in Hadoop distributed
programming framework.

4. A prototype application is built to
demonstrate proof of the concept.

The remainder of the paper is structured as
follows. Section II provides review of literature
on MapReduce programming and its security
issues and solutions. Section III presents the
problem formulation which is basis for the work
of this paper. Section IV presents the proposed
methodology which is alternative to other
methods that alter Hadoop framework for secure
computations. Section V presents experiments
and results. Section VI provides conclusions and
directions for future work.

2. RELATED WORKS

This section reviews literature on the secure
computations in distributed programming
paradigms. Dean and Ghemawat [7] introduced
the environment in which MapReduce
programming paradigm works. It provides good
understanding of MapReduceenvironment where
security concerns can be studied. Blanton et al.
[8] proposed security mechanisms for outsourced
sequence computations. Towards this end they
used algorithms like distance computation and
oblivious edit path computation. Vavilapalliet al.
[9] explored Hadoop’s compute platform known
as YARN and its security mechanisms. They
proposed a framework that takes care of secure
computations in the context of resource
navigation. Huang et al. [10] provided an
architecture that focuses on detection of cheating
nodes in MapReduce environment. Especially
they provided result verification schemes in
order to find malicious nodes. Zhao and Lo [11]
also focused on result verification along with
trust-based scheduling for secure computations.
Khadkeet al. [12] on the other hand studied
system calls in cloud computing environment for
diagnosing security problems through
debugging. Parno and Gentry [13] proposed a
system known as Pinocchio which brings about
public verification scheme in distributed
programming with near practical verifiable
computations. Similar kind of work is done in
[14].

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6400

Rabkin and Katz [15] studied Hadoop clusters
and their misconfigurations. They identified and
explored anti-patterns that can be used to prevent
security issues in distributed computations.
Braun [16] investigated on a state based
approach for verification of computations in
MapReduce programming. They proposed a
system known as Pantry to have proof-based
verifiable computations. Similar kind of work
was done in [17]. Steward et al. [18] studied on
mining corpora in distributed environments for
knowledge extraction. Chen et al. [19] focused
on a software verification primitive named as
oblivious hashing for secure computations.
Wang and Wei [20] proposed a framework for
secure computations. It is named as Verification-
based Integrity Assurance Framework (VIAF). It
is meant for detecting collusive and non-
collusive mappers in the Hadoop ecosystem.
Dunlap et al. [21] built a framework known as
ReVirt for intrusion detection in distributed
programming models through VM logging and
replay. By replaying the system before and after
computations, it can detect intrusions.

Fu et al. [22] focused on anomaly detection in
MapReduce programming. They proposed a
technique known as unstructured log analysis
which is based on Finite State Automaton (FSA)
for anomaly detection. This work is somewhat
similar to the work of this paper where explicit
log analysis is made. Lou et al. [23] also used
unstructured log analysis in distributed
environment for finding mining dependency. On
the other hand, Xuet al. [24] threw light on
analysing console logs for detection of problems.
Guet al. [25] studied the concept of remote
attestation for secure computations. Their focus
was to attest the correctness of program
execution remotely. Papanikolaou [26] made a
review on algorithms and theory of
computations. Rabin et al. [27] contributed
towards making a scheme that verifies
correctness of applications and computations.
They used a model known as Evaluator-Prover.
Schwarz [28] opined that in Linux distributed
environments model checking can be used to
detect security violations.

Xiao and Xiao [29] thought differently on
security aspects. They proposed a framework
known as Accountable MapReduce for that
forces the machines involved in computations to
help responsibility for any malicious activities.
Wei et al. [30] proposed a framework named
SecureMR which provides service assurance

integrity services to prevent Denial of Service
(DoS) and other attacks. Yoon and Squicciarini
[31] performed log analysis for finding
compromised MapReduce worker nodes. It
ensures integrity and correctness of
computations. Krkaet al. [32] built a model for
behavioural inference based on program
invariants and dynamic execution traces using
FSA. Roy et al. [33] proposed a security
framework known as Airavat for securing
MapReduce computations. It is meant for
protecting system from untrusted programs. Tan
et al. [34] built a framework known as Kahuna
for diagnosing issues in MapReduce
environment. It identified performance issues
and security problems. Sonneket al. [35] focused
on finding worker nodes that are not reliable by
using an adaptive reputation-based scheduling.

The review of literature revealed many insights.
Some approaches in the literature focused on
modifying original MapReduce functions. There
are other approaches that used log analysis.
However, a comprehensive methodology that has
an integrated Hadoop log analysis and analysis
of system calls besides using Hadoop
configuration information without the need for
modifying original Hadoop functionality is
missing. This is the motivation behind this work
which analyzesHadoop configuration file, system
calls and Hadoop log files for detecting rogue
MapReduce nodes.

3. PROBLEM DEFINITION

Before formulating the problem, let us examine
the MapReduce framework and its modus
operandi. MapReduce is a novel programming
model that exploits the massive power produced
by thousands of commodity computers
associated with data centres in cloud computing.
MapReduce framework is used to process big
data. This programming model needs support of
a Distributed File System (DFS) for storage and
retrieval of big data. The framework has two
important functions known a Map and Reduce
for which developers need to write logic. Map
function takes key/value pairs as input and
generates intermediate output in the form of
key/value pairs. The intermediate output of all
mappers is given to reduce functions that run in
many nodes where final output is generated. In a
cloud computing environment, a master node
initiates MapReduce programming. Master
nodes perform two functions known as task
scheduling and job management. This model is
best used with Hadoop which is one of the open

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6401

source implementations of MapReduce. The
MapReduce functionality with Hadoop is as
shown in Figure 1.

Figure 1: Functionality Of Mapreduce Paradigm

Hadoop employs master/slave model in
MapReduce execution. The master node runs
JobTracker and NameNode. NameNode is
responsible to coordinate storage with Hadoop
Distributed File System (HDFS) while
JobTracker takes care of parallel processing of
data with the new programming paradigm. The
slave node in the framework runs DataNode and
TaskTracker. The TaskTracker works in tandem
with JobTracker while the DataNode works in
coordination with the NameNode of master.
TaskTracker coordinates multiple JVMs to track
multiple map and reduce tasks that run in
parallel. HDFS is the distributed file system that
comes with Hadoop. As name implies it is a
scalable file system in distributed environment.
HDFS client is used by applications to gain
access to HDFS. This file system is aware of
storage racks and can help in disseminating
information faster. With this scheduling becomes
easier and it optimizes bandwidth usage. Both
DataNode and NameNode are associated with
HDFS. NameNode contains directory structure
pertaining to file system while the DataNode is
the node where data is stored. In a cluster data is
stored in multiple locations in DataNodes.
NameNode is crucial for the functioning of
HDFS properly as it really reflects single point
of failure for HDFS.

In this context, the problem is formulated. The
worker nodes in the distributed environment may
become malicious or compromised. Detecting
such rogue nodes is one of the challenging
problems to be addressed in this paper.
Malicious nodes are to be detected by
monitoring the execution dynamics at runtime.
Malicious nodes might follow different
execution patterns that are not with the genuine

worker nodes. The aim of this paper is to detect
rogue nodes by analyzing system calls and log
files and examining malicious behaviour. In
order to achieve certain assumptions are made.
MapReduce framework is assumed correct.
Worker nodes have similar hardware resources.
HDFS and master nodes are trusted. Most of the
workers exhibit genuine functionalities. The map
code executed by different nodes produces
similar output for same input. The ensuing
section provides the proposed methodology to
detect rogue nodes.

4. PROPOSED MTHODOLOGY

A MapReduce application is considered and
generated logs when the application is running
with Map and Reduce phases. The logs obtained
through slave nodes are used to find
peculiarbehavioural patterns that are not similar
to common execution patterns. System calls are
also captured by using black box testing and
dynamic instrumentation without the need for
changing Hadoop framework. Then the system
call logs are correlated with the logs produced by
Hadoop framework provides a flow of data and
execution comprehensively. Dynamic
instrumentation helps in extracting system traces.
These traces are used to find execution flow with
all minute details. This can lead to finding
patterns that reflect malicious behaviour in
execution. The malicious behaviour is the
behaviour that violates the general operations
performed by worker nodes for given
MapReduce task. Another malicious behaviour is
to change execution flow of Hadoop. Generally a
MapReduce job contains many tasks of Map and
Reduce. All tasks are related to same application
but running in different commodity machines.
All Map tasks should have same behaviour. In
the same fashion, all Reduce tasks should have
same behaviour. The expected flow of
MapReduce job is as given here. Map tasks are
assigned with the data obtained from DataNodes.
The outcome of Map tasks is shuffled and
handed over to Reduce task. Then the reducers
send final output to HDFS. Each slave node
participated in the distributed computing process
involves in execution of a subset of tasks of
MapReduce application. Thus there is some sort
of temporal ordering exhibited by slave nodes.

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6402

Figure 2: Master And Slaves And Different Logs
Associated With Hadoop Framework

An important observation is that slave nodes get
similar kind of workload with respect to a single
MapReduce application and that can be easily
mapped to with corresponding traces
consistently. The examination of the traces with
awareness of MapReduce configuration, it is
possible to have good amount of knowledge on
input data and setup of the system. The traces
found can be compared with expected flow of
execution can be correlated to reveal malicious
activities that violate confidentiality,
computations, availability of data of client and
integrity of the whole MapReduce process. With
dynamic instrumentation to get aggregated
traces, system calls and logs provided by
Hadoop, it is possible to detect many suspicious
activities. Therefore it is intended to examine
different malicious activities related to program
integrity, input operations, output operations, and
I/O operations.

Collection and Examination of Execution
Traces of given MapReduce Application

When an application is being executed, traces of
TaskTracker are obtained from slave machines
and such traces are stored log files maintained by
Hadoop. Thorough analysis of the log files
containing interactions between HDFS and tasks
related to MapReduce can reveal useful insights.
Apache Hadoop makes use of Log4j for
generating logs with the help of its daemon
threads running in the background of DataNode,
NameNode, TaskTracker and JobTracker. The
logs are related to diagnostics, standard output,
standard error, flow of events and other statistics.
As TaskTracker is responsible to execute a
subset of tasks of MapReduce application, it can

provide sampling that resembles global
distribution of tasks involved in the execution.

The execution patterns of Map and Reduce are
subjected to thorough analysis with the help of
JVM-generated logs containing system calls.
Dynamic instrumentation using tools like
Strace/DTrace is performed to obtain system
calls from the daemon threads of TaskTracker.
System calls found in such logs provide useful
information related to execution flow of
MapReduce tasks from JVM processes
associated with TaskTracker. The log analysis is
based on the important information found in the
Hadoop logs. Hadoop logs contain unique
identifiers for DataNode, NameNode,
TaskTracker and JobTracker. Each job carried
out is given a unique job id. Job ID is made up of
job number and ID of JobTracker. DataNode log
contains unique block id for each block of data
obtained from HDFS. Every task is given unique
task id which represents either Map or Reduce
task being carried out. Each task ID is made up
of job ID and followed by m for Map task, r for
Reduce task along with the number of attempts
made. More fine grained execution traces are
provided by logs containing system calls. These
logs are process oriented and therefore, process
ID is associated with the log contents. Each JVM
process associated with TaskTracker is identified
by unique id known as process ID. Since it is a
distributed environment, the logs have overflow
or inter-leaving. Therefore timestamp field is
used to arrange them in correct order of
execution. The notion of drift time is used to
have inspection of system events in a given time
frame and synchronize the timestamps. The order
of task invocations played an important role
while matching Hadoop log information and
system calls. For information, the flow of
generic MapReduce is provided in Listing 1.

1. Worker nodes obtain configuration data
from Hadoop configuration files

2. Worker nodes obtain dependent JAR
files like hadoop_core-xxx.jar, logging
jar file and other Java libraries.

3. Workers use taskjvm.sh for launching
new JVM with all libraries needed.

4. Mappers take Map class (.class file)
provided by application developer.

5. Reducers take Reduce class (.class file)
provided by application developer.

6. Mappers execute Map code and produce
intermediate results.

7. Reducers execute Reduce code by

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6403

taking Mappers’ output as input
8. Reducers generate final result to HDFS

Listing 1: Execution flow of genetic MapReduce

Parsing of Log Information

The logs of Hadoop collected in distributed
environment are overlapped with repetitions and
it is not easy to interpret directly. Therefore the
logs are parsed to have more meaningful
information and get rid of repetitions. Unique
identifiers and certain conventions are used in
order to have more meaningful logs and system
calls. MapId, Reduce ID, and Job ID are taken
from log entries related to taskjvm.sh of
TaskTracker. They are matched with
corresponding system calls associated with a
PID. The parameters of system calls are also
examined in order to find any discrepancies
found in dependencies and I/O operations.

Detection of Anomalies

More details on the detection of anomalies are
provided here. Patterns of flow are examined and
anomalies are identified. First of all,
communication among HDFS client, NameNode
and DataNode is considered. The HDFS client
that is Map or Reduce task makes RPC call to
gain access to services of HDFS. Then client
establishes connection to NameNode in order to
submit data to HDFS. After establishing
connection, the data blocks are sent to
DataNodes. Analysis of the flow is based on the
communication between HDFS client,
NameNode and DataNode by analyzing logs of
Hadoop and logs of system calls. With the
extracted network information containing
TCP/IP sockets, port numbers, and IP addressed
are correlated with the system calls and Hadoop
logs to detect any unauthorized connection. The
observation of unsuccessful socket connection
related system calls, wrong IPs of ports and
DataNodes indicate the sure presence of
malicious behaviour in the workflow. The
discrepancies between correlated information
and log information also indicate malicious
activity.

HDFS is used to have large scale storage and
retrieval of data in distributed environment. It is
especially used for data intensive MapReduce
applications. The information collected from
Hadoop logs is used to obtain the details of client
access patterns with respect to HDFS. It includes
data blocks and their location. This information
is used to validate the integrity of input data. The

data block ID and location of DataNode are
obtained from corresponding logs. Blocks in
DataNode and metadata are used by NameNode
to maintain a list of blocks related to a file and
list of files as well. NameNode maintains data in
the form of blocks in the local file system and it
also maintains corresponding metadata. The
main focus is on finding location of DataNode in
the form of host name or IP and also the block
ID of accessed data by client. The operations on
HDFS are also obtained for validating inputs
given to Map task. This matching will help
whether the input data is loaded from a genuine
DataNode or an attacker. In the same fashion,
block ID is also used for validating integrity.
Listing 2 has sample NameNode and DataNode
logs.

*HadoopNameNode log:

STATE* Network topology has 1 racks and 2
datanodes

BLOCK* registerDatanode: node registration
from ($DataNode):50010

 Storage DS-624241665-
192.168.1.14-50010-1382597957423

BLOCK* allocationBlock: $path
blk_5905677021831100640_2283

BLOCK* addStoredBook: blockMap updated:
127.0.0.1:50010

 Is add to
blk_5905677021831100640_2283 size 33890

*HadoopDataNode log:

DatanodeRegistration (DataNode): 50010

storageID DS=624241665-192.168.1.14-50010-
1382597957423,infoPort=50075,ipcPort=50020)
In

DataNode.run,data=FSDatasetdirpath=’($HDFS-
Path)/dfs/data/current’

Receliving blk_5905677021831100640_2283
src($HDFS-Clint_IP):55950
dest($DataNode):50010

src : ($DataNode):50010, dest: (($HDFS-
Clint_IP):56002, byte: 34158,
op:HDFS_READ,cliID:

blockid: blk_5905677021831100640_2283
duration: 671000

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6404

Listing 2: Logs pertaining to NameNode and
DataNode

Client interaction with HDFS shows certain
patterns. These patterns are used to detect illegal
access to HDFS. It may be in the form of having
unauthorized access to data blocks or writing
some arbitrary data blocks to DataNode and so
on. Particularly the focus was on activities such
as DataNodes containing data file in the form of
blocks provided by client and loading the same
into Map task that come from a DataNode
holding duplicated data blocks. The traces of
system calls pertaining to DataNode are
analyzedto detect activities between DataNode
and HDFS client that resulted in data transfer.
The presence functions like open(), accept()
provide the presence of system calls to access
data and establish connection respectively. As
HDFS communicates in the form of TCP/IP
sockets the system calls can be understood with
ease. For instance sendfile() system calls having
file descriptors as arguments helped to check
whether HDFS client get correct data block from
DataNode. System call traces on the DataNode
are as shown in Listing 3.

accept() = out_fd;

open("pathname(blockID)", O_RDONLY) =
in_fd; sendfile(out_fd,in_fd,offset,bytes) =
bytes;

Listing 3: System call traces associated with
DataNode

The dynamic execution traces of MapReduce
application are shown in Listing 2. These trace
are collected by using DTracing tool that
extracted traces of TaskTracker’s associated
JVM processes at system calls level and method
level. This is done in each slave node. The
program execution flows are also used along
with corresponding semantics from the traces
containing information such as the classes that
have been loaded into Map or Reduce task, and
the operations performed over there. The data
flow and control flow of MapReduce are thus
understood at lower granularity. This
information can be analysed further semantically
for finding causal relationships between
components associated with MapReduce
application. Thus the causal relationship
provides useful insights on the execution logic
provided in the Map and Reduce classes of the
application considered.

The traces and correlation procedures
aforementioned are made effective further by
correlating them with certain trust-worthy
patterns of MapReduce workers. It is related to
program invariants that are associated with
different workloads. The invariants help to
analyse log sequences to know whether the
execution process differed with anticipated
workflow. When the log files are not complying
with invariants anomaly can be suspected. The
invariants considered in Hadoop environment
include presence of libraries pertaining to Java
and Hadoop, fetching of intermediate results by
Reduce nodes, writing intermediate results by
Reduce nodes, and reading configuration files
consistently. As libraries of Hadoop are
independent of MapReduce applications, the
activities pertaining to loading libraries in
worker nodes should be consistent. The log
analysis also provides ample insights related to
the loading of all necessary libraries to execute
Map and Reduce tasks. HDFS client access
patterns with HDFS can also provide information
to check against known invariants. The
configuration file holds information related to
storage location while the parameters in system
call provide where actually the Mapper wrote the
generated intermediate output. When these two
locations are not matching, it is an indication of
malicious behaviour. The events provided in
Listing 4 can show the interactions between
HDFS and MapReduce.

 HDFS client sends data file to HDFS
where data is split and stored in
DataNodes in the form of blocks

 Mapper takes data blocks from
DataNodes

 Reducer sends the final results to HDFS

Listing 4: Order of events reflecting interaction
between HDFS client and MapReduce

The events are performed in the given order. The
order reflects workflow and that flow are never
changed. In addition to this different invariants
of MapReduce are used to have more
comprehensive understanding of behaviour of
different functions. Unless Map function is under
the influence of an attacker, it produces same
output with same input. The method invocations
should be same when there is same execution
flow. It is also possible to consider many
invariants at a time. One such example is that a
Map function writing its output to local
disk/HDFS is always preceded by the same Map
function loading data blocks from HDFS. In the

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6405

same fashion Reduce function writes final output
to HDFS of local disk only after taking
intermediate output produced by Map function.
This kind of execution order can help in
detecting rogue nodes and malicious behaviour.
Another important analysis is to check the
number of system calls and number of return
system calls should be same for both Map and
Reduce tasks. Finding the different in the
number is the indication of anomaly or an attack
named as file descriptor attack.

Inputs and Computation Integrity Checking

As mentioned earlier the integrity checking
process is based on the correlation between logs
of Hadoop and logs containing system calls.
Invariants discussed in the previous section are
used to continue with integrity checking. By
using input data being used by worker nodes it is
possible to check input integrity. JabTracker log
provides very important information for
achieving this. It includes data size of the input
and the number of parts into which it is split. The
TaskTracker log provides information like file
name, map task, and path in HDFS. It is possible
to obtain MapID, JobID and TaskID besides the
location of nodes and data being used by Map
tasks. By correlating the log information of
JobTracker and TaskTracker and log events of
I/O can provide relationships between
MapReduce tasks and HDFS. Simple act of
checking input data size provided in the
JobTracker against that of HDFS. Moreover, the
block ID and location of a block and the usage
patterns of Map task and I/O events can provide
useful insights. Correlation of logs can also be
used to check the similarity of outputs produced
by mappers and reducers. HDFS access patterns
and the MapReduce task operations are
correlated and anomalies are detected.

With respect to checking integrity of
computations, it is possible to have compromised
nodes or rogue nodes as mappers. Though they
get valid input from the HDFS, they may run
malicious code for producing incompatible
computational output. In order to check such

integrity, execution behaviour of mapper is
analyzed with the help of TaskTracker logs and
corresponding system call logs or worker nodes.
Though Hadoop logs provide information about
MapReduce dynamics, they cannot provide
system calls information. When system calls are
used for correlation, the computational integrity
can be verified. Sequence of system calls across
worker nodes are verified to find out
discrepancies due to the presence of malicious
worker nodes or rogue nodes. For instance a
malicious node is the one which tries to conserve
resources or for any gain by using less number of
write() when compared with an honest node. An
important observation is that system call
statistics are not sufficient the analysis needs to
be coupled with program semantics and
execution flow as malicious nodes often do not
follow normal execution flow.

5. EXPERIMENTAL SETUP AND
RESULTS

Hadoop 2.7.x is use with Ubuntu operating
system installed in virtual box. It is configured as
cluster. The system traces of worker nodes are
aggregated and logs are obtained. The Hadoop
logs are related to JobTracker and TaskTracker
daemons. By taking a simple word count
application, the Map and Reduce tasks are
executed and traces are collected from log files.
The log files are also collected from NameNode
and DataNode. Using Dtrace, captured system
calls that are related to interactions between
MapReduce and HDFS containing I/O
operations are captured. As said before,
WordCount application is used for empirical
study. This application is well known to
developer community who use distributed
programming frameworks like Hadoop. The
application counts the occurrences of different
words in a given input file or set of files. The
experiments are made and correlation of logs is
done as explored in details in the methodology.
Figure 4 illustrates inputs, execution process and
final output of WordCount application. In the
experiments made it is observed patterns that
reflect strange or malicious behaviour.

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6406

Figure 3: Illustrates Mapreduce Tasks Of Wordcount Application With Inputs And Outputs

As shown in Figure 3, it is evident that the
inputs, intermediate results of Map, Shuffle and
Reduce are presented with respect to
WordCountMapReduce application. Two kinds
of workers that are not honest are considered.
They are known as deceptive worker and
malicious worker. Deceptive node is the node
which skips some computational flow in order to
save computing resources. On the other hand a
malicious worker node is the node that attack
MapReduce workflow in different ways.
Suspicious JVM launching is one of the attacks.
As the JVM launching is made by TaskTraker,
the TaskTracker log file and the system calls
related to JVM launching are used to detect this
kind of attack. The JVM ID, Map ID, JobID of
Hadoop logs and the call log information related
to nodes should have similar values. Violating
this is the indicative of such attack.

Another attack is related to injection of malicious
JAR files. As the Hadoop makes use of known
JAR files and classes consistently, verification of
malicious JAR is done by examining classes
loaded for Map and Reduce tasks. By obtaining
location and name of Java class files from logs,
the malicious worker node’s behaviour is
detected. Yet another malicious attack is the
misplaced intermediate outputs that are
generated by Map tasks. This attack is detected
simply finding the location of intermediate
output by examining log files. When the mapper
is writing intermediate output to a location other
than the location to which it needs to write as per
configuration, it is detected as rogue node or
malicious node. Attacks can also be made by
changing Hadoop configurations. When the

MapReduce activity is underway, an attacker
may modify configuration files like
hddfs.site.xml, mapred-site.xml, and core-
site.xml. This is effectively detected by
comparing system calls and Hadoop log
contents.

Experimental Results

This section provides results of experiments with
respect to rogue nodes that have deceptive and
malicious behaviours. The results are based on
the case study taken with WordCount
application. Six nodes are used in the
experiments where mappers are executed. One of
them is made deceptive or malicious node. E-
books collected from free source named
Qutenberg [36] are used as dataset or input to
MapReduce application that WordCount. The
application is responsible to take big data (bulk
of e-Books) and produce word count output. In
the process it makes use of parallel processing
power of distributed programming framework
Hadoop configured with 6 worker nodes. Two
scenarios are used for experiments. They are
deceptive behaviour scenario and malicious
behaviour scenario. In the case of the former, the
size of output produced by Map task of deceptive
node found in the TaskTracker log file is
significantly different from that of genuine
nodes. The size shown in log file is 10 bytes
while the actual size of output produced by
genuine mapper is 304320 bytes. This difference
in figures reflects only deceptive behaviour of
worker node. However, it does provide execution
behaviour of Map task. Additional insights are
obtained by analyzing system calls and

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6407

comparing with log information related to the
system calls. The log content of system calls
show much difference in invocation of write()
call in the Map task. The count of calls to write()
of deceptive node is much lesser than that of
honest worker node. However, the calls related
to read() are found similar. The rationale behind
this is that the deceptive mapper does not
execute loop or skip it to avoid computations.
Many experiments are made and the results are
as follows. System calls of related write() of
genuine mappers is 722 out of the total number
of read/write calls 43580. Number of write()
calls of deceptive worker node is 190 out of
44520 read/write system calls.

In case of malicious behaviour scenario, it is not
sufficient to have statistics. Therefore Hadoop
and system calls are to be correlated by
considering the generic workflow of MapReduce
provided in Listing 1. According to the generic
workflow three events are identified to be
malicious. First, the generic workflow is changed
by attacker by launching his own JVM for
supporting malicious activities. Second, it is
observed that changing map code (logic of
counting) can influence the intermediate output
of Mappers in WordCount application. It is
tested by changing Map class code. The third one
studied is the case in which input data is taken
from a location which is not authentic. In case of
the first malicious behaviour, when adversary
tried to have his own JVM, the logs of
TaskTracker provides JVM ID, Map ID, and Job
ID are studied to know the behaviour of
malicious worker node compared with honest
node. The JVM behaviour of Hadoop and that of
attacker differ which is the indication of
malicious attack.

With respect to the second malicious behaviour,
it is observed from the log files that the
malicious nodes showed 20% of write() calls
while the other nodes show 68-80% write()
system calls. This is the indicative of malicious
behaviour. In the third malicious behaviour case,
the code in Mapper class is altered. Instead of
reading data from HDFS configured location, it
reads from local directory. The logs contain
descriptor information of files related to read()
system call to detect this kind of malicious
behaviour. The difference in file path and file
prove the presence of such malicious attack.

6. DISCUSSION

This paper threw light into a methodology based
on Hadoop logs, system calls and Hadoop
configuration files. This methodology is meant
for identifying rogue worker nodes that
participate in MapReduce programming in
distributed environments. Unstructured log
analysis using FSA [22], and log analysis for
mining dependencies [23], and log analysis for
finding compromised MapReduce nodes in
distributed environment [31]. These methods
followed log analysis approaches. However, we
found that these approaches can be improved
further. Towards this end, this paper threw light
on a comprehensive methodology that not only
considers log files but also system calls made
from Hadoop and Hadoop configuration files
that can influence the series of functions carried
out in the process of execution. The work of this
paper produced accurate results when compared
with the existing methods. The rationale behind
this is that the use of multiple ingredients to
make conclusions on the identification of rogue
nodes.

7. CONCLUSIONS AND FUTURE WORK

In this paper, an alternative methodology is
presented which is on the contrary to other
approaches that force changes in Hadoop
framework to detect malicious worker nodes.
The methodology focuses on log files associated
with NameNode, DataNode, JobTracker and
TaskTracker in a multi-node Hadoop cluster
environment. The behaviour of rogue nodes is
divided into deceptive and malicious behaviours.
Deceptive behaviour is understood as the
behaviour of a rogue node that skips certain
computations for saving computational
resources. Whereas the malicious worker nodes
is the compromised node that intentionally
makes attacks on MapReduce programming
paradigm. These attacks are considered in the
attack model and experiments are made to prove
the concept. A case study application known as
WordCount is used with big data for processing.
Dataset given as input contains thousands of e-
Books collected from Qutenberg project. With
this case study, the methodology is evaluated in
terms of detecting deceptive and malicious
behaviours of rogue worker nodes in a
distributed environment. The empirical study

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6408

revealed the significance of the methodology in
detecting rogue nodes toward secure
computations in distributed programming
frameworks while processing big data. Further
investigation is needed to study the situations
where multiple nodes are compromised. Another
research direction is to characterize rogue
DataNode that may create snapshots of
legitimate nodes and re-introduce altered copies.
This is a straight forward attack that is difficult
to detect. Continuous efforts are needed to keep
MapReduce tasks to remain secure and it is an
open problem to be addressed. It is left for future
work.

REFRENCES:

[1] Apache Software Foundation.
(2016). MapReduce
Tutorial. Available: https://hadoop.apache.or
g/docs/stable/hadoop-mapreduce-
client/hadoop-mapreduce-client-
core/MapReduceTutorial.html. Last accessed
01 December 2016.

[2] The Apache Software Foundation.
(2016). Welcome to Apache™
Hadoop. Available: http://hadoop.apache.org/
. Last accessed 01 December 2016.

[3] NCDRC (2017). National Cyber Safety and
Security Standards. Available online at:
https://www.ncdrc.res.in/national-cyber-
safety-and-security-standards-summit-
2017.php [Accessed: 20 February 2017]

[4] Madhusudhan Reddy, N., and Nagaraju, C.
(2015). Survey on Emerging Technologies
for Secure Computations of Big Data. I-
Manager’s Journal of Cloud Computing, 2
(1), p1-6.

[5] Priya P. Sharma and Chandrakant P. Navdeti.
(2014). Securing Big Data Hadoop: A
Review of SecurityIssues, Threats and
Solution. International Journal of Computer
Science and Information Technology.5 (2),
p1-6.

 [6] Madhusudhan Reddy, N., and Nagaraju, C.,
AnandaRao A., (2017)“ Protecting Privacy
of Big Data in presence of untrusted Mapper
and Reducer”, Indian Journal of Computer
science & Engineering, ISSN No: 0976-
5166, Vol 8, No 3, June – July 2017, p201-
209.

[7]. Jeffrey Dean and Sanjay Ghemawat. (2006).
MapReduce: Simplified Data Processing on
Large Clusters. COMMUNICATIONS OF
THE ACM.51 (1), p107-113.

[8]. Marina Blanton ,Mikhail J. Atallah , Keith
B. Frikken , and
QutaibahMalluhi(2012)Secure and Efficient
Outsourcing of Sequence Comparisons, p1-
18.

[9]. Vinod Kumar, VavilapalliMahadev
,KonarSiddharth Seth, Arun Murthy Robert,
Evans BikasSaha, Thomas Graves and Carlo
Curino . (2013). Apache Hadoop YARN:
Yet Another Resource Negotiator, p1-16.

[10]. Chu Huang, Sencun Zhu and Dinghao Wu
(2012)Towards Trusted Services Result
Verification Schemes for MapReduce.,
p1-8.

[11]. Shanyu Zhao and Virginia Lo. Result
Verification and Trust-based Scheduling
in Open Peer-to-Peer Cycle Sharing
Systems. p1-10.

[12]. Nikhil Khadke, Michael P. Kasick, Soila P.
Kavulya, Jiaqi Tan, PriyaNarasimhan
(2012) Transparent System Call Based
Performance Debugging for Cloud
Computing, p1-6.

[13]. Bryan Parno ,Jon Howell ,Craig Gentry
Mariana andRaykova. (2013). Pinocchio:
Nearly Practical Verifiable
Computation.IEEE, p1-15.

[14]. Bryan Parno,CraigGentry,Jon Howell and
Mariana Raykova. (2013). Pinocchio:
Nearly Practical Verifiable
Computation. IEEE.p239-252.

[15]. Ariel Rabkin and Randy Katz EECS
Department andUC Berkeley.(2012). How
Hadoop Clusters Break, p1-12.

[16]. Benjamin Braun, Ariel J. Feldman
,ZuochengRen, SrinathSetty, Andrew J.
Blumberg, and Michael Walfish. (2013)
Verifying computations with state, p1-17.

[17]. Benjamin Braun, Ariel J.
Feldman?,ZuochengRen, SrinathSetty,
Andrew J. Blumberg and Michael
Walfish. (2013). Verifying computations
with state. p341-357.

[18]. Gordon Stewart,Gregory Crane and Alison
Babeu. (2007). A New Generation of
Textual Corpora Mining Corpora from
Very Large Collections. p1-10.

[19]. Yuqun Chen„, RamarathnamVenkatesan„,
Matthew Cary, Ruoming Pang,
SaurabhSinha and Mariusz H.
Jakubowski„. (2003). Oblivious Hashing:
A Stealthy Software
IntegrityVerificationPrimitive. springer.
p1-15.

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6409

[20]. Yongzhi Wang and Jinpeng Wei. (0).
VIAF: Verification-based Integrity
Assurance Framework for MapReduce.
p1-8.

[21]. George W. Dunlap, Samuel T. King,
SukruCinar, Murtaza A. Basrai and Peter
M. Chen. (2002). ReVirt: Enabling
Intrusion Analysis through Virtual-
Machine Logging and
Replay. Symposium on Operating
Systems Design and Implementation.p1-
14.

[22]. Qiang FU, Jian-Guang LOU, Yi WANG
and Jiang LI. (2014). Execution Anomaly
Detection in Distributed Systems through
Unstructured Log Analysis. p1-11.

[23]. Jian-Guang LOU, Qiang FU, Yi WANG
and Jiang LI. (0). Mining Dependency in
Distributed Systems through Unstructured
Logs Analysis. p1-6.

[24]. Wei Xu, Ling Huang, Armando Fox, David
Patterson and Michael Jordan. Online
System Problem Detection by Mining
Patterns of Console Logs. p1-10.

[25]. Liang Gu ,Xuhua Ding, Robert H. Deng,
Bing Xie and Hong Mei. (2008). Remote
Attestation on Program Execution. p1-9.

[26]. Mikhail J. Atallah and Marina Blanton.
(2010). Algorithms and Theory of
Computation Handbook. Nick
Papanikolaou. 2 , p1-4.

[27]. Michael O. Rabina,Rocco A. Servedio and
Christopher Thorpe. Highly Efficient
Secrecy-Preserving Proofs of Correctness
of Computations and Applications. p1-14.

[28]. Benjamin W. Schwarz. Model Checking
An Entire Linux Distribution for Security
Violations. p1-39.

[29]. Zhifeng Xiao and Yang Xiao. (2011).
Accountable MapReduce in Cloud
Computing. IEEE.p1099-1104.

[30]. Wei Wei, Juan Du, Ting Yu and
XiaohuiGu. SecureMR: A Service
Integrity Assurance Framework for
MapReduce. p1-10.

[31]. Eunjung Yoon and Anna Squicciarini.
Toward Detecting Compromised
MapReduce Workers through Log
Analysis. p1-10.

[32]. Ivo Krkay, YuriyBrunx, Daniel Popescuy,
Joshua Garciay and NenadMedvidovic.
(2010). Using Dynamic Execution Traces
and Program Invariants to Enhance
Behavioral Model Inference. p1-4.

[33]. Indrajit Roy, Srinath T.V. Setty, Ann
Kilzer, VitalyShmatikov and Emmett
Witchel. Airavat: Security and Privacy
for MapReduce. p1-51.

[34]. Jiaqi Tan, XinghaoPan,EugeneMarinelli,
SoilaKavulya, Rajeev Gandhi and
PriyaNarasimhan. Kahuna: Problem
Diagnosis for MapReduce-Based Cloud
Computing Environments. p1-8.

[35]. Jason Sonnek†, Abhishek Chandra and Jon
Weissman. (2007). Adaptive Reputation-
Based Scheduling on Unreliable
Distributed Infrastructures.p1-30.

[36] Qutenberg. Project Qutenberg. Available
online at: https://www.gutenberg.org/.
[Accessed: 20 February 2017].

