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ABSTRACT 

MapReduce programming paradigm is used to process big data in large number of commodity computers 
where parallel processing is leveraged. In this kind of programming phenomenon, users do not have control 
over distributed computations. Therefore it is quite natural for users having privacy and security concerns. 
The nodes involved in MapReduce computations may become malicious and cause security issues. 
Different attacks are possible on distributed environment. The nodes that cause such attacks are known as 
rogue nodes. In this paper a methodology is proposed based on analysis of Hadoop log files to find rogue 
nodes that are malicious and launch attacks for disturbing normal functioning of MapReduce framework. In 
other words, the methodology aims at integrity verification of computations in MapReduce environment. 
This is achieved without having any cryptographic primitives or other computational operations. Hadoop 
logs and low-level system calls are utilized and correlated in order to obtain operations performed by 
different nodes. This knowhow is then matched with system calls and invariants in program to find out 
malicious operations and the rogue nodes that cause such operations. The proposed methodology is 
evaluated with real Hadoop cluster environment to demonstrate proof of the concept. The empirical results 
revealed the significance of using this approach towards secure computations in distributed programming 
frameworks while processing big data.  
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1. INTRODUCTION 

Ever since the invention of MapReduce 
programming model [1] which is the paradigm 
shift in the way programs are executed, it is 
adapted by big companies like Amazon, Yahoo, 
Facebook and Google to mention few. It is the 
programming model for processing massive 
amount of data by supporting parallel processing 
executed by thousands of commodity computers 
and distributed file system (DFS) for supporting 
storage and retrieval of data. Hadoop [2] is one 
of the open source implementations of 
MapReduce programming.  In spite of scalable 
and flexible computing services offered by 
MapReduce, it is known for vulnerabilities that 
cause attacks from adversaries. In the wake of 
increased cyber-attacks recent observations made 
by NCDRC assume significance. National Cyber 
Defence Research Centre (NCDRC) of India 

conducted National Cyber Safety and Security 
Standards (NCSSS) summit 2007 at Bits Pilani, 
Hyderabad in which the summit considered 
cyber-attacks as one of the cyber-crimes 
intentionally targeted at national assets or critical 
digital infrastructure [3]. 

As users do not have much control over 
outsourced MapReduce applications, it is 
essential to have mechanisms to secure 
computations in distributed programming 
frameworks like Hadoop. Moreover, many 
deceptive or malicious attempts may go 
undetected as the users do not have much 
knowledge on such activities. A survey on secure 
computations in distributed programming 
frameworks is found in [4]. Many security issues 
with HadoopMapReduce and possible solutions 
are observed in [5]. In the presence of untrusted 
mappers or reducers, differential privacy is used 
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to protect privacy of big data [6]. Many 
researchers contributed to have secure 
computations. However, their study focused 
more on activities that need change in Hadoop 
framework or MapReduce operations. The effort 
of this paper is to devise an alternative 
methodology that is purely based on logs 
generated from time to time and system calls 
without indulging into the modifications of the 
framework.  

In this paper, the main focus is on the finding of 
malicious activities of adversaries with deceptive 
and malicious behaviours by utilizing Hadoop 
logs and system call logs and correlating them. 
Without changing Hadoop framework, this paper 
aims to have investigations against different 
kinds of attacks and deceptive behaviours. 
Generic flow of MapReduce applications is 
studied with Hadoop and used it as baseline for 
detection of malicious or deceptive behaviour. 
Different invariants are used pertaining to 
MapReduce program execution for doing the 
same. Log files associated with NameNode, 
DataNode, JobTracker and TaskTracker are used 
to correlate with system call logs to find 
anomalous behaviour exhibited by rogue nodes. 
Deceptive behaviour is differentiated from 
malicious behaviour and explored three kinds of 
malicious attacks. It is obsesrved with an 
empirical study that execution traces of a multi-
node Hadoop system can be used to find 
malicious worker nodes in the distributed 
environment. WordCount application is used as 
case study with a huge collection of e-Books 
considering as big data given input to the 
MapReduce application. The three attacks and 
difference between the deceptive and malicious 
nodes are demonstrated for proof of the concept.  

In the literature it is found that many researchers 
[22], [23], [27], [28], [29] and [30] explored 
MapReduce programming and security of in one 
way or other. Out of them [22] focused on log 
analysis for identifying threats to MapReduce 
paradigm. The problem with existing works is 
that there needs to be a comprehensive approach 
that makes use of system calls and Hadoop 
configuration files besides logs in methodology 
that is missing. This paper throws light on this 
issue. Our contributions in this paper are as 
follows.   

1. Review of literature is made on secure 
computations in MapReduce 
programming paradigm. These insights 

helped to work on rough nodes 
problem. 

2. A methodology is proposed to identify 
rogue nodes that involve in MapReduce 
computations.  

3. A threat model is used to detect 
different kinds of attacks on mapper and 
reducer in Hadoop distributed 
programming framework.  

4. A prototype application is built to 
demonstrate proof of the concept.  

The remainder of the paper is structured as 
follows. Section II provides review of literature 
on MapReduce programming and its security 
issues and solutions. Section III presents the 
problem formulation which is basis for the work 
of this paper. Section IV presents the proposed 
methodology which is alternative to other 
methods that alter Hadoop framework for secure 
computations. Section V presents experiments 
and results. Section VI provides conclusions and 
directions for future work.  

2. RELATED WORKS 

This section reviews literature on the secure 
computations in distributed programming 
paradigms. Dean and Ghemawat [7] introduced 
the environment in which MapReduce 
programming paradigm works. It provides good 
understanding of MapReduceenvironment where 
security concerns can be studied. Blanton et al. 
[8] proposed security mechanisms for outsourced 
sequence computations. Towards this end they 
used algorithms like distance computation and 
oblivious edit path computation. Vavilapalliet al. 
[9] explored Hadoop’s compute platform known 
as YARN and its security mechanisms. They 
proposed a framework that takes care of secure 
computations in the context of resource 
navigation. Huang et al. [10] provided an 
architecture that focuses on detection of cheating 
nodes in MapReduce environment. Especially 
they provided result verification schemes in 
order to find malicious nodes. Zhao and Lo [11] 
also focused on result verification along with 
trust-based scheduling for secure computations. 
Khadkeet al. [12] on the other hand studied 
system calls in cloud computing environment for 
diagnosing security problems through 
debugging. Parno and Gentry [13] proposed a 
system known as Pinocchio which brings about 
public verification scheme in distributed 
programming with near practical verifiable 
computations. Similar kind of work is done in 
[14].  
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Rabkin and Katz [15] studied Hadoop clusters 
and their misconfigurations. They identified and 
explored anti-patterns that can be used to prevent 
security issues in distributed computations. 
Braun [16] investigated on a state based 
approach for verification of computations in 
MapReduce programming. They proposed a 
system known as Pantry to have proof-based 
verifiable computations. Similar kind of work 
was done in [17]. Steward et al. [18] studied on 
mining corpora in distributed environments for 
knowledge extraction. Chen et al. [19] focused 
on a software verification primitive named as 
oblivious hashing for secure computations. 
Wang and Wei [20] proposed a framework for 
secure computations. It is named as Verification-
based Integrity Assurance Framework (VIAF). It 
is meant for detecting collusive and non-
collusive mappers in the Hadoop ecosystem. 
Dunlap et al. [21] built a framework known as 
ReVirt for intrusion detection in distributed 
programming models through VM logging and 
replay. By replaying the system before and after 
computations, it can detect intrusions.  

Fu et al. [22] focused on anomaly detection in 
MapReduce programming. They proposed a 
technique known as unstructured log analysis 
which is based on Finite State Automaton (FSA) 
for anomaly detection. This work is somewhat 
similar to the work of this paper where explicit 
log analysis is made. Lou et al. [23] also used 
unstructured log analysis in distributed 
environment for finding mining dependency. On 
the other hand, Xuet al. [24] threw light on 
analysing console logs for detection of problems. 
Guet al. [25] studied the concept of remote 
attestation for secure computations. Their focus 
was to attest the correctness of program 
execution remotely. Papanikolaou [26] made a 
review on algorithms and theory of 
computations. Rabin et al. [27] contributed 
towards making a scheme that verifies 
correctness of applications and computations. 
They used a model known as Evaluator-Prover. 
Schwarz [28] opined that in Linux distributed 
environments model checking can be used to 
detect security violations.  

Xiao and Xiao [29] thought differently on 
security aspects. They proposed a framework 
known as Accountable MapReduce for that 
forces the machines involved in computations to 
help responsibility for any malicious activities. 
Wei et al. [30] proposed a framework named 
SecureMR which provides service assurance 

integrity services to prevent Denial of Service 
(DoS) and other attacks. Yoon and Squicciarini 
[31] performed log analysis for finding 
compromised MapReduce worker nodes. It 
ensures integrity and correctness of 
computations. Krkaet al. [32] built a model for 
behavioural inference based on program 
invariants and dynamic execution traces using 
FSA. Roy et al. [33] proposed a security 
framework known as Airavat for securing 
MapReduce computations. It is meant for 
protecting system from untrusted programs. Tan 
et al. [34] built a framework known as Kahuna 
for diagnosing issues in MapReduce 
environment. It identified performance issues 
and security problems. Sonneket al. [35] focused 
on finding worker nodes that are not reliable by 
using an adaptive reputation-based scheduling.  

The review of literature revealed many insights. 
Some approaches in the literature focused on 
modifying original MapReduce functions. There 
are other approaches that used log analysis. 
However, a comprehensive methodology that has 
an integrated Hadoop log analysis and analysis 
of system calls besides using Hadoop 
configuration information without the need for 
modifying original Hadoop functionality is 
missing. This is the motivation behind this work 
which analyzesHadoop configuration file, system 
calls and Hadoop log files for detecting rogue 
MapReduce nodes.  

3. PROBLEM DEFINITION 

Before formulating the problem, let us examine 
the MapReduce framework and its modus 
operandi. MapReduce is a novel programming 
model that exploits the massive power produced 
by thousands of commodity computers 
associated with data centres in cloud computing. 
MapReduce framework is used to process big 
data. This programming model needs support of 
a Distributed File System (DFS) for storage and 
retrieval of big data. The framework has two 
important functions known a Map and Reduce 
for which developers need to write logic. Map 
function takes key/value pairs as input and 
generates intermediate output in the form of 
key/value pairs. The intermediate output of all 
mappers is given to reduce functions that run in 
many nodes where final output is generated. In a 
cloud computing environment, a master node 
initiates MapReduce programming. Master 
nodes perform two functions known as task 
scheduling and job management. This model is 
best used with Hadoop which is one of the open 
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source implementations of MapReduce. The 
MapReduce functionality with Hadoop is as 
shown in Figure 1.  

 

Figure 1: Functionality Of Mapreduce Paradigm 

Hadoop employs master/slave model in 
MapReduce execution. The master node runs 
JobTracker and NameNode. NameNode is 
responsible to coordinate storage with Hadoop 
Distributed File System (HDFS) while 
JobTracker takes care of parallel processing of 
data with the new programming paradigm. The 
slave node in the framework runs DataNode and 
TaskTracker. The TaskTracker works in tandem 
with JobTracker while the DataNode works in 
coordination with the NameNode of master. 
TaskTracker coordinates multiple JVMs to track 
multiple map and reduce tasks that run in 
parallel. HDFS is the distributed file system that 
comes with Hadoop. As name implies it is a 
scalable file system in distributed environment. 
HDFS client is used by applications to gain 
access to HDFS. This file system is aware of 
storage racks and can help in disseminating 
information faster. With this scheduling becomes 
easier and it optimizes bandwidth usage. Both 
DataNode and NameNode are associated with 
HDFS. NameNode contains directory structure 
pertaining to file system while the DataNode is 
the node where data is stored. In a cluster data is 
stored in multiple locations in DataNodes. 
NameNode is crucial for the functioning of 
HDFS properly as it really reflects single point 
of failure for HDFS.  

In this context, the problem is formulated. The 
worker nodes in the distributed environment may 
become malicious or compromised. Detecting 
such rogue nodes is one of the challenging 
problems to be addressed in this paper. 
Malicious nodes are to be detected by 
monitoring the execution dynamics at runtime. 
Malicious nodes might follow different 
execution patterns that are not with the genuine 

worker nodes. The aim of this paper is to detect 
rogue nodes by analyzing system calls and log 
files and examining malicious behaviour. In 
order to achieve certain assumptions are made. 
MapReduce framework is assumed correct. 
Worker nodes have similar hardware resources. 
HDFS and master nodes are trusted. Most of the 
workers exhibit genuine functionalities. The map 
code executed by different nodes produces 
similar output for same input. The ensuing 
section provides the proposed methodology to 
detect rogue nodes.  

4. PROPOSED MTHODOLOGY 

A MapReduce application is considered and 
generated logs when the application is running 
with Map and Reduce phases. The logs obtained 
through slave nodes are used to find 
peculiarbehavioural patterns that are not similar 
to common execution patterns. System calls are 
also captured by using black box testing and 
dynamic instrumentation without the need for 
changing Hadoop framework. Then the system 
call logs are correlated with the logs produced by 
Hadoop framework provides a flow of data and 
execution comprehensively. Dynamic 
instrumentation helps in extracting system traces. 
These traces are used to find execution flow with 
all minute details. This can lead to finding 
patterns that reflect malicious behaviour in 
execution. The malicious behaviour is the 
behaviour that violates the general operations 
performed by worker nodes for given 
MapReduce task. Another malicious behaviour is 
to change execution flow of Hadoop. Generally a 
MapReduce job contains many tasks of Map and 
Reduce. All tasks are related to same application 
but running in different commodity machines. 
All Map tasks should have same behaviour. In 
the same fashion, all Reduce tasks should have 
same behaviour. The expected flow of 
MapReduce job is as given here. Map tasks are 
assigned with the data obtained from DataNodes. 
The outcome of Map tasks is shuffled and 
handed over to Reduce task. Then the reducers 
send final output to HDFS. Each slave node 
participated in the distributed computing process 
involves in execution of a subset of tasks of 
MapReduce application. Thus there is some sort 
of temporal ordering exhibited by slave nodes.  
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Figure 2: Master And Slaves And Different Logs 
Associated With Hadoop Framework 

An important observation is that slave nodes get 
similar kind of workload with respect to a single 
MapReduce application and that can be easily 
mapped to with corresponding traces 
consistently. The examination of the traces with 
awareness of MapReduce configuration, it is 
possible to have good amount of knowledge on 
input data and setup of the system. The traces 
found can be compared with expected flow of 
execution can be correlated to reveal malicious 
activities that violate confidentiality, 
computations, availability of data of client and 
integrity of the whole MapReduce process. With 
dynamic instrumentation to get aggregated 
traces, system calls and logs provided by 
Hadoop, it is possible to detect many suspicious 
activities. Therefore it is intended to examine 
different malicious activities related to program 
integrity, input operations, output operations, and 
I/O operations.  

Collection and Examination of Execution 
Traces of given MapReduce Application  

When an application is being executed, traces of 
TaskTracker are obtained from slave machines 
and such traces are stored log files maintained by 
Hadoop. Thorough analysis of the log files 
containing interactions between HDFS and tasks 
related to MapReduce can reveal useful insights. 
Apache Hadoop makes use of Log4j for 
generating logs with the help of its daemon 
threads running in the background of DataNode, 
NameNode, TaskTracker and JobTracker. The 
logs are related to diagnostics, standard output, 
standard error, flow of events and other statistics. 
As TaskTracker is responsible to execute a 
subset of tasks of MapReduce application, it can 

provide sampling that resembles global 
distribution of tasks involved in the execution.  

The execution patterns of Map and Reduce are 
subjected to thorough analysis with the help of 
JVM-generated logs containing system calls. 
Dynamic instrumentation using tools like 
Strace/DTrace is performed to obtain system 
calls from the daemon threads of TaskTracker. 
System calls found in such logs provide useful 
information related to execution flow of 
MapReduce tasks from JVM processes 
associated with TaskTracker. The log analysis is 
based on the important information found in the 
Hadoop logs. Hadoop logs contain unique 
identifiers for DataNode, NameNode, 
TaskTracker and JobTracker. Each job carried 
out is given a unique job id. Job ID is made up of 
job number and ID of JobTracker. DataNode log 
contains unique block id for each block of data 
obtained from HDFS. Every task is given unique 
task id which represents either Map or Reduce 
task being carried out. Each task ID is made up 
of job ID and followed by m for Map task, r for 
Reduce task along with the number of attempts 
made. More fine grained execution traces are 
provided by logs containing system calls. These 
logs are process oriented and therefore, process 
ID is associated with the log contents. Each JVM 
process associated with TaskTracker is identified 
by unique id known as process ID. Since it is a 
distributed environment, the logs have overflow 
or inter-leaving. Therefore timestamp field is 
used to arrange them in correct order of 
execution. The notion of drift time is used to 
have inspection of system events in a given time 
frame and synchronize the timestamps. The order 
of task invocations played an important role 
while matching Hadoop log information and 
system calls. For information, the flow of 
generic MapReduce is provided in Listing 1.  

1. Worker nodes obtain configuration data 
from Hadoop configuration files 

2. Worker nodes obtain dependent JAR 
files like hadoop_core-xxx.jar, logging 
jar file and other Java libraries.  

3. Workers use taskjvm.sh for launching 
new JVM with all libraries needed. 

4. Mappers take Map class (.class file) 
provided by application developer. 

5. Reducers take Reduce class (.class file) 
provided by application developer. 

6. Mappers execute Map code and produce 
intermediate results.  

7. Reducers execute Reduce code by 
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taking Mappers’ output as input 
8. Reducers generate final result to HDFS 

Listing 1: Execution flow of genetic MapReduce 

Parsing of Log Information  

The logs of Hadoop collected in distributed 
environment are overlapped with repetitions and 
it is not easy to interpret directly. Therefore the 
logs are parsed to have more meaningful 
information and get rid of repetitions. Unique 
identifiers and certain conventions are used in 
order to have more meaningful logs and system 
calls. MapId, Reduce ID, and Job ID are taken 
from log entries related to taskjvm.sh of 
TaskTracker. They are matched with 
corresponding system calls associated with a 
PID. The parameters of system calls are also 
examined in order to find any discrepancies 
found in dependencies and I/O operations.  

Detection of Anomalies   

More details on the detection of anomalies are 
provided here. Patterns of flow are examined and 
anomalies are identified. First of all, 
communication among HDFS client, NameNode 
and DataNode is considered. The HDFS client 
that is Map or Reduce task makes RPC call to 
gain access to services of HDFS. Then client 
establishes connection to NameNode in order to 
submit data to HDFS. After establishing 
connection, the data blocks are sent to 
DataNodes. Analysis of the flow is based on the 
communication between HDFS client, 
NameNode and DataNode by analyzing logs of 
Hadoop and logs of system calls. With the 
extracted network information containing 
TCP/IP sockets, port numbers, and IP addressed 
are correlated with the system calls and Hadoop 
logs to detect any unauthorized connection. The 
observation of unsuccessful socket connection 
related system calls, wrong IPs of ports and 
DataNodes indicate the sure presence of 
malicious behaviour in the workflow. The 
discrepancies between correlated information 
and log information also indicate malicious 
activity.  

HDFS is used to have large scale storage and 
retrieval of data in distributed environment. It is 
especially used for data intensive MapReduce 
applications. The information collected from 
Hadoop logs is used to obtain the details of client 
access patterns with respect to HDFS. It includes 
data blocks and their location. This information 
is used to validate the integrity of input data. The 

data block ID and location of DataNode are 
obtained from corresponding logs. Blocks in 
DataNode and metadata are used by NameNode 
to maintain a list of blocks related to a file and 
list of files as well. NameNode maintains data in 
the form of blocks in the local file system and it 
also maintains corresponding metadata. The 
main focus is on finding location of DataNode in 
the form of host name or IP and also the block 
ID of accessed data by client. The operations on 
HDFS are also obtained for validating inputs 
given to Map task. This matching will help 
whether the input data is loaded from a genuine 
DataNode or an attacker. In the same fashion, 
block ID is also used for validating integrity. 
Listing 2 has sample NameNode and DataNode 
logs.  

*HadoopNameNode log: 

STATE*   Network topology has 1 racks and 2 
datanodes 

BLOCK*   registerDatanode: node registration 
from ($DataNode):50010 

                                      Storage DS-624241665-
192.168.1.14-50010-1382597957423 

BLOCK*   allocationBlock: $path 
blk_5905677021831100640_2283 

BLOCK*   addStoredBook: blockMap updated: 
127.0.0.1:50010 

                                     Is add to 
blk_5905677021831100640_2283 size 33890 

 

*HadoopDataNode log: 

DatanodeRegistration (DataNode ): 50010 

storageID  DS=624241665-192.168.1.14-50010-
1382597957423,infoPort=50075,ipcPort=50020)
In 

DataNode.run,data=FSDatasetdirpath=’($HDFS-
Path)/dfs/data/current’ 

Receliving blk_5905677021831100640_2283  
src($HDFS-Clint_IP):55950   
dest($DataNode):50010 

src :        ($DataNode):50010, dest: (($HDFS-
Clint_IP):56002,  byte:   34158, 
op:HDFS_READ,cliID: 

blockid:  blk_5905677021831100640_2283   
duration: 671000  
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Listing 2: Logs pertaining to NameNode and 
DataNode 

Client interaction with HDFS shows certain 
patterns. These patterns are used to detect illegal 
access to HDFS. It may be in the form of having 
unauthorized access to data blocks or writing 
some arbitrary data blocks to DataNode and so 
on. Particularly the focus was on activities such 
as DataNodes containing data file in the form of 
blocks provided by client and loading the same 
into Map task that come from a DataNode 
holding duplicated data blocks. The traces of 
system calls pertaining to DataNode are 
analyzedto detect activities between DataNode 
and HDFS client that resulted in data transfer. 
The presence functions like open(), accept() 
provide the presence of system calls to access 
data and establish connection respectively. As 
HDFS communicates in the form of TCP/IP 
sockets the system calls can be understood with 
ease. For instance sendfile() system calls having 
file descriptors as arguments helped to check 
whether HDFS client get correct data block from 
DataNode. System call traces on the DataNode 
are as shown in Listing 3.  

accept() = out_fd; 

open("pathname(blockID)", O_RDONLY) = 
in_fd; sendfile(out_fd,in_fd,offset,bytes) = 
bytes; 

Listing 3: System call traces associated with 
DataNode 

The dynamic execution traces of MapReduce 
application are shown in Listing 2. These trace 
are collected by using DTracing tool that 
extracted traces of TaskTracker’s associated 
JVM processes at system calls level and method 
level. This is done in each slave node. The 
program execution flows are also used along 
with corresponding semantics from the traces 
containing information such as the classes that 
have been loaded into Map or Reduce task, and 
the operations performed over there. The data 
flow and control flow of MapReduce are thus 
understood at lower granularity. This 
information can be analysed further semantically 
for finding causal relationships between 
components associated with MapReduce 
application. Thus the causal relationship 
provides useful insights on the execution logic 
provided in the Map and Reduce classes of the 
application considered.  

The traces and correlation procedures 
aforementioned are made effective further by 
correlating them with certain trust-worthy 
patterns of MapReduce workers. It is related to 
program invariants that are associated with 
different workloads. The invariants help to 
analyse log sequences to know whether the 
execution process differed with anticipated 
workflow. When the log files are not complying 
with invariants anomaly can be suspected. The 
invariants considered in Hadoop environment 
include presence of libraries pertaining to Java 
and Hadoop, fetching of intermediate results by 
Reduce nodes, writing intermediate results by 
Reduce nodes, and reading configuration files 
consistently. As libraries of Hadoop are 
independent of MapReduce applications, the 
activities pertaining to loading libraries in 
worker nodes should be consistent. The log 
analysis also provides ample insights related to 
the loading of all necessary libraries to execute 
Map and Reduce tasks. HDFS client access 
patterns with HDFS can also provide information 
to check against known invariants. The 
configuration file holds information related to 
storage location while the parameters in system 
call provide where actually the Mapper wrote the 
generated intermediate output. When these two 
locations are not matching, it is an indication of 
malicious behaviour. The events provided in 
Listing 4 can show the interactions between 
HDFS and MapReduce.  

 HDFS client sends data file to HDFS 
where data is split and stored in 
DataNodes in the form of blocks 

 Mapper takes data blocks from 
DataNodes 

 Reducer sends the final results to HDFS 

Listing 4: Order of events reflecting interaction 
between HDFS client and MapReduce 

The events are performed in the given order. The 
order reflects workflow and that flow are never 
changed. In addition to this different invariants 
of MapReduce are used to have more 
comprehensive understanding of behaviour of 
different functions. Unless Map function is under 
the influence of an attacker, it produces same 
output with same input. The method invocations 
should be same when there is same execution 
flow. It is also possible to consider many 
invariants at a time. One such example is that a 
Map function writing its output to local 
disk/HDFS is always preceded by the same Map 
function loading data blocks from HDFS. In the 
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same fashion Reduce function writes final output 
to HDFS of local disk only after taking 
intermediate output produced by Map function. 
This kind of execution order can help in 
detecting rogue nodes and malicious behaviour. 
Another important analysis is to check the 
number of system calls and number of return 
system calls should be same for both Map and 
Reduce tasks. Finding the different in the 
number is the indication of anomaly or an attack 
named as file descriptor attack.  

Inputs and Computation Integrity Checking 

As mentioned earlier the integrity checking 
process is based on the correlation between logs 
of Hadoop and logs containing system calls. 
Invariants discussed in the previous section are 
used to continue with integrity checking. By 
using input data being used by worker nodes it is 
possible to check input integrity. JabTracker log 
provides very important information for 
achieving this. It includes data size of the input 
and the number of parts into which it is split. The 
TaskTracker log provides information like file 
name, map task, and path in HDFS. It is possible 
to obtain MapID, JobID and TaskID besides the 
location of nodes and data being used by Map 
tasks. By correlating the log information of 
JobTracker and TaskTracker and log events of 
I/O can provide relationships between 
MapReduce tasks and HDFS. Simple act of 
checking input data size provided in the 
JobTracker against that of HDFS. Moreover, the 
block ID and location of a block and the usage 
patterns of Map task and I/O events can provide 
useful insights. Correlation of logs can also be 
used to check the similarity of outputs produced 
by mappers and reducers. HDFS access patterns 
and the MapReduce task operations are 
correlated and anomalies are detected.  

With respect to checking integrity of 
computations, it is possible to have compromised 
nodes or rogue nodes as mappers. Though they 
get valid input from the HDFS, they may run 
malicious code for producing incompatible 
computational output. In order to check such 

integrity, execution behaviour of mapper is 
analyzed with the help of TaskTracker logs and 
corresponding system call logs or worker nodes. 
Though Hadoop logs provide information about 
MapReduce dynamics, they cannot provide 
system calls information. When system calls are 
used for correlation, the computational integrity 
can be verified. Sequence of system calls across 
worker nodes are verified to find out 
discrepancies due to the presence of malicious 
worker nodes or rogue nodes. For instance a 
malicious node is the one which tries to conserve 
resources or for any gain by using less number of 
write() when compared with an honest node. An 
important observation is that system call 
statistics are not sufficient the analysis needs to 
be coupled with program semantics and 
execution flow as malicious nodes often do not 
follow normal execution flow.  

5. EXPERIMENTAL SETUP AND 
RESULTS 

Hadoop 2.7.x is use with Ubuntu operating 
system installed in virtual box. It is configured as 
cluster. The system traces of worker nodes are 
aggregated and logs are obtained. The Hadoop 
logs are related to JobTracker and TaskTracker 
daemons. By taking a simple word count 
application, the Map and Reduce tasks are 
executed and traces are collected from log files. 
The log files are also collected from NameNode 
and DataNode. Using Dtrace, captured system 
calls that are related to interactions between 
MapReduce and HDFS containing I/O 
operations are captured. As said before, 
WordCount application is used for empirical 
study. This application is well known to 
developer community who use distributed 
programming frameworks like Hadoop. The 
application counts the occurrences of different 
words in a given input file or set of files. The 
experiments are made and correlation of logs is 
done as explored in details in the methodology. 
Figure 4 illustrates inputs, execution process and 
final output of WordCount application. In the 
experiments made it is observed patterns that 
reflect strange or malicious behaviour.  
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Figure 3: Illustrates Mapreduce Tasks Of Wordcount Application With Inputs And Outputs 

As shown in Figure 3, it is evident that the 
inputs, intermediate results of Map, Shuffle and 
Reduce are presented with respect to 
WordCountMapReduce application. Two kinds 
of workers that are not honest are considered. 
They are known as deceptive worker and 
malicious worker. Deceptive node is the node 
which skips some computational flow in order to 
save computing resources. On the other hand a 
malicious worker node is the node that attack 
MapReduce workflow in different ways. 
Suspicious JVM launching is one of the attacks. 
As the JVM launching is made by TaskTraker, 
the TaskTracker log file and the system calls 
related to JVM launching are used to detect this 
kind of attack. The JVM ID, Map ID, JobID of 
Hadoop logs and the call log information related 
to nodes should have similar values. Violating 
this is the indicative of such attack.  

Another attack is related to injection of malicious 
JAR files. As the Hadoop makes use of known 
JAR files and classes consistently, verification of 
malicious JAR is done by examining classes 
loaded for Map and Reduce tasks. By obtaining 
location and name of Java class files from logs, 
the malicious worker node’s behaviour is 
detected. Yet another malicious attack is the 
misplaced intermediate outputs that are 
generated by Map tasks. This attack is detected 
simply finding the location of intermediate 
output by examining log files. When the mapper 
is writing intermediate output to a location other 
than the location to which it needs to write as per 
configuration, it is detected as rogue node or 
malicious node. Attacks can also be made by 
changing Hadoop configurations. When the 

MapReduce activity is underway, an attacker 
may modify configuration files like 
hddfs.site.xml, mapred-site.xml, and core-
site.xml. This is effectively detected by 
comparing system calls and Hadoop log 
contents.  

Experimental Results 

This section provides results of experiments with 
respect to rogue nodes that have deceptive and 
malicious behaviours. The results are based on 
the case study taken with WordCount 
application. Six nodes are used in the 
experiments where mappers are executed. One of 
them is made deceptive or malicious node. E-
books collected from free source named 
Qutenberg [36] are used as dataset or input to 
MapReduce application that WordCount. The 
application is responsible to take big data (bulk 
of e-Books) and produce word count output. In 
the process it makes use of parallel processing 
power of distributed programming framework 
Hadoop configured with 6 worker nodes. Two 
scenarios are used for experiments. They are 
deceptive behaviour scenario and malicious 
behaviour scenario. In the case of the former, the 
size of output produced by Map task of deceptive 
node found in the TaskTracker log file is 
significantly different from that of genuine 
nodes. The size shown in log file is 10 bytes 
while the actual size of output produced by 
genuine mapper is 304320 bytes. This difference 
in figures reflects only deceptive behaviour of 
worker node. However, it does provide execution 
behaviour of Map task. Additional insights are 
obtained by analyzing system calls and 
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comparing with log information related to the 
system calls. The log content of system calls 
show much difference in invocation of write() 
call in the Map task. The count of calls to write() 
of deceptive node is much lesser than that of 
honest worker node. However, the calls related 
to read() are found similar. The rationale behind 
this is that the deceptive mapper does not 
execute loop or skip it to avoid computations. 
Many experiments are made and the results are 
as follows. System calls of related write() of 
genuine mappers is 722 out of the total number 
of read/write calls 43580. Number of write() 
calls of deceptive worker node is 190 out of 
44520 read/write system calls.  

In case of malicious behaviour scenario, it is not 
sufficient to have statistics. Therefore Hadoop 
and system calls are to be correlated by 
considering the generic workflow of MapReduce 
provided in Listing 1. According to the generic 
workflow three events are identified to be 
malicious. First, the generic workflow is changed 
by attacker by launching his own JVM for 
supporting malicious activities. Second, it is 
observed that changing map code (logic of 
counting) can influence the intermediate output 
of Mappers in WordCount application. It is 
tested by changing Map class code. The third one 
studied is the case in which input data is taken 
from a location which is not authentic. In case of 
the first malicious behaviour, when adversary 
tried to have his own JVM, the logs of 
TaskTracker provides JVM ID, Map ID, and Job 
ID are studied to know the behaviour of 
malicious worker node compared with honest 
node. The JVM behaviour of Hadoop and that of 
attacker differ which is the indication of 
malicious attack.  

With respect to the second malicious behaviour, 
it is observed from the log files that the 
malicious nodes showed 20% of write() calls 
while the other nodes show 68-80% write() 
system calls. This is the indicative of malicious 
behaviour. In the third malicious behaviour case, 
the code in Mapper class is altered. Instead of 
reading data from HDFS configured location, it 
reads from local directory. The logs contain 
descriptor information of files related to read() 
system call to detect this kind of malicious 
behaviour. The difference in file path and file 
prove the presence of such malicious attack.  

 

 

6. DISCUSSION 

This paper threw light into a methodology based 
on Hadoop logs, system calls and Hadoop 
configuration files. This methodology is meant 
for identifying rogue worker nodes that 
participate in MapReduce programming in 
distributed environments. Unstructured log 
analysis using FSA [22], and log  analysis  for 
mining dependencies [23], and log analysis for 
finding compromised MapReduce nodes in 
distributed environment [31]. These methods 
followed log analysis approaches. However, we 
found that these approaches can be improved 
further. Towards this end, this paper threw light 
on a comprehensive methodology that not only 
considers log files but also system calls made 
from Hadoop and Hadoop configuration files 
that can influence the series of functions carried 
out in the process of execution. The work of this 
paper produced accurate results when compared 
with the existing methods. The rationale behind 
this is that the use of multiple ingredients to 
make conclusions on the identification of rogue 
nodes.  

7. CONCLUSIONS AND FUTURE WORK 

In this paper, an alternative methodology is 
presented which is on the contrary to other 
approaches that force changes in Hadoop 
framework to detect malicious worker nodes. 
The methodology focuses on log files associated 
with NameNode, DataNode, JobTracker and 
TaskTracker in a multi-node Hadoop cluster 
environment. The behaviour of rogue nodes is 
divided into deceptive and malicious behaviours. 
Deceptive behaviour is understood as the 
behaviour of a rogue node that skips certain 
computations for saving computational 
resources. Whereas the malicious worker nodes 
is the compromised node that intentionally 
makes attacks on MapReduce programming 
paradigm. These attacks are considered in the 
attack model and experiments are made to prove 
the concept. A case study application known as 
WordCount is used with big data for processing. 
Dataset given as input contains thousands of e-
Books collected from Qutenberg project. With 
this case study, the methodology is evaluated in 
terms of detecting deceptive and malicious 
behaviours of rogue worker nodes in a 
distributed environment. The empirical study 
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revealed the significance of the methodology in 
detecting rogue nodes toward secure 
computations in distributed programming 
frameworks while processing big data. Further 
investigation is needed to study the situations 
where multiple nodes are compromised. Another 
research direction is to characterize rogue 
DataNode that may create snapshots of 
legitimate nodes and re-introduce altered copies. 
This is a straight forward attack that is difficult 
to detect. Continuous efforts are needed to keep 
MapReduce tasks to remain secure and it is an 
open problem to be addressed. It is left for future 
work.  
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