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ABSTRACT 
 

The Green Vehicle Routing Problem (GVRP) is an extension of the standard VRP taking into account the 
awareness of companies and governments of the dangerous effect of gases emissions. The primary 
objective of the GVRP is to minimize the volume of emitted carbon dioxide (co2) in adding to the 
optimization of the traveled distance and other functional objectives. In this paper, we model the GVRP as 
a bi-objective optimization problem for which many solving algorithms can be adapted and applied 
including deferent variants and extensions of Multi-Objective Genetic Algorithms (MOGAs). We select 
three elitist MOGAs: Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto 
Evolutionary Algorithm - II (SPEA-II) and the Indicator-Based Evolutionary Algorithm (IBEA) to evaluate 
the quality of the returned Pareto fronts using deferent metrics: computation time, traveled distance, 
emissions volume, generational distance, spacing, entropy, and contribution. The comparison is performed 
on a set of standard benchmark problems. The experimental results show that IBEA outperforms other 
algorithms over many metrics. 

Keywords: Green Supply Chain, Green Multi-Objective VRP, Multi-Objective Genetic Algorithms 
 
1. INTRODUCTION  
 

The green supply chain management concept has 
emerged following the increasing awareness of 
people, governments and Non-Governmental 
Organizations (NGO) about the threatening effect 
of co2 emissions. By definition, a supply chain is a 
network of suppliers, manufacturers, warehouses 
and distribution channels organized to acquire raw 
materials, convert them into finished products and 
distribute them to clients. The concept of green 
supply has been launched by several logistics 
companies to reduce carbon dioxide emissions 
caused by transportation operations. The co2 is a 
global pollutant, it represents a greater threat to the 
global environment since it affects the air in wide 
areas. co2 is present in the atmosphere in significant 
quantities, representing 99.4 % of the six 
greenhouse gasses by tonnage [4]. Carbon dioxide 
is released from industrial processes, waste 
collection and transportation. Transportation 
companies have devoted significant efforts to 
upgrade and improve their transportation systems 
by developing strategies and policies to route their 
fleet of vehicles safely with minimized emissions. 

Emissions minimization in logistics operations 
passes through the integration of co2 emission in 
optimization models [34]. The main transportation 
model is the VRP that consists of minimizing 
routing costs in terms of distance, time, number of 
vehicles, etc. In the context of green logistics, 
vehicles routing strategies consider minimizing the 
volume of emitted co2 as a primary objective in 
adding to VRP classical objectives. The emitted co2 
volumes are estimated using two different types of 
models namely the macroscopic and the 
microscopic model depending on the considered 
variables like the speed, road gradient, traffic 
congestion, etc. [4]. Optimization models have 
integrated such emission estimation functions as 
objectives or constraints [29]. 

Vehicle routing optimization models integrating 
emissions minimization, in the literature, have 
different names like the GVRP [20], the VRP with 
emission [13] and also the Pollution-Routing 
Problem (PRP) [10]. Basically, the emission 
component in such models is a constraint or an 
objective to optimize. Particularly, in the GVRP, 
emission minimization represents the main 
objective to optimize in the presented model. 
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Obviously, emissions minimization should be 
considered with other functional objectives like 
distance, time and number of vehicles minimization 
which will lead to a multi-objective optimization 
problem. The Multi-Objective Green VRP (M-
GVRP) is then defined to represent a class of 
environment aware multi-objective optimization 
problems. 

As a Multi-Objective Optimization Problems 
(MOOP), the solution of the bi-objective GVRP is a 
non-dominated solution from an optimal Pareto 
front [8]. Elitist multi-objective genetic algorithms 
represents a class of efficient solvers of MOOPs. 
They apply some sorting strategies to preserve best 
solutions and use them in future genetic 
combinations and future populations. In this paper, 
we present the results of an empirical study to 
evaluate the potential of multi-objective genetic 
algorithms for solving the bi-objective GVRP. We 
implemented three evolutionary algorithms namely 
NSGAII, SPEA-II and IBEA to solve the bi-
objective GVRP. The selected algorithms were 
applied to solve 4 known benchmark problems and 
the generated Pareto fronts are then compared using 
different metrics. The initial comparisons are made 
on the computation time, the volume of emitted co2 
and the total traveled distance. Deep analysis on the 
quality of the returned Pareto fronts is then 
performed using specific metrics namely 
generational distance, spacing, entropy, and 
contribution. The objective of the paper is to show 
and prove the effectiveness of modeling the GVRP 
as a bi-objective optimization problem and to 
experimentally determine the most appropriate 
evolutionary algorithm for solving the bi-objective 
GVRP. 

The paper is organized as follows. In the next 
section, we review the literature on green routing 
models, solving strategies and real life applications. 
In Section 3, we define formally the bi-objective 
GVRP and present a mathematical formulation. The 
following section is devoted to the candidate 
algorithms, we survey the main MOGAs and justify 
the choice of the three elitist algorithms and present 
their algorithmic schemas. Section 5 reports the 
results of the comparative study. We present 
initially, the comparison framework, followed by 
the experimentation environment and then the 
comparison results based on the defined metrics. 
Deeper statistical analysis is reported to strengthen 
the findings of this paper. Finally, we present the 
outcomes of this project with concluding remarks. 

 

2. THE GREEN VEHICLE ROUTING 
PROBLRM: LITERATURE REVIEW 

In green logistics, the main interest is grant to 
the process of carrying the transportation, 
warehousing, and manufacturing activities without 
affecting the environment. The transportation is one 
of the most pollutant activities due to the huge 
volumes of emitted co2 by moving engines. Recent 
reviews on green routing problems [4, 6, 10, 22, 26, 
and 29] present the answers to the requirements of 
green and sustainable transportation. We present 
the GVRP literature over its three pillars: 

1. Emission factors and fuel consumption 
estimation models,  

2. Routing models including emission 
requirements and their solving approaches,  

3. Real life applications. 

2.1 Emission Factors And Fuel Consumption 
Estimation Models 

Emission factors include the speed of moving 
vehicles, road gradient (landscape), traffic 
congestion, driver proficiency, fleet size and 
composition, payload, empty kilometers and the 
green freight corridors [4]. Such factors constitute 
the input of fuel consumption estimation models. 
The literature provides different models for 
estimating fuel consumption and emissions based 
on the considered factors. In [4] and [10], the 
authors presented two classes of fuel consumption 
models; the macroscopic and the microscopic type 
of models. In macroscopic models, the average 
speed of moving vehicles (the main factor) is 
integrated in different equations provided by 
different bodies like European Council, the 
Swedish organization NTM, the European 
Economic Area, etc. In microscopic models, the 
emissions are estimated instantly using different 
variables obtained on the spot from different 
vehicle sensors like speed, acceleration, cruise 
control, traffic status, etc. Later models provide 
more accurate estimation of emitted gases as they 
are using accurate and instantaneous inputs. A new 
score was proposed by Saharidis et al. [33] named 
Environment Externalities Score (EES) that 
aggregates different instantaneous emission factors 
in one score. In his review [6] Boulter et al. studied 
the road vehicle instantaneous emission factors and 
models. A Recent and exhaustive review of 
emission factors and different fuel consumption 
models and types can be found in [4]. 
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2.2 Green Routing Models And Solving 
Approaches 

As mentioned in the introduction different 
problems were introduced to integrate emissions as 
constraints or objectives. The PRP was introduced 
by Bektas and Laporte [5] considering additional 
environmental objectives rather than distance like 
the amount of green emissions and the consumed 
fuel following the emission model. The authors 
study the effect of different parameters such as 
vehicle load and speed on the environmental 
objectives. Similarly, Huang et al. [18] studied the 
green VRP with simultaneous pickups and 
deliveries by including the fuel consumption and 
the carbon emission cost. In [11], the authors 
introduce the green VRP to help organizations to 
design routes with alternative fuel. In [42], the Fuel 
Consumption Rate (FCR) was studied and 
integrated within the classical Capacitated VRP. 
Figliozzi [14] studied the correlation between the 
co2 emissions and the level of congestion using an 
archive of freeway sensors real data. The same 
author present in [13] some VRP models with 
emission minimization components. In [12], Faulin 
et al. integrated also environmental criteria into a 
capacitated VRP model and solved it. 

The proposed GVRP models was solved by 
different algorithms and approaches ranging from 
exact methods to heuristics and metaheuristics. We 
enumerate below the main approaches applied for 
solving the GVRP per category:  

 Exact methods including Branch and 
Bound algorithm, Dynamic Programming [29] 
and constraint programming [23]. 
 Heuristics like the Modified Clarke and 
Wright Savings heuristic (MCWS) and Density 
Based Clustering Algorithm (DBCA) of 
Erdogan and Miller-Hooks [11]. 
 Metaheuristics: 

 Simulated annealing [24, 42, 43] 
 Genetic algorithms [39], 
 Ant systems [1], 
 Tabu search [19], 
 Scatter search [31]. 

Routing problems with emission components 
were modeled also as multiobjective problems to 
integrate the emissions minimization objective 
along with other functional objectives [20, 27, 32, 
and 41]. The implemented algorithms are mainly 
based on genetic algorithms. For instance, the bi-

objective pollution routing problem was studied by 
Demir et al. [10] considers the emissions and the 
driving time minimization and was solved by the 
Adaptive Large Neighborhood Search (ALNS) 
algorithm. 

2.3 GVRP Real Life Applications 
 

From the application side, many real life 
problems were modeled and solved as GVRP. The 
very first investigations were summarized in [30] 
where the authors reported a set of real automotive 
emissions from Fort McHenry and Tuscarora 
Mountain tunnels. In [40], Ubeda et al. modeled a 
real case at Eroski as a green routing problem with 
backhauls. Bauer et al. [3] studied the greenhouse 
gas emission minimization in the rail service design 
problem. Soysal et al. [36] modeled the 
international beef supply chain considering 
emissions minimization. Govindan et al. [16] 
proposed two-echelon multiple vehicle locations of 
sustainable supply chain network of perishable 
food. Kuo et al. [25] developed a carbon footprint 
inventory route planning and selection of hot spot 
supplier. Konur [23] developed a carbon 
constrained integrated inventory control and 
truckload transportation with heterogeneous freight 
trucks. Apaydin et al. [2] and Tavares et al. [38] 
studied the emission minimization in the waste 
collection problem. A real application in timbre 
transport solved with a three level algorithm by 
Obersheider et al. [27]. 
 
3 THE BI-OBJECTIVE GREEN VRP: 

FORMAL DEFINITION AND 
MATHEMATICAL MODEL 

 
Formally, the bi-objective green vehicle routing 

problem is defined as the problem of designing a 
set of routes for serving geographically dispersed 
customers over a transportation network using a 
fleet of K vehicles. The set of customers is named 
V augmented with the central depot where vehicles 
are initially hosted. 
 

The cardinality of the set V is then (n + 1) where 
n is the number of customers and the depot is 
indexed to 0. Moreover, to each customer i is 
associated a demand qi. The transportation network 
is noted G(V;E) where E is the set of edges between 
customers defined by E = {(i; j): i,jϵV; i≠j}. Each 
two vertices in E are distanced by dij. Vehicles 
maximal load is set to Q. The classic routing 
objective is to minimize the overall distance. For 
the bi-objective GVRP, the co2 emission volume is 
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also to be minimized. To estimate co2 emissions we 
use the distance based approach defined in [4] as 
microscopic model and used also in [18] and [42]. 
The emissions are calculated as follows: 

 

 
 

Where µ is the emission rate of the used fuel, a and 
b are the coefficients of vehicle fuel consumption 
and lki is the load of the vehicle k at point i. A route 
is then defined as the ordered sequence of 
customers to be visited by a vehicle k starting and 
ending at the depot. Each customer must be visited 
exactly once and the maximum vehicle capacity 
should be not exceeded. The routing plan should 
optimize two objectives; the overall traveled 
distance and the volume of emitted carbon dioxide. 
A bi-objective non-linear integer programming 
formulation is given as follows where xij is a binary 
decision variable set to 1 if the customer j is visited 
just after the customer i and to 0 if not. The positive 
integer variable lki represents the load of the vehicle 
k at the customer i. The mathematical model is 
reported below. 

 
 
In the objective function (2), the first objective is 
the estimated volume of emitted carbon dioxide to 
be minimized and the second objective is the 
overall traveled distance. The constraint sets (3) 
and (4) ensure that each customer has to be visited 
exactly once. Constraint (5) set that the number of 
used vehicles is at most K and constraint (6) ensure 
that the number of vehicles leaving and going back 
to the depot are equal (flow conservation). The 
initial load (at the depot) of each vehicle is set to 
the maximum capacity Q (constraints 7) and the 
load lkj of vehicle k is decreased by the demand qi 
after leaving the customer i to visit customer j 
(constraints 8). Constraints 8 ensures also sub-tour 
breaking. In constraint (9), circular paths are 
avoided between the same two customers. Decision 

variables xij are defined to be binary in constraint 
(10) and lki should be positive integers in constraint 
(11). 
 
4 MULTIOBJECTIVE GENETIC 

ALGORITHMS  
 

Genetic Algorithms (GAs) are stochastic and 
evolutionary optimization algorithms based on 
mechanisms of natural selection and genetics. The 
basic GA starts by generating a population of 
solutions and then apply iteratively as set of genetic 
operators (crossover, mutation, selection, etc.) until 
a stopping condition is met (finite number of 
iterations, no significant improvement of best 
solutions, etc.). Multi-objective GAs are adapted to 
the concept of Pareto dominance, which 
emphasizes on solutions satisfying all objectives. 
Multi-objective GAs are well suited for the search 
of Pareto front for their implicit parallelism to 
search over many good solutions at a time. The first 
multi-objective GA, called Vector Evaluated 
Genetic Algorithms (VEGA), was proposed by 
Schaffer et al. [35]. Afterward, several major multi-
objective GA were developed such as Multi-
Objective Genetic Algorithm (MOGA) [15], NSGA 
(Non-Dominated Sorting Genetic Algorithm) [37], 
NPGA (Niched Pareto Genetic Algorithm) [17], 
SPEA-II (Strength Pareto Evolutionary Algorithm) 
[44], PAES (Pareto Archived Evolution Strategy) 
[21], PESA (Pareto Envelope Based Selection 
Algorithm) [21], PESA-II [21], NSGA-II [9] and 
MICRO-GA (Micro-Genetic Algorithm) [7]. 
 
According to Coelho et al. [8], all methods cited 
above are easy to implement but have drawbacks. 
The disadvantages are their dependency on too 
many parameters, the absence of sorting or ranking 
technique, and sensitivity to additional constraints. 
The selected three algorithms (NSGA-II, IBEA, 
and SPEA-II) belong to the class of elitist GAs that 
implement a sorting mechanism to save best-found 
solutions and use them in future iterations. The 
NSGA-II tends to spread quickly and appropriately 
when a certain non- dominated region is found. The 
main advantage is that the strategy of preserving of 
diversity used in NSGA-II requires no parameters 
to fix. SPEA-II has three differences with respect to 
its predecessor (1) it incorporates an improved 
fitness assignment scheme, (2) it uses the nearest 
neighbor density estimation technique, which 
allows a more precise guidance of the search 
process; (3) it has an enhanced archive truncation 
method that guarantees the preservation of 
boundary solutions. IBEA is based on quality 
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indicators where a function I assigns to each Pareto 
set a real value reflecting its quality that should be 
maximized [45]. The main advantage of the 
indicator concept is that no additional diversity 
preservation mechanisms are required. Since the 
principle is simple and the number of parameters is 
small, IBEA could be adapted to other types of 
problem approaches. It is for the above reasons that 
we selected the NSGA-II, IBEA, and SPEA-II for 
solving the bi-objective GVRP. Next subsections 
detail their algorithmic schemas. 
 
4.1 Non-dominated Sorting Genetic Algorithm-

II 
This technique was proposed by Deb et al. [9]. In 

NSGAII, the child population Q(t) is first created 
from the parent population P(t) (randomly filled). 
They are then met into a set R(t)=P(t)ᵁQ(t) that is 
sorted according to the principle of dominance: All 
no dominated solutions of the population are 
assigned a fitness value 1 (first front), then they are 
removed from the population. All non-dominated 
solutions of the population are assigned a fitness 
value 2 (second front), then they are removed from 
the population. This process is iterated until all 
solutions are evaluated. To select subsets that will 
be placed in the population, a measure of the 
density of solutions in the space of criteria called 
crowding distance is used (Algorithm 2). The 
Pseudo Code of the NSGA-II is shown in algorithm 
1. 

 

 

 
4.2 Strength Pareto Evolutionary Algorithm-II 

 
SPEA-II [44] is an extension of the SPEA 

algorithm, where an affectation strategy of 
improved fitness values is proposed. SPEA-II 
manages intrinsically an internal archive of fixed 
size containing enough non dominated individuals, 
the archive is complemented by those dominated. 
The calculation of performance in SPEA-II 
considers the density of solutions. First, the value 
of Strength Si is calculated for any solution i, 
preliminary performance Ri (row fitness) is defined 
as the sum of values of the strength of solutions that 
dominate i. Further, a preservation strategy of 
diversity based on a technique of kth nearest 
neighbor is incorporated. The step of selection is 
elitist and consists of a binary tournament with a 
replacement which is applied only to the archive. 
Finally, given that the archive of SPEA-II has a 
capacity of storage of fixed size, mechanisms of the 
bounded archive, based on information of fitness 
and diversity is used when the size of the no 
dominated set is too high. Conversely, when the 
size of the archive is too small, dominated solutions 
are incorporated. The pseudo-code of the SPEA-II 
is shown in Algorithm 3. 
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4.3 Indicator Based Evolutionary Algorithm 

 
It is a method based on a quality indicator I. The 

principle of IBEA [45] is to define initially the 
purpose of optimization, by establishing an operator 
of performance, and to use it directly in the 
selection process of the evolutionary algorithm. 
This one being chosen depending on the preference 
of the decision maker. Among the possible binary 
indicators, we can cite in particular the calculation 
of hyper-area (IH) and Iɛ. IBEA algorithm is shown 
in Algorithm 4. 

 

 
 

5 COMPARATIVE STUDY 
 
The objective of this paper is to determine which 

algorithm among NSGA-II, SPEA-II and IBEA can 
provide better solutions for the bi-objective GVRP. 
The algorithms are implemented and applied to 
solve bi-objective GVRP benchmark problems and 
compared using the following criteria: 

• Computation time required to return the final 
Pareto front for each algorithm per benchmark 
problem. 
• The total volume of emitted co 2 (1st objective). 
• The total traveled distance (2nd objective). 
• Generational Distance (GD) which measures 
how far from the Pareto front is located a set of 
solutions. 
• Spacing (S) metric to measure the distribution 
uniformity of points of the set of the solutions in 
the plan (1st objective, 2nd objective). 
• Entropy (E) metric that uses the concept of a 
niche to evaluate the distribution of solutions on 
the front. 
• Contribution (C) that compares two Pareto 
fronts A and B. If C(A,B)=0 then B is better than 
A. 

 
5.1 Implementation Environment and 

Benchmarks 
 

The three algorithms were implemented under 
ParadisEO-MOEO framework. We use the 
statistical software R to perform the hypothesis 
testing. Computational runs were performed on an 
Intel(R) Core™ 2 Duo CPU T7250 (2×2.00 GHz) 
machine, with 2 Go of RAM. The performance of 
the metaheuristics has been tested on 4 different 
instances token from the VRPLIB [28]. These 
instances involve between 16 and 500 nodes. The 
number at the end of an instance’ name represents 
the number of vehicles for the instance under 
consideration while the number at the first 
represents the number of customers. The stopping 
condition of all methods tested is a maximum 
number of generations. The results presented below 
are based on the following GA parameters: the 
population size is 100, the maximum number of 
generations is 100, the crossover probability is 
0.25, the mutation probability is 0.35, and the IBEA 
scaling factor kappa=0.05. 
 
5.2 Comparison Results 
 

Below, we present the results of the comparative 
study. 
1. Computation time: 
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The time consumed by each algorithm is a function 
of its complexity and the size of the problem being 
solved. Ordered by complexity, the IBEA has a 
complexity on O(N2) where N is the population 
size.  Second, the SPEA-II with a complexity on 
O(M2logM) where M is the sum of the size of the 
main population and the archive population. Third, 
the NSGA-II with a complexity on O(MN2) with M 
is the number of objectives and N is the size of the 
population. It is obvious to see that the time 
required by IBEA is always around half of that 
needed by NSGA-II. Moreover, the computation 
time needed by SPEA-II is better than the time of 
NSGA-II but worse than IBEA due to the 
logarithmic multiplier. These observations are 
empirically confirmed by the computation times (in 
seconds) reported in Figure 1. 
 

Figure 1: Computation time per problem (s) 

 
 

2. Emissions and travelled distance: 
The initial trivial observation from the returned 
Pareto fronts is their small cardinality. This fact can 
be explained by the correlation between the 
objectives. For instance, the emission objective is 
written as a function of the distance objective 
(Equation 1). From another side, we can see for the 
four instances, that obtaining solutions with 
minimal distance do not imply minimal emissions. 
For example, the minimum emission for the 
instance E101-08E is 1928 with a distance of 1221. 
However, the best distance for the same instance is 
obtained Pareto front is 1112 with 2001 emitted 
co2. As plotted in Figure 2, it is important to see 
that the Pareto fronts of IBEA are located in the 
bottom left corner of the graph for instances E101-
08E and E421-41K which means that IBEA 
solutions are better than those returned by SPEA-II 
and NSGA-II for such problems. However, for 
instances E301-28K and E484-19K, SPEA-II 
returns better Pareto fronts than those of IBEA and 
NSGA-II. It is important to mention also that the 
solutions returned by NSGA-II are always worse 
than those of IBEA and SPEA-II. 

Figure 2: The generated Pareto fronts by each algorithm 
per problem 

 
 
5.3 Statistical Analysis 
 

To evaluate the algorithms rigorously and to 
estimate the confidence of the, an Analysis Of 
Variance (ANOVA) and a Wilcoxon test was 
performed on the indicators of performance GD, S, 
E and C. By applying a Shapiro-test on the 
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distribution, we found that it’s a normal 
distribution. Consequently, we used a two-factor 
analysis of variance (ANOVA) test which is based 
on the central assumption of normally data 
distribution to check whether a factor has a 
significant effect on the performance of the 
algorithm. In our case, the experiments and 
algorithm are taken as a factor and the metrics are 
taken as dependents variables. The hypothesis is: 

 
H0: µ1=µ2=µ3=µ4 Versus H1: µi=µj 

With i,j € {1,2,3,4} and i≠j 

Table 2 shows the ANOVA results for metrics 
GD, S, E and C. The ANOVA for metric GD, S, E 
and C found significant differences (p-value < 
0.05). In fact, the linear effect of the instance and 
algorithm are significant. Moreover, the 
intersection of the instance and algorithm are 
significant. Hence, the effect of the factors 
experiment and algorithm influence the variables of 
measures of performance and consequently, we 
conclude that there is a significant difference 
among the three algorithms.  

 
 

TABLE 2: ANOVA TABLE FOR METRICS GD, S, E AND C. 

*give significant effect (0.05)  
 

 
To meaningfully compare the algorithms, we 

performed the hypothesis test of Wilcoxon which is 
a nonparametric test that makes no assumptions 
about the distribution of variables. For the metrics 
GD, S, and E, we made a right-sided test. The test 
is as follows: 
 

H0: no difference between the algorithms (µ1=µ2) 
H1: The values of sample 1 are generally higher 

than that of sample 2 (µ1>µ2) 
 
In Table 3, the T column indicates the result of the 
statistical test for a p-value less than 5 percent: For 
each instance whether the algorithm located on a 
column dominates significantly the algorithm on a 
given line (>) whether there is no difference (≡). 
According to the GD metric, the IBEA algorithm is 
significantly more efficient than NSGA-II and 

SPEA for all instances except for instance 
E421.41K. For the S metric, we found that there is 
no significant difference between IBEA and 
NSGA-II for the instance E101-08E. Similarly, 
there is no difference between SPEA-II and NSGA- 
II for instances E301-28K, E421-41K, and E484-
19K. However, we note that the IBEA algorithm is 
more efficient for all instances except for E101-
08E. For the metric E, the IBEA algorithm is more 
efficient than SPEA-II for the four instances. 
However, there is no significant difference between 
IBEA and NSGA-II. The contribution metric is 
used to compare two Pareto fronts A and B of 2 
different algorithms. Indeed, if C(A, B) = 0 then B 
is better than A. We realized a Wilcoxon test to 
determine the best algorithm. The test is as follows: 

 
H0: no difference between 2 algorithms (µ1=µ2=0) 
H1: Algorithm 2 is better than Algorithm 1 (µ1≠µ2) 

 
 

Metrics Sum of square DF Mean square F-value Prob>F 

GD 

A (Instance) 87.41   3 29.136 4.0422 0.009115 * 
B (Algorithm) 401.32   2 200.659 27.8381 1.777e-10 * 
A*B 161.65   6 26.941 3.7376 0.002038 * 
Residuals 778.47   108 7.208   

S 

A (Instance) 315.01   3 105.00 18.2855 1.149e-09 * 
B (Algorithm) 2132.33   2 1066.17 185.6670 < 2.2e-16 * 
A*B 175.41   6 29.24 5.0912 0.0001226 * 
Residuals 620.17   108 5.74   

E 

A (Instance) 0.21609   3 0.07203 9.9041 7.992e-06 * 
B (Algorithm) 1.49780  2 0.74890 102.9721 < 2.2e-16 * 
A*B 0.47615   6 0.07936 10.9116 1.795e-09 * 
Residuals 0.78547 108 0.00727   

C 

A (Instance) 0.4215  3 0.14051 2.4429 0.0680686 
B (Algorithm) 1.0535   2 0.52675 9.1583 0.0002119 * 
A*B 3.0914  6 0.51523 8.9581 6.163e-08 * 
Residuals 6.2117 108 0.05752   
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TABLE 3: COMPARISON OF THE THREE ALGORITHMS ACCORDING TO THE METRICS GD, S 
AND E USING A WILCOXON TEST 

 
Table 4 shows that there is no difference between 
NSGA-II and IBEA. However, NSGA-II and IBEA 
are better than SPEA-II. 
 

TABLE 4: COMPARISON OF THE THREE ALGORITHMS 

ACCORDING TO THE METRIC CONTRIBUTION USING A 

WILCOXON TEST. 

 
6 CONCLUSIONS AND PERPSECTIVES 

 
The interest grant to green logistics is growing 

due to customers, governments and international 
organizations pressure on transportation companies 
to implement eco-friendly operations. Reducing co2 
emissions starts to be the key performance indicator 
of transportation policies. In this paper, we define 
the green bi-objective vehicle routing problem with 
the co2 emission minimization as primary objective 
along with the overall traveled distance. We 
developed a synthesis of the GVRP literature and 

proposed a mathematical model capturing its 
features. We focused on the performance of multi-
objective genetic algorithms to solve the green bi-
objective GVRP and implemented three elitist 
MOGAs namely: NSGA-II, SPEA-II, and IBEA 
and applied them to solve bi-objective GVRP 
benchmark problems. The obtained results are 
evaluated using different specific metrics. The 
performed evaluations are strengthened by 
advanced statistical analysis and show that the 
IBEA algorithms outperform NSGA-II and SPEA-
II. 
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