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ABSTRACT 

 
Dual Tree Complex Wavelet Transform (DTCWT) is shift invariant and has 2m redundancy as compared 
with Discrete Wavelet Transform. In this paper, DTCWT is used to obtain non-redundant sub bands energy 
levels representing PQ events in different and unique sub bands. The sub bands are quantized and 
thresholded to retain 95% of information that will improve classification process. Two stage FFNN 
architecture is designed to classify six possible PQ events by performing coarse and fine classification 
process. The two stage classifier with 10 neurons in each FFNN architecture and 4 neurons in the second 
stage achieves 97.5% of classification accuracy. The develop algorithm is suitable for real time applications 
in smart meters.  
 

Keywords: PQ event, DTCWT, Neural Network, Two Step Classifier, Smart Meter  
 
1. INTRODUCTION  
 

Power Quality (PQ) disturbances like 
Voltage sag, Voltage swell, Harmonics and 
Interrupts are caused due to power system fault and 
the faults depends upon environment, age of 
equipment and use of power electronic devices 
leading to nonlinear and time-variant loads. In 
addition the emergence of smart grids that use the 
power grid for communications, control and 
monitoring are interfaced with large number of 
electronic systems that causes non-linear loads. 
Electronic gadgets require high quality power 
supplies and it is been reported by Electrical Power 
Research Institute (EPRI) that loss of $24 billion in 
US economy due to PQ phenomena [1]. Power 
system transient fault recognition using Wavelet 
Multi-Resolution Analysis (MRA) technique 
integrated with Neural Network. The proposed 
method requires less number of features as 
compared to conventional approach for the 
identification. The feature extracted through the 
wavelet is trained by a Probabilistic Neural 
Network for the classification of events. The 

accurate ratio is achieved about 95.5%.[2]. DWT 
coefficients based approach for the energy contents 
in the different frequency zone is proposed for the 
classification of PQ disturbances. Classification is 
done on the basis of DWT and MSD with these 
extracted features. The analysis and results 
presented are indicated the lowest and highest 
energy content in respective frequency zone [3].In 
[4] 8-level DWT and 50 neuron ANN are used for 
classifying 10 PQ event with an accuracy of 90%. 
In [5] empirical wavelet transform is used to extract 
five features and ANN classifier based on is used 
achieving 94% accuracy in classification. PQ 
events such as harmonics and interrupts lead to 
non-stationary characteristic of power signal. Use 
of Discrete Time Complex Wavelet Transform 
which supports shift invariance property instead of 
DWT gives rise to extraction of significant features 
and improves classification accuracy. In [6] 10-
level DTCWT is computed to extract features and 
ANN is used for classifying demonstrating 96.8% 
accuracy. Wavelet decomposition of input data into 
multiple levels decomposes the signal based on 
frequency composition. Considering sampling 
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frequency of Fs, each sub band with frequency 
range {Fs/2n – Fs/2n-1}, PQ events will be captured 
in more than on sub bands and more than one PQ 
event will appear in one sub band. Smart meters in 
smart grid environment constantly monitor power 
signal and PQ event can occur instantaneously and 
hence the PQ detector need to be designed to 
process more than 100 cycles of data to be more 
robust. In this work, real time test signals from 40 
smart meters are captured by data logging for one 
week. A novel decomposition algorithm based on 
DTCWT is designed to capture the events in 
different sub bands so as to achieve localization. 
The features are classified using multi-stage multi-
layered ANN. Section II discusses proposed 
classifier algorithm with validation logic, Section 
III discusses novel DTCWT feature extractor, 
Section IV discusses ANN classifier, Section V 
presents the results and conclusion is presented in 
Section VI. 
 
2. PROPOSED METHODOLOGY  

        The PQ classifier algorithm is presented in 
Figure 1 for classification of synthetic power signal 
with six events. The algorithm comprises of two 
stages: feature detector with DTCWT and classifier 
using ANN. PQ events such as sag, swell, 
harmonics, interrupts, sag with harmonics and swell 
with harmonics are generated using parametric 
equations that are considered as reference event and 
are denoted by PQsagRef, PQswellRef, PQharRef, 
PQintrRef, PQsgharRef and PQswhrRef  respectively. 
PQ events that are modeled using parametric 
equations are used to generate 10 different types of 
disturbances in terms of voltage, frequency and 
power variations with regard to PQ reference 
events. The modified PQ events generated from 
reference is denoted by PQsagIp, PQswellIp, PQharIp, 
PQintrIp, PQsgharIp and PQswhrIp and are considered 
as input signal. The proposed algorithm first 
computes the DTCWT sub bands of both the 
reference and input signal. From the DTCWT sub 
bands appropriate sub bands are selected and 
energy levels of selected sub bands are computed. 
Novel algorithm for selection of DTCWT sub 
bands for PQ events is presented in next section. 
Energy levels of undistorted PQ signal (sine wave), 
PQ events (reference) and PQ event (input) are 
computed. Feed Forward Artificial Neural Network 
(FFANN) is designed and trained to classify the 
DTCWT energy features.  

 

 
 

Figure 1 Proposed PQ Classifier Block Diagram  
 

Figure 2 presents the FFANN classifier algorithm. 
The algorithm comprises of two FFANN classifiers. 
The classifier on the top is trained to classify the 
PQ events generated using parametric models. The 
classifier at the bottom denoted as “RANN” is 
trained to classify real time PQ event. The quantizer 
module is designed to scaling of PQ event before 
being processed by the classifier. The FFANN 
classifier is trained to classify two events 
undistorted PQ event and actual PQ event 
(reference). The quantized energy levels of sine 
wave and the corresponding PQ event (for ex. Sag 
event denoted by PQsagRef) are used as input data 
for training the FFANN. The network is designed 
with 16 hidden layer neurons and 4 output neurons. 
The network function in both layers is selected to 
be tansig. As the network is designed to have four 
outputs, the target for sine wave denoted as 
“SineReftarget” is set to {0.2, 0.2, 0.2, 0.2} and the 
target for PQsagRef denoted as “SagReftarget” set as 
{0.8, 0.8, 0.8, 0.8}. The FFANN network is initially 
trained to classify the undistorted PQ event and the 
reference PQ events (Sag). After initial training is 
completed, with the obtained weights and biases of 
the network, the second level of training is carried 
out by considering three input signals {PQsineRef , 
PQsagRef  and PQsagIP} with corresponding targets 
{0.2, 0.8, 0.8}. By performing two levels of 
training it is identified that the network is able to 
reach its global minima point and optimum weights 
and biases are identified for classification. The 
optimum weight and bias matrix obtained is 
recorded and stored for the trained network for the 
corresponding PQ event classification. The above 
process is continued for classification of all six 
events considered and thus six ANNs are trained to 
obtain corresponding weights and biases.  
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Figure 2 Proposed Real-Time PQ Classifier With Validation Logic 

 
The RANN classifier comprises of six 

FFANN classifiers with each consisting 16 hidden 
layers and 4 output layers. Each of the networks 
designed and assigned with corresponding weights 
and biases obtained from the training process. The 
RANN classifier is trained to classify six PQ events 
generated based on parametric equations. The 
trained RANN is used for classification of real time 
PQ events. The multiplexer unit selects the PQ 
event to be classified. A detailed discussion on 
RANN working is presented in next section. 
Manuscripts must be in English (all figures and 
text) and prepared on Letter size paper (8.5 X 11 
inches) in two column-format with 1.3 margins 
from top and .6 from bottom, and 1.25cm from left 
and right, leaving a gutter width of 0.2 between 
columns. 

 
  

3. DTCWT FEATURE EXTRACTOR  

10-tap eight-level DTCWT is used for 
decomposes input signal into multiple sub bands, 
each of these sub bands represents information in 
different frequency ranges varying from Fs to 
Fs/2N. PQ disturbances such as swell, sag, 
harmonics and interrupts will have voltage 

fluctuations as well as frequency differences. Table 
1 shows the frequency range in which PQ 
disturbances would appear. 

 
Table 1: PQ Disturbance Frequency Range 
 

PQ Disturbances Frequency Range 

Sag 50 Hz ±10 Hz 

Swell 50 Hz ±10 Hz 

Harmonics 100Hz-500 Hz 

Interrupts >  500 Hz 

 

The PQ signal undistorted will be 50Hz 
signal assuming a noise moving of 10% the 
frequency of the PQ signal will be in the range of 
45 Hz -55 Hz. PQ disturbances such as Voltage sag 
and swell causes amplitude changes and hence lead 
to frequency fluctuations, thus the undistorted PQ 
signal, voltage sag and swell will also occur in the 
frequency band of PQ undistorted signal. The 
disturbances such as harmonics and interrupts will 
always fall in higher frequency bands. In the novel 
algorithm shown in Figure 3, DTCWT 
decomposition is carried out to capture these 
signals accurately. 
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Figure 3 DTCWT Algorithms To Capture PQ Disturbances 

 
 

8-levels of decomposition are carried assuming the 
input sampling frequency to be of 2000 Hz. The 
seventh and eight level decomposition is carried out 
on high pass coefficients, as the high pass band in 
level 6 hold the PQ signal of interest. The low pass 
bands in level 6 are discarded. The low pass band in 
level 8 is in the frequency range of 46.875 Hz to 
54.0625 Hz and captures the undistorted PQ signal. 
The high pass band in level 8 captures the PQ 
signal in frequency range of 54.0625 Hz to 61.15 
Hz and hence will contain the voltage sag and 
voltage swell distortions. The low pass band in 
level 7 is in the frequency range of 31.25 Hz to 
46.875 Hz and this band will also hold the voltage 
sag and swell distortions. From 8-level 
decomposition the DTCWT sub bands of 
importance are shown in Table 2 along with the 
information content. PQ events are captured in 
DDC8

a/b, DC7
a/b, D5

a/b, D4
a/b, D2

a/b, D1
a/b sub bands. 

 
Table 2 Selected DTCWT Sub Bands For PQ 

Classification 
 

Band Sub 
bands 

Frequency Range (Hz) 

1 DDC8
a/b 46.875-54.0625 

2 DDD8
a/b 54.0625-62.5 

3 DC7
a/b 31.25-46.875 

4 C6
a/b 0-31.25 

5 D5
a/b 62.5-125 

6 D4
a/b 125-250 

7 D3
a/b 250-500 

8 D2
a/b 500-1000 

9 D1
a/b 1000-2000 

 
 The events in C6

a/b are noise and are 
discarded and the event in D3

a/b, band is very high 
harmonics which is also discarded. The data in 
DDD8

a/b in PQ undistorted signal and is also 
interest. The process of quantization and 
thresholding is designed to retain the PQ events in 
bands 1,3,5,6,8,2,9. All other bands are discarded 
as the information content is very low. From the 
real and imaginary sub bands only the real band 
low pass coefficients are selected. As both of them 
have similarly energy levels. All the eight high pass 
bands are selected for encoding. The selected sub 
bands at level-4 will contain PQ disturbances such 
as voltage sag and swell. These disturbances may 
also be present in the low pass bands. The 
remaining three bands {D3

a/b, D2
a/b, D1

a/b} will 
contain all other disturbances. The D1

a/b sub band 
will have high frequencies disturbances and is 
considered with high priority. In addition to 9 
energy levels computed from 9 sub bands, an 
additional energy level E10 representing the energy 
of undistorted PQ signal is considered which will 
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be a non-zero input to the ANN. The advantage of 
DTCWT is that it supports shift invariant property 
as it generates both real and imaginary samples 
denoted by ER and EI. The absolute value of 
DTCWT energy features are computed by 
E=(E2

R+E2
I) 1/2 from all the nine sub bands that are 

used as inputs to RANN architecture.  
 
4. DESIGN OF ANN CLASSIFIER 

Feed forward neural network (FFNN) 
architecture with 10 inputs, 16 neurons in the 
hidden layer and 4 neurons in the output layer is 

designed as shown in Figure 4. The hidden layer 
outputs are denoted by {a1, a2, ……….. a16} and the 
corresponding weights and biases are represented 
by Wn,m and bn respectively where n represents the 
neuron and m represents input. The hidden layer 
neuron output is represented as HEn. HEn = f(an) 
and an is represented by Eq. 1, 

 
    a1= E1W1,1+ E2W1,2+...   + E10W1,10+ b1

1,       (1) 
 

The hidden layer network function is tan sigmoid 
function. In general, the intermediate outputs ak are 
represented by Eq. (2) 

 

      ak=∑ 	ଵ଴
௜ୀଵ (Eiwi,k)+ b1

k,i,   k=1,2,3,4......16       (2) 
 

Similarly the output layer output is mathematically 
represented by Eq. (3) and the network function is 
purelin.  

 
      Ok= ∑ 	ଵ଺

௜ୀଵ (HEiwk,i)+ b2
k,i ,   k=1,2,3,4           (3) 

 

 
Figure 4 Feed forward neural network architecture 

 The FFNN architecture is initialized with 
random weights and biases is trained by setting the 
targets as T= [0.08, 0.08, 0.08, 0.08] if the input is 
PQ event and T= [0.02, 0.02, 0.02, 0.02] if the PQ 
event is undistorted PQ signal. The PQ signals are 
transformed by performing DTCWT to obtain 9 sub 
band levels. Each of the sub band levels is 
quantized and energy levels in each sub band are 
computed as discussed in previous section and are 
presented in Table 3(a)-(b). 
 
Table 3 (a) Energy levels of DTCWT sub bands for sine, 

swell, sag, harmonics PQ events 
 

Table 3 (b) Energy levels of DTCWT sub bands for 
Harmonics with swell -sag, interrupts PQ events 

 
 

The frequency bands of PQ events such as 
swell and sag is captured in 1, 2 and 3 bands and 
hence overlaps. In order to resolve these issues, the 
corresponding imaginary bands are also considered. 
Similarly, the interrupt event is also captured by 
considering the R and I bands as presented in Table 
3(a)-(b).The neural network architecture is designed 
with 10 inputs representing the energy levels from 

 DTCWT 
Energy 
levels Sine Swell Sag Harmonics 

sub1 (R) 1.99E-05 0.000137 0.000371 0.003276 

sub2 (R) 5.42E-05 0.000396 0.001101 0.028076 

sub3 (R) 0.000398 0.002106 0.005102 2.468314 

Sub3 (I) 0.00373 0.030153 0.027624 8.569848 

Sub2 (I) 5.74E-06 7.99E-05 0.000308 0.001567 

sub6 (R) 3.56E-05 0.000324 0.000806 0.025268 

Sub1 (I) 0.00024 0.0017 0.002799 2.485433 

Sub9 (R) 0.001534 0.012724 0.020683 8.72095 

Sub8 (R) 3.998176 21.92961 14.15104 9.263175 

Sub8 (I) 4.000876 21.94859 14.16427 9.102733 

DTCWT 
Energy 
levels 

Harmonics 
with swell 

Harmonics 
with sag Interrupts 

sub1 (R) 0.001464 0.001803 2.08E-05 

sub2 (R) 0.004626 0.006116 6.17E-05 

sub3 (R) 0.466609 0.716754 0.000484 

Sub3 (I) 6.23813 9.175324 0.005576 

Sub2 (I) 0.000505 0.000847 6.60E-06 

sub6 (R) 0.002725 0.004212 3.97E-05 

Sub1 (I) 0.452896 0.662299 0.000327 

  Sub9 (R)   6.446904 9.616177 0.0037 

Sub8 (R) 8.34146 12.50206 3.410184 

Sub8 (I) 8.175389 12.18538 3.412575 
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10 DTCWT sub bands. Figure 5(a)-(e) presents the 
energy levels of all six PQ events compared with 
undistorted PQ signal. From the energy level 
diagram it can be implied that the energy levels of 
PQ events are significant as compared with sine 
signal energy level. Further, it is also observed that 
energy levels are very significant only in the last 
two sub bands for sag, swell and interrupt events. 
With harmonics the energy levels are distributed 
significantly in more than two sub bands. it is also 
observed that the energy levels in all other sub 
bnnds are less significant but not negligible. Thus 
the neural network architecture is designed with 
tansig function and the input levels are normalized 
to be less than 0.005.  

 

Figure 5(A) Comparison Of Energy Levels Of Sine And 
Swell PQ Events 

 
 

 
 
Figure 5(B) Comparison Of Energy Levels Of Sine And 

Sag PQ Events 
 

 
 

Figure 5(C) Comparison Of Energy Levels Of Sine And 
Harmonics PQ Events 

 
 

 
 

Figure 5(D) Comparison Of Energy Levels Of Sine And 
Harmonics With Swell PQ Events 

 

 
 
Figure 5(E) Comparison Of Energy Levels Of Sine And 

Harmonics With Sag PQ Events 
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Figure 5(F) Comparison Of Energy Levels Of Sine And 

Interrupts PQ Events 
 

 

Figure 6 Feed Forward Network Architecture For Real 
PQ Signal Classification 

 
Figure 6 presents the proposed RANN 

architecture which consists of six FANN 
architectures. The energy levels computed by 

considering 10 bands DTCWT sub bands are 
processed by all the six FANN architectures. Each 
of the network architectures classify only the 
corresponding events that they are trained for. The 
level -1 FANN output will be either 0.2 or 0.8. If 
the network in level-1 generates any other output 
other than these the output is discarded. The level-2 
network is trained to classify the inputs to 
corresponding PQ events. Thus the two level 
training improves reliability I classification process. 
The level-1 network is defined as coarse classifier 
and is responsible for classification of six events, 
the fine classifier at level-2 is responsible for 
improving the accuracy in classification as the 
inputs to this classifier consists of 6 inputs each one 
selected from the output of coarse classifier. 

 
5. EXPERIMENTAL SETUP  
 
 In the proposed PQ detection and 
classification algorithm the classifier consists of 
two parallel architectures that process PQ signals 
generated using parametric models and real time 
PQ signals that are acquired from solar PV system. 
The detector and classifier algorithm is modeled in 
MATLAB with input data being interfaced in Excel 
format. The real time PQ signal acquired by the 
DAQ card in the power meter is read into excel 
format and interfaced to MATLAB. Figure 7 shows 
the complete set up of solar PV connected to PQ 
recorder along with net meter. 
 

 
 

Figure 7 Internal Connection Of PQ Analyzer Connected 
To PV System 

 
 The data login module is connected to one 
phase of the grid and the PQ data is recorded 
continuously for four days. The recorder or data 
login module captures RMS values, calculated in 
each half-period (10ms at 50Hz, 8.3ms at 60Hz), 
which are out of the thresholds set upon 
configuration by 1% to 30% of a set reference value 
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with a 1% step. To validate the proposed algorithm, 
RMS values of raw voltage data is considered from 
PQ data recorder instrument.  
 
6. RESULTS AND DISCUSSION  
 
 The PQ detector and classifier algorithm 
proposed is modeled in MATLAB environment and 
is verified for its functionality. The DTCWT based 
feature extractor module processes the test signals 
and the DTCWT sub bands are obtained using 10-
tap dual tree filter. The sub bands presented in 
Table 2 are selected based on information content 
are quantized and thresholded to retain maximum 
information for classification process. Figure 8(a)-
8(f) presents energy levels of PQ events compared 
with reference data. 
 

 
   

Figure 8(A) Classification Results Of Sag Event 
 

 

 
 

Figure 8(B) Classification Results Of Swell Event 

 
The energy levels of all six events are 

reordered into column matrix with each column 
matrix comprising of 10 energy levels. Test data of 
3000 test cases are considered for analysis in 

addition another 3000 test case data is considered 
for validation. The neural network proposed in 
Figure 2 is trained to obtain the optimum samples 
and the results are presented in Figure 8(a)-(f). 
Figure 8(a) presents the classification results of sag 
event. The FFNN architecture is trained to classify 
the sag event and reference or undistorted PQ event 
into two levels of 0.2 and o.8 respectively. If the 
FFNN output is 0.2 then the PQ event is said to be 
undistorted, if FFNN output is 0.8 then the PQ 
event is said to be sag. In addition to classification 
of these two events the trained network is also 
validated with test PQ signals other than sag. The 
shading region in Figure 8(a) is set as margins for 
network to classify as sag or sine event. If the 
classifier produces output other than expected they 
are mapped on the graph shown. From the results it 
is observed that interrupt PQ event has energy 
levels similar to sag event and hence give false 
results. All other events are accurately classified as 
they lie in areas away from the region of interest. In 
order to classify interrupt event it is required to 
compute entropy as an additional parameter other 
than energy levels. If the number of DTCWT 
decomposition levels can be increased from N to 
N+4 then interrupts can be captured for accurate 
classification. Similarly figure 8(b) represents 
classification results of swell event, in which sag 
faults are come slightly in region of swell and 
Interrupt in region of sine. 
 

    
 
Figure 8(C) Classification Results Of Harmonics Event 
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Figure 8(D) Classification Results Of Harmonics With 

Swell 
 

Figure 8(c) represents classification results 
of Harmonics event where all other event likes sag, 
swell, harmonics with swell, harmonics with sag 
and interrupts are away from this region. This 
proves that accuracy in classification. Whereas Fig 
8(d) shows the classification results of Harmonics 
with swell. Only harmonics events comes in 
regions of ‘Harmonics with swell’ but remaining all 
other faults like sag, swell, harmonics with sag and 
interrupts are away from this region that proves 
accuracy in results. 
 
 

 
 

Fig 8(E) Classification Results Of Harmonics With Sag 
Event 

 
 

Fig 8(F) Classification Results Of Interrupt Event 
 

Figure 8(e) shows the classification results 
of harmonics with sag event, where all other event 
likes swell, harmonics with swell, harmonics with 
sag and interrupts are away from this region. Only 
sag comes near the sine event. Figure 8(f) shows 
the classification results of Interrupt event, where 
all other events are accurately classified as they lie 
in areas away from the region of interest. This 
proves accuracy in classification.   

 
TABLE 4 Comparison With Other Methods  

 
METHOD MRA-

NN  [2] 
DWT-

ANN[4] 
EWT 
[5] 

PROPOSED 

METHOD 
ACCURACY 95.5%. 90%. 94% 97.5% 

 
Table 4 shows the comparative results of MRA-
NN, DWT-NN and Empirical wavelet transform 
classifiers along with proposed method DTCWT 
for feature extraction with design of two stages 
FFNN for classification. The proposed method 
achieves good results but still scope for further 
improvements. 
 

 
7. CONCLUSION 
 
PQ event detection and classification is carried out 
using DTCWT for feature extraction and design of 
two stages FFNN for classification. The DTCWT 
decomposition gives rise to 10 sub bands that are 
appropriately quantized and accurate features that 
indicate presence of PQ event are identified. The 
two step FFNN architecture is trained to obtain the 
optimum weights and biases. The trained network 
consisting of six FFNN architectures perform 
coarse classification, the second stage classifier 
performs fine classification. With two stage 
classifier unit PQ events represented in terms of 
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DTCTW features are classified with 97.5% 
accuracy. Simulation results show that the proposed 
DTCWT approaches are successfully for the 
automatic classification of the PQ disturbances. 
Moreover, two stages FFNN for classification is 
compared with MRA-NN, DWT -NN, Empirical 
wavelet transform classifiers, and the best results 
are observed from DTCWT based technique. 
Therefore, the proposed approach would be an 
effective solution for detection and classification of 
PQ events. And this result still can be improved 
with modified CTDWT method. The proposed 
method can be further implemented in FPGA 
hardware as a future work. 
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Figure 3 DTCWT algorithms to capture PQ disturbances 
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