
Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6656

TOWARDS AN AUTOMATIC GENERATION OF NEURAL
NETWORKS

1MAHA MAHMOOD, 2BELAL AL-KHATEEB

1College of Computer Science and Information Technology, University of Anbar, Ramadi, Iraq
2College of Computer Science and Information Technology, University of Anbar, Ramadi, Iraq

1maha_882010@yahoo.com, 2belal@computer-college.org

ABSTRACT
 The automatic generation of neural network architecture is a useful concept that is used in many
application areas despite the optimal architecture not being known a priori. Therefore, trial and error is
often performed before a satisfactory architecture is found. Construction deconstruction algorithms can be
used as an approach, but they have several drawbacks. Usually this approach is restricted to a certain subset
of network topologies and as with all hill climbing methods, they often get stuck at local optima and may
therefore not reach the optimal solution. In order to overcome these limitations, an evolutionary
computation as an approach to the generation of neural network structures is used. The aim of this paper is
to design an automatic generation of neural networks architecture that performs random operations within
hidden layers. Associated operations include generating layer, add node, delete layer, delete node and keep
the architecture with no change, at which all the weights are initialized randomly. These neural networks
are able to adapt themselves with the reality, learn from the training of the various applications and adapt
their architecture depending on the uses of the application. The automatically obtained neural network
architecture is much better than all other architectures that are found during the evolutionary process. This
network is tested in the game of tic tac toe and is played against selected tic tac toe computer programs and
against selected human players and the obtained results are promising, suggesting many other research
directions.
Keywords: Neural Network, Evolutionary Algorithms, Genetic Programming, Genetic Algorithms

1. INTRODUCTION

 The neural network performance depends on the
neural network’s architecture and on the given task
that the network performs. This performance
includes some properties like the ability of
generalization and learning speed. It is usual to use
trial and error to find a suitable neural network
architecture for a given problem but this method is
time consuming and may not produce an optimal
network. As with most of the applications of
evolutionary computation in the generations of
neural network architecture on our world, there is a
significant influence on the performance of the
network therefore using the evolutionary
computation and it is considered to be a step
towards automation of the neural network
architecture’s generation [1]. The aim of this
research is to seek a preferable solution for any
problem by performing random operations on the
neural network architecture, of which operations
include adding layer, adding node, deleting layer,
deleting node, updating weights and keeping the
architecture with no change. This paper focus on

using evolution strategies to automatic generation
of neural network architecture in order to evolve
neural networks to play Tic Tac Toe. As mentioned
before, the objective of this work is to propose a
structure of learning methodologies for the game of
Tic Tac Toe and to produce a better player.

 The rest of the paper is organized as follows. In
Section 2, background is presented. The
experimental setup is described in Section 3.
Section 4 presents our results and Section V5
concludes the paper together with some suggestions
for future work.

2. RELATED WORK

 The work on novel methods for the evaluation of
machine translation systems were related to
automatic ANN construction [23]. This was done
by allowing the evolution of solutions to dynamic
domains, a Dynamic Structured Grammatical
Evolution (DSGE) solves a limitation of other
Grammar based Genetic Programming (GGP)
methodologies, such as ANNs, where there is the

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6657

need to know the number of neurons available in
previous layers so that valid individuals are
generated. DSGE, is able to evolve the topology
and weights of one hidden layered ANNs that
perform statistically best than those evolved using
GE or SGE. (DSGE) represents a new genotypic
representation that overcomes the aforementioned
limitations. The enabling of creation of dynamic
rules that specify the connection possibilities of
each neuron is done by using a methodology that
enables more than one output neuron with the
evolution of multi-layered ANNs. But difficult
datasets are needed to better analyses the evolution
of ANNs with more than one hidden layer.

 Weizhong Yan.[24] attempted to develop an
automatic ANN modeling scheme that is based on a
special type of network, the Generalized Regression
Neural Network (GRNN). The research used an
automatic modeling scheme for time-series
forecasting in effective manner, by introducing
several design strategies. Because of the designing
for automatically modeling is a large-scale time
series, the main limitation of the proposed
modeling scheme is that the performance of the
model may not always be superior for certain time
series over other models that are carefully
handcrafted specifically for the series. Note that not
all of the design parameters in the model are
optimally chosen, but rather designed in ad hoc
fashion. Nadi [25] used an evolution of neural
network architecture and weights by mutation
based genetic algorithm. The researcher presents a
new approach for evolving optimized neural
network architecture for a three-layer feedforward
neural network with a mutation based genetic
algorithm. This evolution optimized the weights
and the network architecture simultaneously
through a new presentation for the three layers
feedforward neural network. Limitation of this
work throw the testing of the algorithm on three
data sets and comparing with Mutation-Based
Genetic Neural Network (MGNN) shows that the
used method has a higher resolution in finding the
answer and a higher convergence speed. Jenkins [7]
used a neural network weight training by mutation.
The mutation in integer variables produces a
progressive ‘shift’ of the center of the range of
positive/negative values provided for selection in
order to give the algorithm freedom to select
weights from an unlimited range of values. At each
iteration, the range of integer values offered to the
algorithm is randomly selected. Vonk [1] used an
evolutionary computation for the automatic
generation of neural network architecture. The

researcher presents a brief introduction to the field
as well as an implementation of automatic neural
network generation using genetic programming.
The work reports an application of evolutionary
computation in the automatic generation of neural
network architecture. The using of evolutionary
computation is a step towards automation of neural
network architecture’s generation.
In this paper, Processing information of neural
network is similar to human brain processing. It is
composed of a large number of highly
interconnected processing elements (neurons)
working in parallel to solve a specific problem. The
proposed neural network has the ability to learning
with any application we design an automatic
generation of neural networks architecture that
perform random operations within hidden layer
those operations include generating layer, add node,
delete layer, delete node and keep the architecture
with no change, at which all the weights are
initialized randomly. The goal of this paper is to
gain an optimal performance for neural networks
architecture that is a kind of a fully connected
feedforward neural network. This search deals with
neural networks trained by an evolutionary
algorithm in order to automatically generate the
best possible neural network architecture that can
perfectly play tic tac toe games. The most important
operators are mutation, crossover and combination.
The new population is produced and its fitness will
be computed. This work continues until a desired
answer or the maximum epoch assigned is reached.

3. BACKGROUND

Work on artificial neural networks, generally
referred to as Neural Networks (NN), was
motivated from the very beginning of its inception
by the recognition that the brain computes in a fully
different way from traditional digital computers [2].
A single neuron acts as fuse to change the flow of
information propagating through the NN. To
produce the final resulting output, neurons will
strengthen some signals and limit others. In a
brain, neurons gathering inputs like water flowing
into a dam, it empties everything into its outputs
and starts over again, when the water attains a
certain predefined level [3].

In order to solve any specific problem, when
there may be many different Neural Networks (NN)
available, network designers usually face questions
like "How could the size of a NN be found?”, “Is
the selected architecture an appropriate one?” and
“How can an optimal network be designed?”. These
questions usually lead the designer to optimization

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6658

methods that can find the desired network.
Scientists tend to use random search methods like
evolutionary algorithms (EAs) and genetic
algorithms (GA) to find an optimal network in
order to avoid the local minima encountered in
most of the optimization methods [4]. The use of
evolutionary programming for adapting the design
and weights of a multi-layer feed forward
perceptron in the context of machine learning.
Specifically, it is desired that the structure and
weights of a single hidden layer perceptron to
evolve such that it can achieve a high level of play
in the game of tic-tac-toe without the use of
heuristics or credit assignment algorithms So, this
neural network is different from previous work
which structurally having one hidden layer with (1-
10) node; and in initial population network the
previous network was initialized with 50 parents
network [5].

4. NEURAL NETWORKS AND

EVOLUTIONARY ALGORITHMS

 Neural networks are widely used in applications
such as pattern recognition, classification,
clustering, prediction, among others. These
networks are trained using application data. The
ability of generalization in these networks depends
on the training, architecture, the number of layers
and the number of neurons in each layer. The
network attracts to over fit the training set [6].
When the number of neurons in the network is
increased, the interpolation capability will be
decreased; in other words, the network cannot learn
all the data if the number of neurons is less than the
necessary number of neurons. Therefore, for every
application, there are a particular number of
neurons which maintain the best interpolation
generalization balance. The designers need some
methods for finding the suitable choice for keeping
this balance [7].

 EAs are types of random search algorithms that
use natural evolution to solve optimization
problems. There are different categories in EAs,
such as genetic algorithm, evolutionary strategy,
evolutionary programming and genetic
programming [14]. An EA is applied to residents,
which is a presentation of the optimization
problem. The representation of problem could be as
complicated as a computer program or as simple as
a series of 0s and 1s that the primary residents
could be defined as fully random or built on
predated knowledge [16]. This algorithm will
access the population based on specifying how

much each agent is close to the goal of the problem
and is based on a goal function as well. There is a
difference for each individual problem in the goal
function that should be defined by the user [7].
There are many ways to produce the next
generation of the solutions from current population.
One popular method for the next generation is to
select the parents with better fitness to produce the
next generation [12]. There are many operations,
which are applied to chromosomes, they are called
genetic operations. The most important operators
are mutation, crossover and combination. The new
population is produced and its fitness will be
computed. This circle continues until a desired
answer or the maximum epoch assigned is reached
[14].

 Random initialization of connection weights,
when the estimate architectures are evaluated, is the
first source of the noisiness because of to the fact
that different random initial weights may generate
different training outcomes. The training algorithms
used for the evaluation generates the second source
of noise. Even with the same set of initial weights,
various training algorithms may generate various
training results. To solving these Mistakes,
synchronization evolution of both the architecture
and weights is recommended [18]. There have been
number of studies on evolving architectures and
connection weights synchronization. An
evolutionary system called NEAT. NEAT is based
on three principles that work together to efficiently
Development network topologies and weights. The
first principle is Symmetry: NEAT encodes each
node and connection in a network with genes.
Whenever a structural mutation returns in a new
gene, that gene receives a historical marking.
Historical markings are Used to follow up
Symmetric genes during crossover, and to
Determine compatibility operator. The second
principle is protecting innovation. A compatibility
operator is used to spectate the population, which
protects innovative solutions and prevents
incompatible genomes from crossing over. Finally,
NEAT follows the philosophy that search should
begin in as Youngest space as possible and expand
gradually. Evolution in NEAT always begins with a
population of minimal structures. Structural
mutations add new connections and nodes to
networks in the population, leading to incremental
growth. Topological innovations have a chance to
realize their potential because they are protected
from the rest of the population by speciation.
Because only useful structural additions tend to
survive in the long term, the structures being

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6659

optimized tend to be the minimum necessary to
solve the problem. NEAT‟s approach allows fast
search because the number of dimensions being
searched is minimized [18].

5. BAYESELO

The Elo rating system [7] was originally used for
Chess, but it is now used for many other games like
football (http://www.eloratings.net/system.html).
Each player (or team) is given an initial rating, and
after playing each other, their rating changes as a
function of their current rating and whether they
win, lose or draw. Elo says that the expected result
of a game is a function of the difference in rating
between two players.

……………… (1)

Where E is the expected result and is the rating
difference between two players and D is the rating
difference between two players.

Elo assumes that there is a single value that can
represent a player’s strength and subsequently the
expected result can be determined according to the
above formula. One of the problems with Elo is that
one cannot take a set of game results and produce a
ranking of all relevant players.
In this paper, we use a modified version of Elo,
called Bayeselo [8], to compare various evolved
players. Bayeselo finds a likelihood of superiority
(LOS), using a minimization–maximization
algorithm [9]. Tables 1 and 2 show an example of
Bayeselo estimates and LOS. Software can be
downloaded from [7], which enables all of the
necessary calculations to be made.

The disadvantage of the Elo rating is that it does
not take in consideration the uncertainty that is
found in the player’s performance. While Elo
advantage indicates the advantage of playing first.
Elo Draw indicates how likely draws are. The
default values in the program were obtained by
finding their maximum-likelihood values over
29,610 games of Leo Dijksman's WBEC [9].

Table 1: BayesElo Ratings Example.

Table 2: BayesElo Los Example.

Table 1 shows the Elo rating for two players after
they have played a number of games (not
necessarily against just each other). The columns
show the true rating at a 95% confidence level (one
can change the confidence level in the program, but
we leave it at 95% for all the results reported in this
paper). Taking P1 as an example, its Elo rating is
598 and its true value is between (598- 123) 475
and (598+ 156) = 754, at the 95% confidence level.

The values in Table 2 shows how the supremacy
of players is reported using Bayeselo as Table 2
shows that there is 87% likelihood that P2 is
stronger than P1 and a 12% likelihood that P1 is
stronger than P2. In this paper, we use the LOS as
the main statistical measure of the superiority of
one player over that of another. If this value is
around 50%, we assume that the players’
performances are equal. If the value is above 70%,
we assume that the players are statistically different
at the 95% confidence level. It is also worth noting
(for the purposes of reproducibility) that we change
the advantage parameter to zero when running
Bayeselo. The default is +32, which is used for
chess (representing the advantage white has) but
this is not applicable to Tic Tac Toe so we set this
parameter value to zero.

6. NEURAL NETWORK’S OPERATIONS

The neural network architecture has an input
layer with any number of neurons that can be
specified by the user (problem dependent). The
work includes an initial network architecture starts
with one to three hidden layers, each one with three
to twenty of neurons. Finally, the network has an
output layer with one neuron. ANN are used as
nonlinear function approximators, which is the
activation function (sigmoid transfer function), and
the multilayer feedforward neural network is the
most common type of ANN [10]. The type of
structure used may be based on some knowledge of
the problem domain but commonly a sufficient
network structure is found by trial and error, in
many cases the structure used will be a fully
connected feed forward network and the user might
try different numbers of hidden neurons to see how
well the resulting structures will fit the task [13].

Rank Name Elo + ‐

1 P1 598 156 123

2 P2 345 45 98

Name P1 P2

P1 ‐ 87

P2 12 ‐

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6660

In order to get an efficient architecture of multi-
layer perceptron neural network with high
extension rate in making decisions, three types of
operations (add, delete, and no change) were
applied as shown in figure 1. These operations have
as ever impact on the performance of neural
network

Figure 1: ANN Operations.

Algorithm 1 is proposed to get the neural

network architecture automatically, while
Algorithm 2 shows the training algorithm for the
automatic generation of the neural network
architecture that will be able to play the Tic Tac
Toe game.

Algorithm 1:
1. For each network do the following:
 - With 1/3 probability choose the add operation

then go to step 2.
 - With 1/3 probability choose the delete

operation then go to step 3.
 - With 1/3 probability keep the architecture as it

is then go to step 5.
2. - With 1/2 probability choose a hidden layer to

be added to the neural network at a random
position, such that the total number of the
hidden layers should not exceed the maximum
number of hidden layers in the network. If

this is not the case, then do not add the new
hidden layer. Then go to step 4.

 - With 1/2 probability randomly choose a
hidden layer in order to add a number of
nodes to it, such that the total number of the
nodes does not exceed the maximum number
of nodes in that hidden layer. If this is not
the case, then only add the number of nodes
that makes the total number of nodes equal
to the maximum number of nodes in that
hidden layer. Then go to step 4.

3. With 1/2 probability choose a hidden layer to be
deleted from the neural network at a random
position, such that the total number of the
hidden layers should not be less than the
minimum number of hidden layers in the
network. If this is not the case, then do not
delete the hidden layer.

 - With 1/2 probability randomly choose a
hidden layer in order to delete a number of
nodes from it, such that the total number of the
nodes is not less than the minimum number of
nodes in that hidden layer. If this is not the
case, then delete the number of nodes that
makes the total number of nodes equal to the
minimum number of nodes in that hidden
layer.

4. Reconnect the neural network’s nodes and layers.
5. Update the neural network’s weights.
6. Calculate the output (fitness) of each network.

Algorithm 2:
1. Population of 30 neural networks was initialized

at random. All of the weights and biases of each
network were initialized uniformly over [-0.5,
0.5].

2. Each strategy has an associated self-adaptive
parameter vector Si, i=1,…,n initialized to 0.05.

3. Each neural network is playing with all other
neural networks.

4. Games are played until either side wins, or a
draw is declared.
5. For each game, the player receives a score

of +1 for a win, -1 for a draw and 0 for a
loss.

6. After completing all games, the best 15
players that have the highest scores are
selected as parents and retained for the
next generation. Those parents are then
copied and mutated to create another 15
players.

7. Repeat step 3 to 6 for 1000 generation.

 In order to get an efficient architecture of
multi-layer perceptron neural network with

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6661

high extension rate in making decisions, three
types of operations (add, delete and no change)
were applied. These operations have a severe
impact on the performance of neural network.
Figure 2 shows sample results of the used
operations.

Figure 2: Add Operation (Add New Nodes And Hidden
Layer).

 The sample of neural network’s initialization as
shown by figure 2, which contains one input layer,
one hidden layer and one node output layer. All the
weights of the neural network are initially assigned
with random number with range [-0.5, 0.5], while
all biases are set to 1. This is the process of adding
layer in neural network concerning hidden layers
only. The decision of adding new layer may occur
at any stage of the processing. Each new layer will
have a random number of nodes and random
connection weights and it will be fully connected to
previous and next layer. The new layer will be
added only if the number of hidden layers is less
than three. And In this case, a new node(s) is added
to the neural network. It added a random node with
random weight into randomly selected hidden layer.
The new added node will be fully connected to the
nodes in the next layer. The new node will be added
only if the number of nodes in the specified hidden
layer is less than twenty. In order to get better
results, as in adding process, neural network may
make decision of deleting a hidden layer and
reconnect neural nodes again according to the
number of the layer and nodes within each layer
within the neural network. The layer will be deleted
only if the number of hidden layers is greater than
one. In some situation, deleting one node or more is
required to get better result than deleting the whole
layer of neural network, thus neural network can

delete one randomly selected node or more from a
randomly selected hidden layer and then reconnect
neural network accordingly. The last decision on
neural network is updating the weight for each one
of neural network without adding or deleting
processes. Finally, output is a layer of the neural
network, which represents the value of the network
after a number of mathematical operations on
neural network to calculate the final product by
using the activation function.

7. THE RESULTS OF THE

EVOLUTIONARY TIC TAC TOE
PLAYER

The algorithm for the automatic generation of the

neural network architecture for the tic tac toe player
is executed for 1000 generations and the best player
from each 100 generations is taken. Each evolved
neural player is played (starting first) ten tic tac toe
games against all other players in order to ensure
that the learning strategies that are used to construct
neural network players are consistent. So, each
player plays 10 games, against nine other players,
making a total of 90 games for each player. Tables
3 through 5 show the obtained results.

Table 3: Number of Wins for the Evolved Tic Tac Toe
Players (Row Player) Out of 90 Games.

Pla
yer

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
10

To
tal

N1 - 2 1 2 1 1 1 0 1 1 10
N2 2 - 1 2 0 1 1 1 1 0 9
N3 2 0 - 1 0 1 2 1 1 0 8
N4 2 2 2 - 1 1 1 1 1 0 11
N5 3 1 1 2 - 1 2 2 0 1 13
N6 2 2 2 3 1 - 1 1 1 1 14
N7 1 3 2 1 2 2 - 1 1 1 14
N8 3 3 2 2 2 2 1 - 1 2 18
N9 2 3 2 2 2 1 2 1 - 1 16
N10 3 3 2 3 2 2 2 1 2 - 20

Table 4: Number of Loses for the Evolved Tic Tac Toe
Players (Row Player) Out of 90 Games

Play
er

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
10

Tot
al

N1 - 2 2 3 2 3 2 3 2 2 22
N2 2 - 1 2 1 2 2 2 2 2 16
N3 2 1 - 3 2 1 2 1 2 2 16
N4 2 2 1 - 2 1 1 1 2 2 14
N5 1 1 2 2 - 1 1 2 1 2 13
N6 2 1 1 2 0 - 2 2 1 2 13
N7 0 1 1 1 2 1 - 2 2 3 13
N8 0 1 2 1 1 2 1 - 2 2 12
N9 1 2 1 2 2 1 1 2 - 1 13
N10 0 1 0 0 1 2 1 2 1 - 8

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6662

Table 5: Total Number of Wins, Draws and Loses
Player Win Draw Lose

N1 10 58 22
N2 9 65 16
N3 8 66 16
N4 11 65 14
N5 13 64 13
N6 14 63 13
N7 14 63 13
N8 18 60 12
N9 16 61 13
N10 20 62 8

The results in tables 3 through 5 show variety of

players’ performances according to wins, loses and
draws indicating that the 10th (N10) neural network
was the best player among all other players as it has
the most number of wins and the least number of
loses. Therefore, N10 is considered as the best
obtained architecture. Also, there is one another
interested thing to be noticed from the obtained
results, that is the number of wins are almost
gradually increased (except for few cases) and the
number of loses are almost gradually decreased
(except for few cases) within the learning time,
which clearly indicates the occurring of the learning
process.

In order to be more assured about those
indications, the Bayeselo method is applied to the
obtained results as shown in tables 6 and 7. Table 8
shows the number of layers in neural network and
the nodes number for each layer.

Table 6: BayesianElo Ratings for the Evolved Tic Tac
Toe Players.

R
a
n
k

Na
me

Elo + -
Gam

es
Scor

e
Op
po.

Dra
ws

1 N10 33 48 47 90 57% -4 70%
2 N8 23 48 47 90 55% -3 70%
3 N9 18 47 47 90 54% -2 72%
4 N6 8 47 47 90 52% -1 72%
5 N7 3 47 47 90 51% 0 70%
6 N5 2 47 47 90 51% 0 72%
7 N3 -17 47 47 90 46% 2 74%
8 N4 -18 48 48 90 46% 2 68%
9 N2 -26 47 48 90 44% 3 69%
1
0

N1 -26 48 48 90 44% 3 67%

Table 7: LOS for the Evolved Tic Tac Toe Players
Player N10 N8 N9 N6 N7 N5 N3 N4 N2 N1

N10 - 60 66 76 80 80 92 92 94 94
N8 39 - 55 66 71 71 87 87 91 91
N9 33 44 - 61 66 67 83 83 88 88
N6 23 33 38 - 55 56 76 75 82 82
N7 19 28 33 44 - 50 71 71 78 78
N5 19 28 32 43 49 - 71 71 78 78
N3 7 12 16 23 28 28 - 50 59 59
N4 7 12 16 24 28 28 49 - 58 58
N2 5 8 11 17 21 21 40 41 - 50
N1 5 8 11 17 21 21 40 41 49 -

Table 8: The Layers and Nodes for Neural Networks Training

The results in table 6 indicate that N10 is clearly

better than the first seven players (N1-N7) as the
LOS between them is above 70%. Although N10 is
60% better than N8 and 66% better than N9, we
consider this acceptable as N8 and N9 have more
training (have closer performance) than N1-N7. So,
based on the above results there is statistical
difference between the players. We decided to
choose N10 player (best neural network
architecture) to be our baseline player. Also, the
results show there was change in the architectures
of the neural networks, as well as the changes in the
training weights, during the training process. The
results show that N10 is too better than N1 with
performance ratio reach of 94%, this is because that
N1 has not enough training (100 generations only).
N10 is also better than the N2 neural network, which
their architect formed after 200 generations, have
the same LOS as compared with N1 (94%) with a
little change in their nodes and N3 and N4 start to
have gradual training. In other word; it can increase
their ability to choose the probable neural network
architectural. N10 still has higher ratio than them
(92%). Therefore, they have a little better result
than N1 and N2.

The obtained results show that N5, N6 and N7
have good efficiency by increasing the number of
training cycles. Thus, the neural networks become
more active in choosing the best architecture. N9 is
of comparable performance with N10, the closet
result to the previous tested neural networks, have

Neural Network
Number

Number of
Layers

Number of
Nodes in each

layer
N1 1 15
N2 1 10
N3 3 8-6-2
N4 1 11
N5 2 11-8
N6 2 2-2
N7 2 3-2
N8 2 8-5
N9 2 2-1
N10 2 4-3

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6663

the ratio 66%. Although the N8 has lower training
time than N9 but it is better than the previous one in
choosing their architectural design and how to play
against the opponent. This is a clear indication that
the changing in the architecture leads to better
performance. N10 as shown from above is the best
architectural of neural network which had achieved
after 1000 training cycle through 7532 minutes of
training time. The architecture of N10 is shown in
figure 3.

Figure 3: Architecture of N10 Neural Network.

The results in Table 7 show that N10 is too better

than N1 with performance ratio reach of 94%, this is
because that N1 has not enough training (100
generations only). Therefore, N1 is considered as
the first level of training for N10. Figure 4 shows the
architecture of N1.

Figure 4: Architecture of N1 Neural Network

The obtained results show that N5, N6 and N7

have good efficiency by increasing the number of
training cycles. Thus, the neural networks become
more active in choosing the best architecture.
Figure 5 shows the N5 neural networks architecture.

Figure 5: Architecture of N5 Neural Network

Table 7 shows that N9 is of comparable
performance with N10, the closet result to the
previous tested neural networks, have the ratio
66%. Figure 6 shows their architecture.

 Figure 6: Architecture of N9 Neural Network

8. THE RESULTS OF N10 AGAINST

ONLINE TIC TAC TOE PROGRAMS

The performance of N10 is tested against ten
selected online tic tac toe programs. Those
programs are with different playing levels (easy,
medium and difficult). N10 is played 100 matches
against each online program; Table 9 summarizes
the results while tables 10 and 11 show the testing
of those results using Bayeselo method.

Table 10: BayesianElo Ratings for the Evolved N10 with
the Online Players.

Rank Name Elo + - Games Score Draws
1 O6 23 45 45 100 53% 78%
2 N10 8 14 14 100 52% 82%
3 O9 3 45 45 100 49% 78%
4 O8 -1 44 44 100 48% 84%
5 O7 -2 45 45 100 48% 78%
6 O2 -4 44 44 100 48% 85%
7 O5 -4 44 44 100 48% 83%
8 O1 -4 44 44 100 48% 81%
9 O10 -4 44 44 100 48% 81%
10 O4 -8 44 44 100 47% 85%
11 O3 -8 44 44 100 47% 83%

Player

Opponent: N10
Total Win Draw Lose

O1 100 12 81 7
O2 100 10 85 5
O3 100 12 83 5
O4 100 11 85 4
O5 100 11 83 6
O6 100 8 78 14
O7 100 13 78 9
O8 100 10 84 6
O9 100 12 78 10
O10 100 12 81 7

Table 9: Number of wins for The Evolved N10 with online
Players (Row Player) Out of 100 Games

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6664

Table 11: LOS for the Evolved N10with the Online
Players.

Pla
yer

O6 N10 O9 O8 O7 O2 O5 O1 O10 O4 O3

O6 - 72 71 75 75 77 77 77 77 81 81
N10 27 - 57 65 65 68 68 68 68 75 75
O9 28 42 - 55 55 57 57 58 58 63 63
O8 24 34 44 - 50 52 52 52 52 58 58

7O 24 34 44 49 - 52 52 52 52 57 57
O2 22 31 42 47 47 - 50 50 50 55 55
O5 22 31 42 47 47 49 - 50 50 55 55
O1 22 31 41 47 47 49 49 - 50 55 55
O10 22 31 41 47 47 49 49 49 - 55 55
O4 18 24 36 41 42 44 44 44 44 - 50
O3 18 24 36 41 42 44 44 44 44 49 -

The results in Table 11 show that N10 is
statistically better than O3 and O4 as it has 75%
level of superiority over them. Also, Table 9 shows
that N10 is 68% better than O1, O2, O5 and O10,
while it is 65% better than O7 and O8. As the 65%
and 68% is closer to 70% (the threshold for
determining the level of superiority) than 50% (the
threshold for determining the level of equality), so
N10 can be considered as statistically better than O1,
O2, O5, O7, O8 and O10.

The results in Table 11 show that N10 is of
comparable performance with O9 as it is only 57%
better than O9. Finally, Table 9 indicates that N10 is
statistically worse than O6 as O6 has 72% level of
superiority over N10.

From all the above N10 is better than eight out of
the ten selected online players, also N10 is of equal
performance with one online player and finally only
one player is better than N10. So, this is a clear
success for the aim of this paper.

9. THE RESULTS OF N10 AGAINST

HUMAN PLAYERS

To measure the influence of the learning
strategies that are used to construct the architecture
automatically for N10, the performance of N10 is
tested against ten selected tic tac toe human players.
Those players are with different playing abilities.
N10 is played 100 matches against each player;
Table 12 summarizes the results while tables 13
and 14 show the testing of those results using
Bayeselo method.

Table 12: Number of wins for the Evolved N10 with
Human Players (Row Player) Out of 100 Games.

Player

Opponent:
N10

Total Win Draw Lose
H1 100 16 74 10
H2 100 11 80 9
H3 100 13 76 11
H4 100 6 84 11
H5 100 14 78 8
H6 100 11 82 7
H7 100 13 77 10
H8 100 15 76 9
H9 100 11 83 6
H10 100 13 79 8

Table 13: BayesianElo Ratings for the Evolved N10
Players.

Table 14: LOS for the Evolved N10 Players.

The results in Table 14 show that N10 is
statistically better than H1, H5 and H8 as it has 72%
level of superiority over them. Also, Table 14
shows that N10 is 68% better than H9 and H10, while
it is 65% better than H6 and 61% better than H7. As
the 61%, 65% and 68% is closer to 70% (the
threshold for determining the level of superiority)
than 50% (the threshold for determining the level of
equality), so N10 can be considered as statistically
better than H6, H7, H9 and H10.

Player H4 N10 H2 H3 H7 H6 H9 H10 H5 H8 H1
H4 - 65 65 66 68 70 73 73 75 75 75
N10 34 - 57 57 61 65 68 68 72 72 72
H2 34 42 - 50 52 55 58 58 61 61 61
H3 33 42 49 - 52 55 57 58 60 61 61
H7 31 38 47 47 - 52 55 55 58 58 58
H6 29 34 44 44 47 - 52 52 55 55 56
H9 26 31 41 42 44 47 - 50 53 53 53
H10 26 31 41 41 44 47 49 - 52 53 53
H5 24 27 38 39 41 44 46 47 - 50 50
H8 24 27 38 38 41 44 46 46 49 - 50
H1 24 27 38 38 41 43 46 46 49 49 -

Rank Name Elo + - Games Score draws
1 H4 17 44 44 100 52% 84%
2 N10 8 14 14 100 52% 79%
3 H2 3 44 44 100 49% 80%
4 H3 3 45 45 100 49% 76%
5 H7 0 44 44 100 49% 77%
6 H6 -2 44 44 100 48% 82%
7 H9 -4 44 45 100 48% 83%
8 H10 -4 45 45 100 48% 79%
9 H5 -7 45 45 100 47% 78%
10 H8 -7 45 45 100 47% 76%
11 H1 -7 45 45 100 47% 74%

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6665

The results in Table 14 show that N10 is of
comparable performance with H2 and H3 as it is
only 57% better than them. Finally, Table 14
indicates that N10 is worse than H4 as H4 has 65%
level of superiority over N10.

From all the above N10 is better than seven out
of the ten selected human players, also N10 is of
equal performance with two players and finally
only one player is better than N10. So, this is
another clear success for the aim of this paper.

10. COMPARISON OF A RESULTING

NEURAL NETWORK WITH OTHER
NETWORKS

 To determine if the evolutionary process is
actually improving or not the neural networks
concerning with their domain specific topologies,
we compare a resulting net generated by different
neural networks with the best random topology that
generated by random operation on neural network.
So, this neural network is different from previous
work which structurally having random number of
the hidden layer with random node.

Figure 6: Total numbers of win, draw and loss for each

Neural Networks

 From figure 6, we see that the neural network
generated by the random generation is able to learn
better a new set of data than the other nets, the
network generated by automatic generation of
neural networks also has the best percentage for
classifying examples not seen previously, as it is
illustrated in figure 7.

Figure 7: The number of win, draw and loss for the

Neural Networks

11. CONCLUSIONS

 The most important point of conclusions from

this work can be summarized as follows:
Evolutionary computation has proven to be very
useful optimization tool in many applications.
Determining its efficiency as an optimization
algorithm for feedforward neural network
architectures and weights was the goal of this
research.

The resulted neural network can be used in some
applications like game playing (for example tic tac
toe), pattern recognition, classification, clustering,
and prediction. The user must set the number of
inputs, in the input layer, in order to be adapted to
the selected problem.

Using an automatic generation of neural
network’s architecture allow it to adapt their
architecture according to the selected problem that
deals with it.

Ten players were evolved to see the effects of
training for a neural network in their architecture
and. The obtained results showed that the
performance of the players is increased by
increasing the training of neural networks as shown
in Tables 5 and 7.

The obtained results demonstrated that the
obtained player (N10) was able to beat selected
online tic tac toe programs (with different playing
abilities), as shown in Tables 8 and 10. This can be
considered as a success for the proposed approach.

The obtained results showed that the obtained
player (N10) was able to beat selected human
players (with different playing abilities), as shown
in Tables 12 and 14 can be considered as a success
for the proposed approach.

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6666

12. FUTURE WORKS

Investigate other evolutionary methods, like
genetic programming, in order to automatically
generate the neural network architecture for many
applications. This will give a broad idea of which
method is better for which application area.

Techniques for visualization in evolutionary
computation may also prove very beneficial to the
field, since in general the internal workings of the
algorithms remain hidden to the user. With such
techniques, it might even be possible for the user to
intervene in the search and adjust certain
parameters on the run.
 For the purpose of generalization (test the
success of the proposed method in many
application areas), apply the proposed method that
was developed in this paper to other computer
games such as checkers or chess and also to other
application areas such as pattern recognition.

REFRENCES:

[1] Vonk E. L.C. Jain, L.P.J. Veelenturf and R.

Johnson, "Automatic Generation of a Neural
Network Architecture Using Evolutionary
Computation ",IEEE, 1995.

[2] Koza J. R. and Rice J. P I.,"Genetic Generation
of both the Weights and Architecture for a
Neural Network", IEEE International Joint
Conference on Neural Narrator's, 1991.

[3] Koza J. R.," Genetic Programming, On the
Programming of Computers by Means of
Natural Selection", MIT Press, Cambridge,
1992.

[4] Freeman J.A .and Skapura D.M., "Neural
networks Algorithms, Applications and
Programming Techniques", Addison-Wesley,
Reading, 1991.

[5] David B. Fogel, “using evolutionary programing
to create neural networks that are capable of
playing TIC-TACTOE”, ORINCON
Corporation, San Digo, CA92121, 1992.

[6] Fiszelew A., Britos P., Ochoa A., Merlino H.,
Fernández E. and García-MartínezR.,"Finding
Optimal Neural Network Architecture Using
Genetic Algorithms", Research in Computing
Science, 2007.

[7] Jenkins W.M., "Used Neural Network Weight
Training by Mutation", School of Engineering,
University of Hertfordshire, Hatfield, UK,
December, 2006.

[8] A. E. Elo, "The Rating of Chess Players, Past &
Present", New York: Arco, 1978.

[9] C. R. Bayeselo, “Bayesian Elo rating,” 2005
[Online]. Available:
http://remi.coulom.free.fr/Bayesian-Elo.

[10] Vancouver BC, "Neural Information
Processing Systems", (NIPS) Foundation,
2009.

[11] Kruse K., Borgelt, b., Klawonn, Moewes,
Steinbrecher and Held, "Computational
Intelligence: A Methodological Introduction",
Springer, ISBN, 2013.

[12] Damas M., Salmeron M., DiazA., Ortega
J.,Prieto, A. and Olivares, "Genetic
Algorithms and Neuro-dynamic
programming: application to water supply
networks", Proceedings of 2000 Congress on
Evolutionary Computation. La Jolla,
California, IEEE, 2012.

[13] Vinicius G. Maltarollo, kathia M. honorio and
Alberico Borges F. da silva,"Applications of
Artificial Neural Networks in Chemical
Problems", maltarollo, In Tech, 2013.

[14] Alejandro Correa, Andrés González and Banco
Colpatria, "Genetic Algorithm Optimization
for Selecting the Best Architecture of a Multi-
Layer Perceptron Neural Network", 149, SAS,
2011.

[15] Steve Schaefer, "Math Rec Solutions (Tic-Tac-
Toe)",Math Rec., 2013.

[16] Goff, Allan, "Quantum tic-tac-toe: A teaching
metaphor for superposition in quantum
mechanics", American Journal of Physics
(College Park, MD: American Association of
Physics Teachers), 2006.

[17] Belal Al-Khateeb, “Investigating Evolutionary
Checkers by Incorporating Individual and
Social Learning, N-tuple Systems and a Round
Robin Tournament”, The university of
Nottingham, Nottingham, UK, 2011.

[18] Krizhenvsky, I. Sutskever, and G. Hinton. ‘’
ImageNet classification with deep
convolutional neural networks’’. In Advances
in Neural Information Processing Systems 25,
pages 1097–1105. 2012.

[19] Goodfellow, Y. Bengio, and A. Courville.’’
Deep Learning’’. MIT Press, Cambridge, MA,
2016.

[20] A. Graves, A. R. Mohamed, and G. Hinton.
‘’Speech recognition with deep recurrent
neural networks’’. In 38th IEEE International
Conference on Acoustics, Speech and Signal
Processing, 2013, pages 6645–6649.

[21] Y. Kim.’’ Convolutional neural networks for
sentence classification’’. Signal Processing
Magazine, 29(6):82–97, 2012.
arXiv:1408.5882, 2014.

Journal of Theoretical and Applied Information Technology
15th December 2017. Vol.95. No 23

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6667

[22] X.-S. Wei and Z.-H. Zhou.’’ An empirical
study on image bag generators for multi-
instance learning’’. Machine Learning,
2016.,105(2):155–198.

[23] Filipe Assunc¸ao, Nuno Louren ˜ c¸o, Penousal
Machado, Bernardete Ribeiro. “Towards the
Evolution of Multi-Layered Neural Networks”
,Conference 2017, Berlin, Germany, 2017.

[24] Weizhong Yan ,” Toward Automatic Time-
Series Forecasting Using Neural Networks”,
Machine Learning Laboratory, GE Global
Research Center, Niskayuna, NY, USA ,
Published in: IEEE Transactions on Neural
Networks and Learning Systems (Volume: 23,
Issue: 7, July 2012).

[25] Nadi A., S. S. Tayarani-Bathaie and R.
Safabakhsh, "Evolution of Neural Network
Architecture and Weights Using Mutation
Based Genetic Algorithm", Proceedings of the
14th International CSI Computer Conference
(CSICC'09), 2009.

