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ABSTRACT 
  The automatic generation of neural network architecture is a useful concept that is used in many 
application areas despite the optimal architecture not being known a priori. Therefore, trial and error is 
often performed before a satisfactory architecture is found. Construction deconstruction algorithms can be 
used as an approach, but they have several drawbacks. Usually this approach is restricted to a certain subset 
of network topologies and as with all hill climbing methods, they often get stuck at local optima and may 
therefore not reach the optimal solution. In order to overcome these limitations, an evolutionary 
computation as an approach to the generation of neural network structures is used. The aim of this paper is 
to design an automatic generation of neural networks architecture that performs random operations within 
hidden layers. Associated operations include generating layer, add node, delete layer, delete node and keep 
the architecture with no change, at which all the weights are initialized randomly. These neural networks 
are able to adapt themselves with the reality, learn from the training of the various applications and adapt 
their architecture depending on the uses of the application. The automatically obtained neural network 
architecture is much better than all other architectures that are found during the evolutionary process. This 
network is tested in the game of tic tac toe and is played against selected tic tac toe computer programs and 
against selected human players and the obtained results are promising, suggesting many other research 
directions. 
Keywords: Neural Network, Evolutionary Algorithms, Genetic Programming, Genetic Algorithms 
 
1. INTRODUCTION  

 
     The neural network performance depends on the 
neural network’s architecture and on the given task 
that the network performs. This performance 
includes some properties like the ability of 
generalization and learning speed. It is usual to use 
trial and error to find a suitable neural network 
architecture for a given problem but this method is 
time consuming and may not produce an optimal 
network. As with most of the applications of 
evolutionary computation in the generations of 
neural network architecture on our world, there is a 
significant influence on the performance of the 
network therefore using the evolutionary 
computation and it is considered to be a step 
towards automation of the neural network 
architecture’s generation [1]. The aim of this 
research is to seek a preferable solution for any 
problem by performing random operations on the 
neural network architecture, of which operations 
include adding layer, adding node, deleting layer, 
deleting node, updating weights and keeping the 
architecture with no change. This paper focus on 

using evolution strategies to automatic generation 
of neural network architecture in order to evolve 
neural networks to play Tic Tac Toe. As mentioned 
before, the objective of this work is to propose a 
structure of learning methodologies for the game of 
Tic Tac Toe and to produce a better player. 
 
     The rest of the paper is organized as follows. In 
Section 2, background is presented. The 
experimental setup is described in Section 3. 
Section 4 presents our results and Section V5 
concludes the paper together with some suggestions 
for future work. 
 
2. RELATED WORK 
 

     The work on novel methods for the evaluation of 
machine translation systems were related to 
automatic ANN construction [23]. This was done 
by allowing the evolution of solutions to dynamic 
domains, a Dynamic Structured Grammatical 
Evolution (DSGE) solves a limitation of other 
Grammar based Genetic Programming (GGP) 
methodologies, such as ANNs, where there is the 
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need to know the number of neurons available in 
previous layers so that valid individuals are 
generated. DSGE, is able to evolve the topology 
and weights of one hidden layered ANNs that 
perform statistically best than those evolved using 
GE or SGE. (DSGE) represents a new genotypic 
representation that overcomes the aforementioned 
limitations. The enabling of creation of dynamic 
rules that specify the connection possibilities of 
each neuron is done by using a methodology that 
enables more than one output neuron with the 
evolution of multi-layered ANNs. But difficult 
datasets are needed to better analyses the evolution 
of ANNs with more than one hidden layer. 
 
     Weizhong Yan.[24] attempted to develop an 
automatic ANN modeling scheme that is based on a 
special type of network, the Generalized Regression 
Neural Network  (GRNN). The research used an 
automatic modeling scheme for time-series 
forecasting in effective manner, by introducing 
several design strategies. Because of the designing 
for automatically modeling is a large-scale time 
series, the main limitation of the proposed 
modeling scheme is that the performance of the 
model may not always be superior for certain time 
series over other models that are carefully 
handcrafted specifically for the series. Note that not 
all of the design parameters in the model are 
optimally chosen, but rather designed in ad hoc 
fashion. Nadi [25] used an evolution of neural 
network architecture and weights by mutation 
based genetic algorithm. The researcher presents a 
new approach for evolving optimized neural 
network architecture for a three-layer feedforward 
neural network with a mutation based genetic 
algorithm. This evolution optimized the weights 
and the network architecture simultaneously 
through a new presentation for the three layers 
feedforward neural network. Limitation of this 
work throw the testing of the algorithm on three 
data sets and comparing with Mutation-Based 
Genetic Neural Network (MGNN)  shows that the 
used method has a higher resolution in finding the 
answer and a higher convergence speed. Jenkins [7] 
used a neural network weight training by mutation. 
The mutation in integer variables produces a 
progressive ‘shift’ of the center of the range of 
positive/negative values provided for selection in 
order to give the algorithm freedom to select 
weights from an unlimited range of values. At each 
iteration, the range of integer values offered to the 
algorithm is randomly selected. Vonk [1] used an 
evolutionary computation for the automatic 
generation of neural network architecture. The 

researcher presents a brief introduction to the field 
as well as an implementation of automatic neural 
network generation using genetic programming. 
The work reports an application of evolutionary 
computation in the automatic generation of neural 
network architecture. The using of evolutionary 
computation is a step towards automation of neural 
network architecture’s generation.   
In this paper, Processing information of neural 
network is similar to human brain processing. It is 
composed of a large number of highly 
interconnected processing elements (neurons) 
working in parallel to solve a specific problem. The 
proposed neural network has the ability to learning 
with any application we design an automatic 
generation of neural networks architecture that 
perform random operations within hidden layer 
those operations include generating layer, add node, 
delete layer, delete node and keep the architecture 
with no change, at which all the weights are 
initialized randomly.  The goal of this paper is to 
gain an optimal performance for neural networks 
architecture that is a kind of a fully connected 
feedforward neural network. This search deals with 
neural networks trained by an evolutionary 
algorithm in order to automatically generate the 
best possible neural network architecture that can 
perfectly play tic tac toe games. The most important 
operators are mutation, crossover and combination. 
The new population is produced and its fitness will 
be computed. This work continues until a desired 
answer or the maximum epoch assigned is reached.  
 
3. BACKGROUND  

Work on artificial neural networks, generally 
referred to as Neural Networks (NN), was 
motivated from the very beginning of its inception 
by the recognition that the brain computes in a fully 
different way from traditional digital computers [2]. 
A single neuron acts as fuse to change the flow of 
information propagating through the NN. To 
produce the final resulting output, neurons will 
strengthen some signals and limit others.  In a 
brain, neurons gathering inputs like water flowing 
into a dam, it empties everything into its outputs 
and starts over again, when the water attains a 
certain predefined level [3].                                                                            

In order to solve any specific problem, when 
there may be many different Neural Networks (NN) 
available, network designers usually face questions 
like "How could the size of a NN be found?”, “Is 
the selected architecture an appropriate one?” and 
“How can an optimal network be designed?”. These 
questions usually lead the designer to optimization 
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methods that can find the desired network. 
Scientists tend to use random search methods like 
evolutionary algorithms (EAs) and genetic 
algorithms (GA) to find an optimal network in 
order to avoid the local minima encountered in 
most of the optimization methods [4]. The use of 
evolutionary programming for adapting the design 
and weights of a multi-layer feed forward 
perceptron in the context of machine learning. 
Specifically, it is desired that the structure and 
weights of a single hidden layer perceptron to 
evolve such that it can achieve a high level of play 
in the game of tic-tac-toe without the use of 
heuristics or credit assignment algorithms So, this 
neural network is different from previous work 
which structurally having one hidden layer with (1-
10) node; and in initial population network the 
previous network was initialized with 50 parents 
network [5].  

 
4. NEURAL NETWORKS AND 

EVOLUTIONARY ALGORITHMS 

  Neural networks are widely used in applications 
such as pattern recognition, classification, 
clustering, prediction, among others. These 
networks are trained using application data. The 
ability of generalization in these networks depends 
on the training, architecture, the number of layers 
and the number of neurons in each layer. The 
network attracts to over fit the training set [6]. 
When the number of neurons in the network is 
increased, the interpolation capability will be 
decreased; in other words, the network cannot learn 
all the data if the number of neurons is less than the 
necessary number of neurons. Therefore, for every 
application, there are a particular number of 
neurons which maintain the best interpolation 
generalization balance. The designers need some 
methods for finding the suitable choice for keeping 
this balance [7]. 

  EAs are types of random search algorithms that 
use natural evolution to solve optimization 
problems. There are different categories in EAs, 
such as genetic algorithm, evolutionary strategy, 
evolutionary programming and genetic 
programming [14]. An EA is applied to residents, 
which is a presentation of the optimization 
problem. The representation of problem could be as 
complicated as a computer program or as simple as 
a series of 0s and 1s that the primary residents 
could be defined as fully random or built on 
predated knowledge [16]. This algorithm will 
access the population based on specifying how 

much each agent is close to the goal of the problem 
and is based on a goal function as well. There is a 
difference for each individual problem in the goal 
function that should be defined by the user [7]. 
There are many ways to produce the next 
generation of the solutions from current population. 
One popular method for the next generation is to 
select the parents with better fitness to produce the 
next generation [12]. There are many operations, 
which are applied to chromosomes, they are called 
genetic operations. The most important operators 
are mutation, crossover and combination. The new 
population is produced and its fitness will be 
computed. This circle continues until a desired 
answer or the maximum epoch assigned is reached 
[14]. 

  Random initialization of connection weights, 
when the estimate architectures are evaluated, is the 
first source of the noisiness because of to the fact 
that different random initial weights may generate 
different training outcomes. The training algorithms 
used for the evaluation generates the second source 
of noise. Even with the same set of initial weights, 
various training algorithms may generate various 
training results. To solving these Mistakes, 
synchronization evolution of both the architecture 
and weights is recommended [18]. There have been 
number of studies on evolving architectures and 
connection weights synchronization. An 
evolutionary system called NEAT. NEAT is based 
on three principles that work together to efficiently 
Development network topologies and weights. The 
first principle is Symmetry: NEAT encodes each 
node and connection in a network with genes. 
Whenever a structural mutation returns in a new 
gene, that gene receives a historical marking. 
Historical markings are Used to follow up 
Symmetric genes during crossover, and to 
Determine compatibility operator. The second 
principle is protecting innovation. A compatibility 
operator is used to spectate the population, which 
protects innovative solutions and prevents 
incompatible genomes from crossing over. Finally, 
NEAT follows the philosophy that search should 
begin in as Youngest space as possible and expand 
gradually. Evolution in NEAT always begins with a 
population of minimal structures. Structural 
mutations add new connections and nodes to 
networks in the population, leading to incremental 
growth. Topological innovations have a chance to 
realize their potential because they are protected 
from the rest of the population by speciation. 
Because only useful structural additions tend to 
survive in the long term, the structures being 



Journal of Theoretical and Applied Information Technology 
15th December 2017. Vol.95. No 23 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
6659 

 

optimized tend to be the minimum necessary to 
solve the problem. NEAT‟s approach allows fast 
search because the number of dimensions being 
searched is minimized [18]. 

  

5. BAYESELO 

The Elo rating system [7] was originally used for 
Chess, but it is now used for many other games like 
football (http://www.eloratings.net/system.html). 
Each player (or team) is given an initial rating, and 
after playing each other, their rating changes as a 
function of their current rating and whether they 
win, lose or draw. Elo says that the expected result 
of a game is a function of the difference in rating 
between two players.                     

                        

………………   (1) 

Where E is the expected result and is the rating 
difference between two players and D is the rating 
difference between two players. 

Elo assumes that there is a single value that can 
represent a player’s strength and subsequently the 
expected result can be determined according to the 
above formula. One of the problems with Elo is that 
one cannot take a set of game results and produce a 
ranking of all relevant players.                      
In this paper, we use a modified version of Elo, 
called Bayeselo [8], to compare various evolved 
players. Bayeselo finds a likelihood of superiority 
(LOS), using a minimization–maximization 
algorithm [9]. Tables 1 and 2 show an example of 
Bayeselo estimates and LOS. Software can be 
downloaded from [7], which enables all of the 
necessary calculations to be made.  

The disadvantage of the Elo rating is that it does 
not take in consideration the uncertainty that is 
found in the player’s performance. While Elo 
advantage indicates the advantage of playing first. 
Elo Draw indicates how likely draws are. The 
default values in the program were obtained by 
finding their maximum-likelihood values over 
29,610 games of Leo Dijksman's WBEC [9]. 
 

Table 1: BayesElo Ratings Example. 
 
 

 
 
 

 
 
 
 
 

Table 2: BayesElo Los Example. 
 
 
 
 
 
 
 

Table 1 shows the Elo rating for two players after 
they have played a number of games (not 
necessarily against just each other). The columns 
show the true rating at a 95% confidence level (one 
can change the confidence level in the program, but 
we leave it at 95% for all the results reported in this 
paper). Taking P1 as an example, its Elo rating is 
598 and its true value is between (598- 123) 475 
and (598+ 156) = 754, at the 95% confidence level.                                      

The values in Table 2 shows how the supremacy 
of players is reported using Bayeselo as Table 2 
shows that there is 87% likelihood that P2 is 
stronger than P1 and a 12% likelihood that P1 is 
stronger than P2. In this paper, we use the LOS as 
the main statistical measure of the superiority of 
one player over that of another. If this value is 
around 50%, we assume that the players’ 
performances are equal. If the value is above 70%, 
we assume that the players are statistically different 
at the 95% confidence level. It is also worth noting 
(for the purposes of reproducibility) that we change 
the advantage parameter to zero when running 
Bayeselo. The default is +32, which is used for 
chess (representing the advantage white has) but 
this is not applicable to Tic Tac Toe so we set this 
parameter value to zero. 

 
6. NEURAL NETWORK’S OPERATIONS 

The neural network architecture has an input 
layer with any number of neurons that can be 
specified by the user (problem dependent). The 
work includes an initial network architecture starts 
with one to three hidden layers, each one with three 
to twenty of neurons. Finally, the network has an 
output layer with one neuron. ANN are used as 
nonlinear function approximators, which is the 
activation function (sigmoid transfer function), and 
the multilayer feedforward neural network is the 
most common type of ANN [10]. The type of 
structure used may be based on some knowledge of 
the problem domain but commonly a sufficient 
network structure is found by trial and error, in 
many cases the structure used will be a fully 
connected feed forward network and the user might 
try different numbers of hidden neurons to see how 
well the resulting structures will fit the task [13].   

Rank  Name  Elo  +  ‐ 

1  P1  598  156  123 

2  P2  345  45  98 

Name  P1  P2 

P1  ‐  87 

P2  12  ‐ 
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In order to get an efficient architecture of multi-
layer perceptron neural network with high 
extension rate in making decisions, three types of 
operations (add, delete, and no change) were 
applied as shown in figure 1. These operations have 
as ever impact on the performance of neural 
network 
 

 
 

Figure 1: ANN Operations. 

 
Algorithm 1 is proposed to get the neural 

network architecture automatically, while 
Algorithm 2 shows the training algorithm for the 
automatic generation of the neural network 
architecture that will be able to play the Tic Tac 
Toe game. 
 
Algorithm 1: 
1. For each network do the following: 
      - With 1/3 probability choose the add operation 

then go to step 2. 
      - With 1/3 probability choose the delete 

operation then go to step 3.    
      - With 1/3 probability keep the architecture as it 

is then go to step 5. 
2.  - With 1/2 probability choose a hidden layer to 

be added to the neural network at a random 
position, such that the total number of the 
hidden layers should not exceed the maximum 
number of hidden layers in the network. If 

this is not the case, then do not add the new 
hidden layer. Then go to step 4. 

      - With 1/2 probability randomly choose a 
hidden layer in order to add a number of 
nodes to it, such that the total number of the 
nodes does not exceed the maximum number 
of nodes in that hidden layer.  If this is not 
the case, then only add the number of nodes 
that makes the total number of nodes equal 
to the maximum number of nodes in that 
hidden layer. Then go to step 4. 

3.   With 1/2 probability choose a hidden layer to be 
deleted from the neural network at a random 
position, such that the total number of the 
hidden layers should not be less than the 
minimum number of hidden layers in the 
network.  If this is not the case, then do not 
delete the hidden layer.  

      - With 1/2 probability randomly choose a 
hidden layer in order to delete a number of 
nodes from it, such that the total number of the 
nodes is not less than the minimum number of 
nodes in that hidden layer.  If this is not the 
case, then delete the number of nodes that 
makes the total number of nodes equal to the 
minimum number of nodes in that hidden 
layer.  

4. Reconnect the neural network’s nodes and layers. 
5. Update the neural network’s weights.  
6. Calculate the output (fitness) of each network. 
 
Algorithm 2: 
1. Population of 30 neural networks was initialized 

at random. All of the weights and biases of each 
network were initialized uniformly over [-0.5, 
0.5].   

2. Each strategy has an associated self-adaptive 
parameter vector Si, i=1,…,n initialized to 0.05. 

3. Each neural network is playing with all other 
neural networks.                                                                           

4. Games are played until either side wins, or a 
draw is declared. 
5. For each game, the player receives a score 

of +1 for a win, -1 for a draw and 0 for a 
loss. 

6. After completing all games, the best 15 
players that have the highest scores are 
selected as parents and retained for the 
next generation. Those parents are then 
copied and mutated to create another 15 
players. 

7. Repeat step 3 to 6 for 1000 generation. 
 
    In order to get an efficient architecture of 
multi-layer perceptron neural network with 
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high extension rate in making decisions, three 
types of operations (add, delete and no change) 
were applied. These operations have a severe 
impact on the performance of neural network. 
Figure 2 shows sample results of the used 
operations. 

 
 

Figure 2: Add Operation (Add New Nodes And Hidden 
Layer). 

     The sample of neural network’s initialization as 
shown by figure 2, which contains one input layer, 
one hidden layer and one node output layer. All the 
weights of the neural network are initially assigned 
with random number with range [-0.5, 0.5], while 
all biases are set to 1. This is the process of adding 
layer in neural network concerning hidden layers 
only. The decision of adding new layer may occur 
at any stage of the processing. Each new layer will 
have a random number of nodes and random 
connection weights and it will be fully connected to 
previous and next layer. The new layer will be 
added only if the number of hidden layers is less 
than three. And In this case, a new node(s) is added 
to the neural network. It added a random node with 
random weight into randomly selected hidden layer. 
The new added node will be fully connected to the 
nodes in the next layer. The new node will be added 
only if the number of nodes in the specified hidden 
layer is less than twenty. In order to get better 
results, as in adding process, neural network may 
make decision of deleting a hidden layer and 
reconnect neural nodes again according to the 
number of the layer and nodes within each layer 
within the neural network. The layer will be deleted 
only if the number of hidden layers is greater than 
one. In some situation, deleting one node or more is 
required to get better result than deleting the whole 
layer of neural network, thus neural network can 

delete one randomly selected node or more from a 
randomly selected hidden layer and then reconnect 
neural network accordingly. The last decision on 
neural network is updating the weight for each one 
of neural network without adding or deleting 
processes. Finally, output is a layer of the neural 
network, which represents the value of the network 
after a number of mathematical operations on 
neural network to calculate the final product by 
using the activation function.   
 
7. THE RESULTS OF THE 

EVOLUTIONARY TIC TAC TOE 
PLAYER 

 
The algorithm for the automatic generation of the 

neural network architecture for the tic tac toe player 
is executed for 1000 generations and the best player 
from each 100 generations is taken. Each evolved 
neural player is played (starting first) ten tic tac toe 
games against all other players in order to ensure 
that the learning strategies that are used to construct 
neural network players are consistent. So, each 
player plays 10 games, against nine other players, 
making a total of 90 games for each player.  Tables 
3 through 5 show the obtained results. 
 

Table 3: Number of Wins for the Evolved Tic Tac Toe 
Players (Row Player) Out of 90 Games. 

 
Pla
yer 

N
1 

N
2 

N
3 

N
4 

N
5 

N
6 

N
7 

N
8 

N
9 

N
10 

To
tal 

N1 - 2 1 2 1 1 1 0 1 1 10 
N2 2 - 1 2 0 1 1 1 1 0 9 
N3 2 0 - 1 0 1 2 1 1 0 8 
N4 2 2 2 - 1 1 1 1 1 0 11 
N5 3 1 1 2 - 1 2 2 0 1 13 
N6 2 2 2 3 1 - 1 1 1 1 14 
N7 1 3 2 1 2 2 - 1 1 1 14 
N8 3 3 2 2 2 2 1 - 1 2 18 
N9 2 3 2 2 2 1 2 1 - 1 16 
N10 3 3 2 3 2 2 2 1 2 - 20 

 
 

Table 4: Number of Loses for the Evolved Tic Tac Toe 
Players (Row Player) Out of 90 Games 

Play
er 

N
1

N
2 

N
3 

N
4 

N
5 

N
6 

N
7 

N
8 

N
9 

N
10 

Tot
al 

N1 - 2 2 3 2 3 2 3 2 2 22 
N2 2 - 1 2 1 2 2 2 2 2 16 
N3 2 1 - 3 2 1 2 1 2 2 16 
N4 2 2 1 - 2 1 1 1 2 2 14 
N5 1 1 2 2 - 1 1 2 1 2 13 
N6 2 1 1 2 0 - 2 2 1 2 13 
N7 0 1 1 1 2 1 - 2 2 3 13 
N8 0 1 2 1 1 2 1 - 2 2 12 
N9 1 2 1 2 2 1 1 2 - 1 13 
N10 0 1 0 0 1 2 1 2 1 - 8 
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Table 5: Total Number of Wins, Draws and Loses   
Player Win Draw Lose

N1 10 58 22 
N2 9 65 16 
N3 8 66 16 
N4 11 65 14 
N5 13 64 13 
N6 14 63 13 
N7 14 63 13 
N8 18 60 12 
N9 16 61 13
N10 20 62 8 

  
 
The results in tables 3 through 5 show variety of 

players’ performances according to wins, loses and 
draws indicating that the 10th (N10) neural network 
was the best player among all other players as it has 
the most number of wins and the least number of 
loses. Therefore, N10 is considered as the best 
obtained architecture. Also, there is one another 
interested thing to be noticed from the obtained 
results, that is the number of wins are almost 
gradually increased (except for few cases) and the 
number of loses are almost gradually decreased 
(except for few cases) within the learning time, 
which clearly indicates the occurring of the learning 
process. 

In order to be more assured about those 
indications, the Bayeselo method is applied to the 
obtained results as shown in tables 6 and 7. Table 8 
shows the number of layers in neural network and 
the nodes number for each layer. 
 

Table 6: BayesianElo Ratings for the Evolved Tic Tac 
Toe Players. 

R
a
n
k 

Na
me 

Elo + - 
Gam

es 
Scor

e 
Op
po. 

Dra
ws 

1 N10 33 48 47 90 57% -4 70% 
2 N8 23 48 47 90 55% -3 70% 
3 N9 18 47 47 90 54% -2 72% 
4 N6 8 47 47 90 52% -1 72% 
5 N7 3 47 47 90 51% 0 70% 
6 N5 2 47 47 90 51% 0 72% 
7 N3 -17 47 47 90 46% 2 74% 
8 N4 -18 48 48 90 46% 2 68% 
9 N2 -26 47 48 90 44% 3 69% 
1
0 

N1 -26 48 48 90 44% 3 67% 

 
 
 
 
 
 
 

Table 7: LOS for the Evolved Tic Tac Toe Players 
Player N10 N8 N9 N6 N7 N5 N3 N4 N2 N1 

N10 - 60 66 76 80 80 92 92 94 94 
N8 39 - 55 66 71 71 87 87 91 91 
N9 33 44 - 61 66 67 83 83 88 88 
N6 23 33 38 - 55 56 76 75 82 82 
N7 19 28 33 44 - 50 71 71 78 78 
N5 19 28 32 43 49 - 71 71 78 78 
N3 7 12 16 23 28 28 - 50 59 59 
N4 7 12 16 24 28 28 49 - 58 58 
N2 5 8 11 17 21 21 40 41 - 50 
N1 5 8 11 17 21 21 40 41 49 - 

 
Table 8: The Layers and Nodes for Neural Networks Training 

   
The results in table 6 indicate that N10 is clearly 

better than the first seven players (N1-N7) as the 
LOS between them is above 70%. Although N10 is 
60% better than N8 and 66% better than N9, we 
consider this acceptable as N8 and N9 have more 
training (have closer performance) than N1-N7. So, 
based on the above results there is statistical 
difference between the players. We decided to 
choose N10 player (best neural network 
architecture) to be our baseline player. Also, the 
results show there was change in the architectures 
of the neural networks, as well as the changes in the 
training weights, during the training process. The 
results show that N10 is too better than N1 with 
performance ratio reach of 94%, this is because that 
N1 has not enough training (100 generations only). 
N10 is also better than the N2 neural network, which 
their architect formed after 200 generations, have 
the same LOS as compared with N1 (94%) with a 
little change in their nodes and N3 and N4 start to 
have gradual training. In other word; it can increase 
their ability to choose the probable neural network 
architectural. N10 still has higher ratio than them 
(92%). Therefore, they have a little better result 
than N1 and N2. 

The obtained results show that N5, N6 and N7 
have good efficiency by increasing the number of 
training cycles. Thus, the neural networks become 
more active in choosing the best architecture. N9 is 
of comparable performance with N10, the closet 
result to the previous tested neural networks, have 

Neural Network 
Number 

Number of 
Layers 

Number of 
Nodes in each 

layer 
N1 1 15 
N2 1 10 
N3 3 8-6-2 
N4 1 11 
N5 2 11-8 
N6 2 2-2 
N7 2 3-2 
N8 2 8-5 
N9 2 2-1 
N10 2 4-3 
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the ratio 66%. Although the N8 has lower training 
time than N9 but it is better than the previous one in 
choosing their architectural design and how to play 
against the opponent. This is a clear indication that 
the changing in the architecture leads to better 
performance. N10 as shown from above is the best 
architectural of neural network which had achieved 
after 1000 training cycle through 7532 minutes of 
training time. The architecture of N10 is shown in 
figure 3. 
 
 
 
 
 
 

Figure 3: Architecture of N10 Neural Network. 

 
The results in Table 7 show that N10 is too better 

than N1 with performance ratio reach of 94%, this is 
because that N1 has not enough training (100 
generations only). Therefore, N1 is considered as 
the first level of training for N10. Figure 4 shows the 
architecture of N1. 
 

 
Figure 4: Architecture of N1 Neural Network 

 
The obtained results show that N5, N6 and N7 

have good efficiency by increasing the number of 
training cycles. Thus, the neural networks become 
more active in choosing the best architecture. 
Figure 5 shows the N5 neural networks architecture. 

 
 
 
 
 
 
 
 
 
  

Figure 5: Architecture of N5 Neural Network 

 

Table 7 shows that N9 is of comparable 
performance with N10, the closet result to the 
previous tested neural networks, have the ratio 
66%. Figure 6 shows their architecture. 

    

 
  Figure 6: Architecture of N9 Neural Network 

8. THE RESULTS OF N10 AGAINST 

ONLINE TIC TAC TOE PROGRAMS 

The performance of N10 is tested against ten 
selected online tic tac toe programs. Those 
programs are with different playing levels (easy, 
medium and difficult). N10 is played 100 matches 
against each online program; Table 9 summarizes 
the results while tables 10 and 11 show the testing 
of those results using Bayeselo method. 

 
 
 

 
 

Table 10: BayesianElo Ratings for the Evolved N10 with 
the Online Players. 

Rank Name Elo + - Games Score Draws 
1 O6 23 45 45 100 53% 78% 
2 N10 8 14 14 100 52% 82% 
3 O9 3 45 45 100 49% 78% 
4 O8 -1 44 44 100 48% 84% 
5 O7 -2 45 45 100 48% 78% 
6 O2 -4 44 44 100 48% 85% 
7 O5 -4 44 44 100 48% 83% 
8 O1 -4 44 44 100 48% 81% 
9 O10 -4 44 44 100 48% 81% 
10 O4 -8 44 44 100 47% 85% 
11 O3 -8 44 44 100 47% 83% 

 
Player 

Opponent: N10 
Total Win Draw Lose 

O1 100 12 81 7 
O2 100 10 85 5 
O3 100 12 83 5 
O4 100 11 85 4 
O5 100 11 83 6 
O6 100 8 78 14 
O7 100 13 78 9 
O8 100 10 84 6 
O9 100 12 78 10 
O10 100 12 81 7 

Table 9: Number of wins for The Evolved N10 with online 
Players (Row Player) Out of 100 Games 
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Table 11: LOS for the Evolved N10with the Online 
Players. 

Pla
yer 

O6 N10 O9 O8 O7 O2 O5 O1 O10 O4 O3 

O6 - 72 71 75 75 77 77 77 77 81 81 
N10 27 - 57 65 65 68 68 68 68 75 75 
O9 28 42 - 55 55 57 57 58 58 63 63 
O8 24 34 44 - 50 52 52 52 52 58 58 

7O  24 34 44 49 - 52 52 52 52 57 57 
O2 22 31 42 47 47 - 50 50 50 55 55 
O5 22 31 42 47 47 49 - 50 50 55 55 
O1 22 31 41 47 47 49 49 - 50 55 55 
O10 22 31 41 47 47 49 49 49 - 55 55 
O4 18 24 36 41 42 44 44 44 44 - 50 
O3 18 24 36 41 42 44 44 44 44 49 - 

 
 

The results in Table 11 show that N10 is 
statistically better than O3 and O4 as it has 75% 
level of superiority over them. Also, Table 9 shows 
that N10 is 68% better than O1, O2, O5 and O10, 
while it is 65% better than O7 and O8. As the 65% 
and 68% is closer to 70% (the threshold for 
determining the level of superiority) than 50% (the 
threshold for determining the level of equality), so 
N10 can be considered as statistically better than O1, 
O2, O5, O7, O8 and O10. 

The results in Table 11 show that N10 is of 
comparable performance with O9 as it is only 57% 
better than O9. Finally, Table 9 indicates that N10 is 
statistically worse than O6 as O6 has 72% level of 
superiority over N10. 

From all the above N10 is better than eight out of 
the ten selected online players, also N10 is of equal 
performance with one online player and finally only 
one player is better than N10. So, this is a clear 
success for the aim of this paper. 

 
9. THE RESULTS OF N10 AGAINST 

HUMAN PLAYERS 

To measure the influence of the learning 
strategies that are used to construct the architecture 
automatically for N10, the performance of N10 is 
tested against ten selected tic tac toe human players. 
Those players are with different playing abilities. 
N10 is played 100 matches against each player; 
Table 12 summarizes the results while tables 13 
and 14 show the testing of those results using 
Bayeselo method. 
 
 
 
 

 
 

Table 12: Number of wins for the Evolved N10 with 
Human Players (Row Player) Out of 100 Games. 

 
Player 

Opponent: 
N10 

Total Win Draw Lose 
H1 100 16 74 10 
H2 100 11 80 9 
H3 100 13 76 11 
H4 100 6 84 11 
H5 100 14 78 8 
H6 100 11 82 7 
H7 100 13 77 10 
H8 100 15 76 9 
H9 100 11 83 6 
H10 100 13 79 8 

 

Table 13: BayesianElo Ratings for the Evolved N10 
Players. 

 

 
Table 14: LOS for the Evolved N10 Players. 

 
 

The results in Table 14 show that N10 is 
statistically better than H1, H5 and H8 as it has 72% 
level of superiority over them. Also, Table 14 
shows that N10 is 68% better than H9 and H10, while 
it is 65% better than H6 and 61% better than H7. As 
the 61%, 65% and 68% is closer to 70% (the 
threshold for determining the level of superiority) 
than 50% (the threshold for determining the level of 
equality), so N10 can be considered as statistically 
better than H6, H7, H9 and H10. 

Player H4 N10 H2 H3 H7 H6 H9 H10 H5 H8 H1 
H4 - 65 65 66 68 70 73 73 75 75 75 
N10 34 - 57 57 61 65 68 68 72 72 72 
H2 34 42 - 50 52 55 58 58 61 61 61 
H3 33 42 49 - 52 55 57 58 60 61 61 
H7 31 38 47 47 - 52 55 55 58 58 58 
H6 29 34 44 44 47 - 52 52 55 55 56 
H9 26 31 41 42 44 47 - 50 53 53 53 
H10 26 31 41 41 44 47 49 - 52 53 53 
H5 24 27 38 39 41 44 46 47 - 50 50 
H8 24 27 38 38 41 44 46 46 49 - 50 
H1 24 27 38 38 41 43 46 46 49 49 - 

Rank Name Elo + - Games Score draws 
1 H4 17 44 44 100 52% 84% 
2 N10 8 14 14 100 52% 79% 
3 H2 3 44 44 100 49% 80% 
4 H3 3 45 45 100 49% 76% 
5 H7 0 44 44 100 49% 77% 
6 H6 -2 44 44 100 48% 82% 
7 H9 -4 44 45 100 48% 83% 
8 H10 -4 45 45 100 48% 79% 
9 H5 -7 45 45 100 47% 78% 
10 H8 -7 45 45 100 47% 76% 
11 H1 -7 45 45 100 47% 74% 
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The results in Table 14 show that N10 is of 
comparable performance with H2 and H3 as it is 
only 57% better than them. Finally, Table 14 
indicates that N10 is worse than H4 as H4 has 65% 
level of superiority over N10.                  

From all the above N10 is better than seven out 
of the ten selected human players, also N10 is of 
equal performance with two players and finally 
only one player is better than N10. So, this is 
another clear success for the aim of this paper. 
 
10. COMPARISON OF A RESULTING 

NEURAL NETWORK WITH OTHER 
NETWORKS 

 
    To determine if the evolutionary process is 
actually improving or not the neural networks 
concerning with their domain specific topologies, 
we compare a resulting net generated by different 
neural networks with the best random topology that 
generated by random operation on neural network. 
So, this neural network is different from previous 
work which structurally having random number of 
the hidden layer with random node. 

 
Figure 6: Total numbers of win, draw and loss for each 

Neural Networks  
 
    From figure 6, we see that the neural network 
generated by the random generation is able to learn 
better a new set of data than the other nets, the 
network generated by automatic generation of 
neural networks also has the best percentage for 
classifying examples not seen previously, as it is 
illustrated in figure 7. 
 
 
 
 
 
 
 
 

 

 
Figure 7: The number of win, draw and loss for the 

Neural Networks 
 

11. CONCLUSIONS  
 
 The most important point of conclusions from 

this work can be summarized as follows: 
Evolutionary computation has proven to be very 
useful optimization tool in many applications. 
Determining its efficiency as an optimization 
algorithm for feedforward neural network 
architectures and weights was the goal of this 
research. 

The resulted neural network can be used in some 
applications like game playing (for example tic tac 
toe), pattern recognition, classification, clustering, 
and prediction. The user must set the number of 
inputs, in the input layer, in order to be adapted to 
the selected problem. 

Using an automatic generation of neural 
network’s architecture allow it to adapt their 
architecture according to the selected problem that 
deals with it. 

Ten players were evolved to see the effects of 
training for a neural network in their architecture 
and. The obtained results showed that the 
performance of the players is increased by 
increasing the training of neural networks as shown 
in Tables 5 and 7. 

The obtained results demonstrated that the 
obtained player (N10) was able to beat selected 
online tic tac toe programs (with different playing 
abilities), as shown in Tables 8 and 10. This can be 
considered as a success for the proposed approach. 

The obtained results showed that the obtained 
player (N10) was able to beat selected human 
players (with different playing abilities), as shown 
in Tables 12 and 14 can be considered as a success 
for the proposed approach. 
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12. FUTURE WORKS  

Investigate other evolutionary methods, like 
genetic programming, in order to automatically 
generate the neural network architecture for many 
applications. This will give a broad idea of which 
method is better for which application area.     

Techniques for visualization in evolutionary 
computation may also prove very beneficial to the 
field, since in general the internal workings of the 
algorithms remain hidden to the user. With such 
techniques, it might even be possible for the user to 
intervene in the search and adjust certain 
parameters on the run. 
    For the purpose of generalization (test the 
success of the proposed method in many 
application areas), apply the proposed method that 
was developed in this paper to other computer 
games such as checkers or chess and also to other 
application areas such as pattern recognition. 
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