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ABSTRACT 
 

Otsu’s Method is a non-parametric approach for image segmentation and is an attractive alternative to 
Bayes decision rule. Use of Nelder Mead for Otsu’s optimization has been used since long but cannot be 
seen in image segmentation literature. We in this paper address this gap in a novel way and revive classical 
literature of Otsu’s Image segmentation by experimenting it for voxel based tissue classification which then 
follows volume measurement of MRI base subjects. The other methods used to meet objective includes: 
spatial filtering, skull stripping and binarization of brain MR slices. The “goodness” of thresholds lies 
between . ૢ ൏ ∗ࣁ ൏ . ૢૢ for every brain MR slice in the volume. Significant difference was found 
(p<0.01) and (F >>1) amongst mean gray level of tissues, mean tissue volume densities within slices of 
each subject and in average volume tissue density of all Ten subjects.  
 
Keywords: MR Brain Images, Otsu’s Segmentation, Nelder-Mead Simplex Optimization, Image 

Segmentation, Volume Measurement, Skull Stripping, Tissue Classification 
 
1. INTRODUCTION  
 

Background subtraction and discriminant 
analysis of foreground objects are two elementary 
requirements in object recognition, motion tracking 
and classification. In all such applications, the role 
of otsu’ segmentation [1] is like an unavoidable 
rescue service that any one might needed to achieve 
mentioned tasks. This global segmentation 
approach is similar in functionality to clustering but 
it works in spatial space  instead of feature space. 
We in this paper apply Otsu’s segmentation to 
experiment with two main neuro imaging problems: 
skull stripping and tissue classification. Skull 
Stripping, also called Brain Extracion is a frequent 
preprocessing step in MRI image processing. This 
step removes meninges layer (tissues that pad the 
brain. (pia; arachnoid; dura) so that only main 
cerebrum is left in brain MR slice. Manual processs 
of skull stripping is quite labor intensive and 
requires skillful persons. Similary tissue 

classification is challenging due to ambiguity in 
gray levels of different tissue types. Tissue 
classification and volume measurement plays vital 
role in brain related disease diagnostics and 
determination of disease progression. We assume 
that the T1-weighted slice comprises of four tissues 
and thus each pixel of segmented regions can be 
assigned to any one tissue class. The classes are 
defined as background (BG), cerebrospinal fluid 
(CSF), gray matter (GM) and white matter (WM). It 
is very often to use term slice for an image 
representing either an axial, coronal or sagittal view 
of brain where a slice is just like a 2d image stored 
in matrix of size m x n.  The smallest unit of slice is 
voxel meaning volumetric pixel.  The difference in 
contrast in MR images arises from the fact that 
protons density at various tissues in human body 
differs. The two frequent types of brain MR images 
are T1 and T2 where the distinction is made on the 
basis of the time duration, from the instant when 
applied RF signal is removed till the instant when 

OTSU’S SEGMENTATION: REVIEW, VISUALIZATION AND 
ANALYSIS IN CONTEXT OF AXIAL BRAIN MR SLICES 
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nuclei precession of protons die out and they realign 
themselves with original magnetic field. A T1 
image shows clear gray matter and white matter 
distinctions as compared to T2 image as shown in 
Figure 1 where the T2 image lacks in showing 
many anatomical details. The difference between 
contrasts is due to the chemical composition of 
myelin (like a dielectric material, a layer around 
neuron) in human brain. 

 

Patient suffering from disease such as Multiple 
sclerosis have unmyelinated nerve tissues. 
Unmyelinated nerve tissues may also related to 
delayed neurological development in a child. Such 
pathologies (abnormalities) are much more visible 
in MR images. Readers are encourage to read 
previous effort in this work sequence [3][4]. 

We started with spatial filtering and peak valley 
analysis of multimodal histogram [5] for skull 
stripping which follows optimized Otsu’s 
Thresholding [1][6]  to  determine three  
thresholds	݇ଵ

∗,݇ଶ
∗, ݇ଷ

∗ which separates the 
aforementioned regions. Visualization of Nelder 
Mead simplex is an interesting add on experience to 
study and learn. These optimal thresholds	݇ଵ

∗,݇ଶ
∗, 

݇ଷ
∗  are used to obtain four binary images say 

,ଶܤ	,ଵܤ	  ସ respectively which provideܤ	݀݊ܽ	ଷܤ
us with CSF, GM and WM region voxels. To 
perform classification we employ connected 
component labeling and build discrete label matrix. 
Once label matrix is done, volume is measured by 
voxel counting processing over all slices of each 
ten subjects.  
The rest of the paper is organized as follows: 
Section II provides an overview of underlying 
theory of Image segmentation followed by Otsu 
Thresholding, skull stripping, Nelder Mead 
Algorithm description and visualization in Section 
III. In Section IV, a recent application of Otsu’s 
segmentation in context of Multispectral Adaptive 

Region Growing Algorithm (MARGA) [31] has 
been discussed. The Experimental results and its 
discussion are presented in Section V. Finally the 
conclusion and future work is presented at the end 
in Section VI. 
 

2. THEORY 

A. Image Segmentation 

In [6] the authors mentioned that the concept of 
region was first proposed by Marvin Minsky and 
Seymour Pappert. They described region as union 
of squares whose corners have minor or no 
difference in gray level. C.Brice and C.Finnema 
anticipate ‘R’ a region of the image if R is a 
connected set provided the topological structure is 
imposed by grid G of size M x N, thus R⊆G. They 
also showed that 4-neighbor connectivity principal 
of a pixel p, N4 (p) and gray level similarity based 
conditions led the basis of an equivalence relation 
on image pixels and it splits the image X=f(x,y) 
into a collection of disjoint subsets, where each 
subset contains pixels with specific intensity. For 
instance, in our case one subset contains all 
connected pixels that belong to Background (BG) 
and thus all are black, a second subset contains all 
dark gray pixels that belong to Cerebrospinal fluid 
(CSF), third subset is set of Gray Matter (GM) 
pixels and fourth subset is set of white matter 
(WM) pixels as shown in Figure 2. The collection 
of subsets forms a partition of X if it holds 
following relationships: ݔ in a region R is 
connected to ݔ  if and only if there is a sequence 
൛ݔ, ݔ…… … . .  are	ାଵݔ  andݔ  ൟ such thatݔ
connected and all the points are in R. This means 
that three conditions must be fulfilled [7][8]: 

 
Figure 2 Regions as Connected Pixels 

(i) ܴ ് ݅	ݎ݂	∅	 ∈  ܫ
(ii) ܴ ∩ ܴ ൌ 	݅		݄݊݁ݓ	∅	 ് ݆, 

Figure 1  Types of MR Images:  T1 image is with tag 
B, T2 image with tag C. Extracted from [2] to show 

that white matter and gray matter are more distinct in 
T1 as compare to T2 
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(iii) ⋃ ܴ ൌ ܺ∈ூ  
 
Figure 3. Illustrates the concept of atomic regions 
of an arbitrary image. The arbitrary image f(x,y) is 
partitioned into four triangular subsets 
r_1,r_2,r_3,r_4  , the white boxes in Figure 3 
illustrates the pattern of pixel connectivity within 
region. r_3 depicts 4-adjacency while r_1 r_2,and 
r_4  pixels follow 8- adjacency. Sophisticated 
addition of logical predicates to above region 
related facts led the foundation of most 
overwhelming problem of image processing 
domain, known as image segmentation. 
 

 
Figure 3 Pattern Of Pixel Connectivity Within Regions 

Most segmentation algorithms follow either region 
formation or edge detection. Algorithms in the first 
category concentrates on abrupt change or 
discontinuity in image gray levels which 
corresponds to edges or boundaries between 
distinct regions while algorithms in second 
category focuses on similarity between regions for 
partitioning. Being a matter of fact, Region finding 
is dual of Edge finding as it is simple to derive a 
boundary from a connected set of pixels called 
regions and regions can be filled using edge 
information easily. The most standard image 
segmentation definition [8][9][10][11] irrespective 
of the type of input image is as follows:   Let X is 
the set of all pixels and let P be the logical 
predicates defined on connected group of pixels to 
measure the region homogeneity then segmentation 
partitioned X into regions R_1, R_2, 
R_3,………R_(n)} such that: 
 

(i) ⋃ ܴ ൌ ܺ	∈ூ 									݅ ൌ 1,2,3……… . . ݊ 
(ii) ܴ 	് 	∅																	݇ ൌ 1,2,3……… . . ݊ 
(iii) ܴ ∩ ܴ ൌ 	݅		݄݊݁ݓ											∅	 ് ݆,					 
(iv) ܲሺܴሻ ൌ ݇					ܧܷܴܶ ൌ 1,2………… . . ݊ 
(v) ܲ൫ܴ 	∪ 	 ܴ൯ ൌ  	ܧܵܮܣܨ

݅	ݎ݂ ് 	݀݊ܽ	ܴ	݁ݎ݄݁ݓ	݆ ܴ	ܽ݁ݎ	ݐ݆݊݁ܿܽ݀ܽ      
Conditions (i), (ii) and (iii) follows from the 
definition of Equivalence relation on pixels as 
before where condition (i) indicates that every pixel 
in image must be assigned to some region or the 
whole is equal to the sum of its parts, this is called 
Completeness. Completeness property means that 
the segmentation algorithm terminates only when 
every pixel is processed. Condition (ii) makes sure 
that at least one region must exist. Condition (iii) 
indicates that it is not possible that two different 
regions (disjoint regions) share the same pixel. This 
is called distinctness. Condition (iv) depicts that a 
certain predefined similarity or homogeneity 
criteria must be fulfilled for all regions.  Finally, the 
Condition (v) makes sure that a homogeneity 
criterion is never true when applied to union of two 
adjacent regions. This is to show that a region is   
composed of maximal connected pixels. Various 
Surveys have been conducted on Image 
Segmentation [9][12][10][14] and also on Brain 
MR Image Segmentation as well [18][13][14]. 
Image Segmentation surveys covers the broader 
aspects of segmentation techniques irrespective of 
its type of image (or discusses different types of 
images) while Brain MR is simply an in-depth and 
more focused survey as type of input image is 
already known. Zucker [9] examined five 
approaches to region growing techniques which 
include: (1) Regional neighbor search, (2) Multi-
regional heuristic, (3) Functional approximation 
and merging, (4) Split and merge, (5) Semantics. 
He came into limelight the two important issues of 
Threshold selection and Order dependency in case 
of Region Growing algorithms. Haralick and Linda 
G. Shapiro [12] categorized segmentation 
techniques into six classes: (1) Measurement space 
guided spatial clustering (2) Thresholding (3) 
Multidimensional Measurement Space clustering 
(4) Region Growing (5) Spatial Clustering and (6) 
Split and Merge. They view segmentation as 
clustering problem in measurement space, where 
measurement space methods are simply histogram 
based techniques for partitioning. N.R Pal and 
Sankar K. Pal [10] extend the segmentation survey 
further to discussion of Iterative Pixel 
Classification which include (1) Relaxation (2) 
MRF based approaches (3) Neural Network based 
approaches, Surface based segmentation and fuzzy 
segmentation techniques [10]. An exhaustive 
survey on thresholding techniques is been 
conducted in which 40 thresholded methods are 
compared using non-destructive testing [15], 
amongst them otsu’s algorithm ranks 6. 
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Segmentation of medical images (CT, MRI) is 
much more challenging due to typical image 
acquisition artifacts. The major artifact that are 
been investigated by many researchers are intensity 
inhomogeneity (bias field) [16][17]. This 
multiplicative bias field is modeled and estimated 
by various techniques including Bayesian approach 
(EM algorithm) [18], Entropy Minimization 
methods [19], Level set methods [20] and Fuzzy C-
Means [21].   Another major MR imaging artifact is 
partial volume effect which is misclassification of 
voxels especially at boundaries [22]. Readers are 
encouraged to see references [23][24][14] for 
reviewing methods and details of Brain MR Image 
segmentation. 

B. Otsu’s Multithresholding 

The objective in otsu’s method [1] is maximization 
of between class variance to obtain optimum 
threshold(s) giving the best separation amongst 
desired groups or classes. The method is an 
attractive alternative to parametric methods which 
requires some definite workable assumptions about 
PDF estimation for e.g. gray levels follows 
Gaussian distribution which is not the case in brain 
MR slices. The non-parametric methods are also 
robust against noise which is inherent problem of 
brain MR data. Suppose we segment the input gray 
levels into K classes ܥଵ, ,ଶܥ ,ଷܥ ……… . ܥ  

where ܥଵ consist of all the gray levels in the 

rangeሾ0, ݇ଵሿ, ܥଶ consist of all the gray levels in 

the range ሾ݇ଵ, ݇ଶሿ and similarly the class ܥ  

consist of all the gray levels in rangeሾ݇ିଵ, ܮ െ
1ሿ. The ܭ classes requires ܭ െ 1 thresholds with 

values, ݇ଵ
∗, ݇ଶ

∗, …… . ݇ିଵ
∗  such that the between 

class variance becomes maximized. The generalize 

expression for between class variance  ߪ
ଶ , with 

two or more classes is:   
 

ߪ
ଶ ൌ 	∑ ߱ሺߤ െ ሻଶீߤ


ୀଵ                 (1) 

 
Where 	߱, ߤ and ீߤ  represents probability of 

occurrence of class ܥ (or the cumulative sum), the 
mean value of gray levels thresholded into class	ܭܥ   
and the global mean respectively. The respective 
expressions for these statistics are given as follows: 
߱ ൌ 	∑ ಼	∈	 						                               (2) 

 

ߤ ൌ
ଵ

ఠೖ
∑ ݅. ∈಼ 	                              (3) 

 
ீߤ	 ൌ 	∑ ݅. 

ିଵ
ୀ                                    (4)  

 
The following relationship must hold when ω and μ 
terms are substituted in following: 
 
∑ ߱ߤ ൌ ಼ீߤ 			                               (5)  

            
     ∑ ߱ ൌ 1಼                                       (6) 

 
It is obvious that ω and μ terms are functions of 

݇ଵ, ݇ଶ, …… . . ݇ିଵ and thus ߪ
ଶ also is. The K-1 

optimum thresholds are the values that maximizes 

between class variance ߪ
ଶሺ݇ଵ, ݇ଶ, …… . . ݇ିଵሻ   

and are determined by finding: 
 

ߪ 
ଶሺ݇ଵ

∗, ݇ଶ
∗, … ݇ିଵ

∗ ሻ ൌ 
max

ழభழమ…ழ಼షభழିଵ
ߪ
ଶሺ݇ଵ, ݇ଶ, … ݇ିଵሻ	   

                        (7) 
 
The goodness of ܭ െ 1 optimal thresholds is 
determine by measuring class separability used in 
discriminant analysis [25] and is obtained by 
evaluating following equation at optimal 
thresholds: 

ߟ               ൌ 	 ఙಳ
మ

ఙೢ
మ       (8) 

Where  

ߪ
ଶ ൌ 	∑ ߱ሺߤ െ ሻଶீߤ


ୀଵ             (9) 

 
௪ଶߪ		 ൌ 	∑ ߱ߪ

ଶ
ୀଵ                                 (10) 

 
ߪ
ଶ is the already discussed as between class 

variance while ߪ௪ଶ  represents within class variance 
and is given by following expression: 

ߪ
ଶ ൌ 	∑ ሺ݅ െ ሻଶఢ಼ߤ                   (9) 

C. Nelder-Mead Downhill Simplex Method 

Our main objective in segmentation is basically, to 
solve the following maximization problem: 
 

max
ழభழమ…….ழ಼షభழିଵ

ߪ
ଶሺ݇ଵ, ݇ଶ, …… . . ݇ିଵሻ	  

 
Subject to the constraints ݇ଵ, ݇ଶ, …… . . ݇ିଵ 	 0 
Where ߪ

ଶ is between class variance. The Nelder 
Mead Simplex algorithm [6][26] is a direct search 
method for optimization of a function of more than 
one variable. It starts with an initial simplex which 
is a polygon or a polyhedron depending on the 
dimension you are dealing with. For example in 
case of brain MR images the initial simplex is a 
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tetrahedron in Թଷas we need to determine three 
thresholds (n=3) to segment the brain slice into four 
classes. Generally speaking, in n-dimension the 
algorithm starts with a non- degenerate simplex 
having n+1 vertices. Here non-degenerate means 
that the simplex must enclose a non-zero volume. 
Function to be minimized is evaluated at all n+1  
points and are arranged accordingly so that 
݂ሺ1ݔሻ  ݂ሺ2ݔሻ  ⋯…. ݂ሺ݊ݔ1ሻ . The idea 

is to replace ݂ሺݔାଵሻ with a new point so that it 
gives a smaller value. This new point is determined, 
updated and moved in space by a series and 
combination of steps namely, reflection, expansion 
and contraction so that the new simplex have better 
set of points. The formal Nelder mead algorithm 
comprises of following steps: 

Initialization Function values are evaluated at 
initial simplex vertices: 

݂
ሺଵሻ ൌ ݂ሺ࢞ሻሺଵሻ														݅ ൌ 1,2… . . ݊  1 

Repeat: 
(1) Sorting:  Order the simplex vertices such that 

ଵ݂
  ଶ݂

  ⋯…… . .  ݂ାଵ
  

 
(2) Reflection: Reflect the worst point with respect 
to centroid of n points as follows: 

ሺሻ࢞ ൌ 	
1
݊
	࢞

ሺሻ


ୀଵ

 

 

࢞
ሺሻ ൌ ሺሻ࢞	  ሺ࢞

ሺሻ െ	࢞ାଵ
ሺሻ ሻ 

Evaluate function at reflection point i.e.  

݂
ሺሻ ൌ ݂ሺ࢞

ሺሻሻ and compare it with current best such 

that:  IF      ଵ݂
ሺሻ  	 ݂

ሺሻ 	 	 ݂
ሺሻ  

ACCEPT ࢞
ሺሻ

and check convergence at step (6). 
 
 (3) Expansion: Check the following criteria 

IF ݂
ሺሻ ൏ 	 ଵ݂

ሺሻ
 

Calculate Expansion  

࢞
ሺሻ ൌ ሺሻ࢞	  2ሺ࢞

ሺሻ െ ࢞
ሺሻሻ 

  

Evaluate ݂
ሺሻ ൌ ݂ሺ࢞

ሺሻሻ 
 

 IF  ݂
ሺሻ ൏ 	 ݂

ሺሻ
 

 ACCEPT  ࢞
ሺሻ

 and check convergence at step (6). 
END 
END 

 
(4) Contraction: Check the following criteria  

IF  ݂
ሺሻ  	 ݂

ሺሻ
 

 IF  ݂
ሺሻ ൏ 	 ݂ାଵ

ሺሻ
 

Calculate Contraction 

࢞ 
ሺሻ ൌ ሺሻ࢞	  ଵ

ଶ
ሺ࢞

ሺሻ െ ࢞
ሺሻሻ 

 Evaluate ݂
ሺሻ ൌ ݂ሺ࢞

ሺሻሻ 
 IF  ݂

ሺሻ ൏ 	 ݂
ሺሻ

 

 ACCEPT  ࢞
ሺሻ

 and check convergence at step (6). 
 END 

 ELSE IF  ݂
ሺሻ  	 ݂ାଵ

ሺሻ
 

 
Calculate Contraction 

࢞ 
	ሺሻ ൌ ሺሻ࢞	 െ	ଵ

ଶ
ሺ࢞

ሺሻ െ ାଵ࢞
ሺሻ ሻ 

Evaluate ݂
ሺሻ ൌ ݂ሺ࢞

ሺሻሻ 
IF  ݂

ሺሻ ൏ 	 ݂ାଵ
ሺሻ

 

ACCEPT  ࢞
ሺሻ

 and check convergence at step (6). 
END 
END 
END 
Note there are two types of contractions: First one 
is named outside contraction which contracts 
x_(n+1) halfway towards the centroid to yield 
better point while the second is named inside 
contraction which contracts all points halfway 
towards first point. 
(5) Shrink: This step moves all vertices of simplex 
except the best (or minimum) as follows 

࢜
ሺሻ ൌ ଵ࢞	

ሺሻ 
1
2
ቀ࢞

ሺሻ െ ଵ࢞
ሺሻቁ, 

Where 	݅ ൌ 1,2	, … ݊  1 

Evaluate: ݂
ሺሻ ൌ ݂ሺ࢜

ሺሻሻ , i= 1,2…n+1 

ACCEPT  ࢜
ሺሻ

 as updated vertices. 
(6) Convergence 
Two conditions should be checked for convergence 
criteria: 
a) If the maximum coordinate difference between             
    the current best point and the other points in the      
    simplex is less than or equal to some predefined  
    tolerance say	1݁ିସ. This condition says that  
    repeat until:    
 
max (||x2-x1||,||x2-x1||,...,||x(n+1)-x1||) <= 1݁ିସ 

 
Where ||.|| is the infinity-norm, and v1 holds the 
vertex with the current minimum value; 
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b) According to second condition the corresponding 
 difference in function values is less than or equal 
to	1݁ିସ. The iteration stops when the maximum 
number of iterations reached or function 
evaluations are exceeded. 

 
3. EXPERIMENTATION 

A. MR Data Acquisition 

Analysis has been done on brain MR simulated 
volume generated with the Internet connected MRI 
Simulator at the McConnell Brain Imaging Centre 
in Montreal [27]. We choose to download ten 
datasets with different noise and intensity non-
uniformity (INU) levels. The files are in raw short 
(12 bit) format and are named according to their 
noise level and INU for e.g. the possible noise 
levels and INU are {1,3,5,7,9} and {20,40} percent 
respectively. All volume spans 181x217x181 in x, y 
and z axis respectively. This means each volume is 
comprising 181 x 217 brain slices as we move for 
example in z-direction. The slice thickness is 1mm 
showing each voxel volume is	1	݉݉ଷ. The three 
ways to analyze brain volume is to move forward in 
three different directions along x, y and z.  As an 
example, the brain slice corresponds to a particular 
x, y, z in 3D space is shown in    Figure 4 Row 1, in 
which sagittal view corresponds to slice in yz plane, 
coronal view corresponds to slice in xy plane while 
axial view corresponds to slice lying in xz plane. 
The intuitive representation of these planes along 
with corresponding slices is shown in Figure 4 Row 
2. Readers should note that one has to analyze and 
process all volume slices in any one direction 
usually taken as z or axial slices. Also note that 
extreme slices are very much different from middle 
slices which affect and harm processing results.   
 

 
Figure 4 (a) Row1: sagittal slice, coronal slice, axial 

Slice Figure 4(b) Row2:  sagittal plane, coronal plane, 
axial-plane. 

http://link.springer.com/chapter/10.1007/978-1-60761-
250-6_1 

B. Spatial Filtering 

We discussed in previous section that the MR data 
under consideration comprises of ten subjects with 
181 slices of 217 x181 voxels each. All the ten 
subjects differ from each other with respect to noise 
and intensity non-uniformity INU such that we 
have total 10 combination made from {1,3,5,7,9} 
and {20,40} respectively. The intensity 
inhomogeneity is an inherent artifact in MRI image 
formation due to variation in magnetic field while 
noise in MR data gives an impression of impulse 
kind of noise, see Figure 5(a). To deal with such 
random noise and inhomogeneity medial filter is an 
appropriate choice as it replaces the gray level of 
current voxel by the median of surrounding 
neighborhood with considerably less blurring. The 
replacement of central or current pixel with median 
formulation is given below while the results of 
filtering are shown in Figure 5(b). 

݃ሺݔ, ሻݕ ൌ 	median
ே

ሼ݂ሺݔ,  ሻሽ             (11)ݕ

Where ݂ሺݔ, ,ݔሻ is noisy MR image, ݃ሺݕ  ሻisݕ
filtered image while N represents neighborhood of 
specific size around central pixel. Literature shows 
that noise in MR images follows Rician distribution 
for which non-local mean parametric filter does 
successful denoising but it takes much more time 
than median filtering [28][29]. 

C. Skull Stripping 

A background threshold is applied to create an 
initial brain mask. This initial mask is processed by 
certain morphological operation to create another 
binary mask that has ones only at regions 
representing cerebrum. Element wise multiplication 
of second mask with original brain image yields the 
central brain without hard skull. The thresholding 
process for skull stripping requires histogram 
analysis of original axial slice. The pixels 
corresponding to unique gray levels have been 
counted to build histogram of axial slices which is 
then smoothed using 1-d Gaussian Window. The 
original multimodal histogram is shown in Figure 
6; whereas its smoothed version along with peaks 
and valley is shown in Figure 7.  
 

 
Figure 5 (a) Noisy MR Image   (b) Median Filtered 
Image 
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Figure 6 Multimodal Histogram Of Brain Axial Slice 

 
Figure 7  Peak And Valleys Of Multimodal Histogram 

To separate skull from brain the very first valley 
has been extracted via smoothed histogram peak 
and valley analysis [5]. Morphological operations 
include opening with a disk structuring element of 
appropriate radius which shrinks the image by 
stripping away layer of pixels from outer 
boundaries of brain region and as a result of 
multiplying it with original we get skull stripped 
image of axial slice. The process is repeated for the 
whole volume of brain and for all datasets. Note 
that the size of disk structuring element needs to 
vary such that it is workable for maximum number 
of slices in the brain to be processed. The steps for 
skull stripping are shown in Figure 8. Figure 8 (a) is 
the original axial slice, Figure 8(b) is the binary 
mask (named as Mask I) obtained by applying first 
valley threshold in histogram, Figure 8(c) is our 
second mask (named as Mask II) obtained by 
opening the first mask. Figure 8(d) shows brain 
without skull. 

 
Figure 8 (A) Slice (B) Mask I (C) Mask II (D) Cerebrum 

D. Optimization and Thresholding 

The objective here is to segment the axial brain 
slice into four regionsሺ݇ ൌ 4), the dark 
background BG, the dark gray cerebrospinal fluid 
CSF, the gray matter GM and the brightest white 
matter region using thresholding technique. The 
histogram of axial slice clearly shows four peaks 
(see Figure 7).  It’s a multimodal histogram, thus 

three thresholds ݇ଵ, ݇ଶ	and ݇ଷ should exist to 
partition the entire histogram into four. The highest 
peak in histogram represents the background 
comprising of pixels/voxels having lowest gray 
levels. Whatever is left after excluding these 
background pixels is our brain. This suggests that 
all pixels above certain threshold can be considered 
to belong to the head. Since some noise is always 
present, so a percentage of adjacent CSF pixels are 
also identified as part of background BG and same 
misclassification occurs at boundary between CSF 
and GM, and between GM and WM.  The problem 
is named in literature as partial volume effect [22]. 
Apart from the background peak three more peaks 
exist which corresponds to different image 
intensities of the tissue classes. As input slices 
differ in intensity and noise therefore the three 
thresholds can be varied. In poorer contrast image, 
the peaks would flux with each other would cause 
segmentation, a more challenging task.  All the 
pixels of the CSF in the slice have their values in 
the area of the second peak of skull stripped brain, 
the pixels of the GM matter lay under the area of 
third peak and similarly the brightest gray levels 
correspond to WM which lay in the fourth and final 
peak of histogram.  Since a number of pixels which 
are part of the skin and other tissues may have 
values within the range of these peaks, thresholding 
might yield an inappropriate segmentation 
especially when if one only relies on peak and 
valleys of histogram.  
 
Two procedures have been adopted to determine 
optimal thresholds	ܶ1∗, ܶ2∗ܽ݊݀	ܶ3∗	. First we 
attempt peak and valley analysis ([5]) of multi 
modal histogram of Figure 6, as we previously did 
in skull stripping. The smooth version of peak and 
valleys can be seen in Figure 7 where red markers 
indicate peaks for Background (BG), Cerebrospinal 
fluid (CSF), Gray matter (GM) and White matter 
(WM) respectively whereas the green markers are 
the respective valleys. We use valleys to extract the 
four regions   and it seems that valley thresholds 
separate histogram modes very well. The result in 
Figure 9(b) is obtained by smoothing the brain slice 
using Gaussian filter which is a workable 
assumption [30]. To specify the size of Gaussian 
filter, recall that in a multi-modal histogram about 
75% of the pixels lie between േ3ߪ about the 
mean. The thresholds obtained this way lie in the 
three valley area of smooth histogram and provide 
us with following segmented image: 

8(a) 8(b) 

8(c) 8(d) 
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݃ሺݔ, ሻݕ

ൌ 	

ە
۔

ۓ
,ݔሺ݂		݂݅												ܩܤ						 ሻݕ ൏ ݇ଵ														

ଵ݇	݂݅								ܨܵܥ 	 ݂ሺݔ, ሻݕ ൏ ݇ଶ
ଶ݇	݂݅										ܯܩ  ݂ሺݔ, ሻݕ  ݇ଷ
,ݔሺ݂	݂݅																						ܯܹ ሻݕ  ݇ଷ

 

 
Figure 9 Nelder Mead Optimization In Թଷ 

 
Figure 10 (A) Peak Valley Segmentation  (B) Otsu’s 

Segmentation 

One can easily realize that it is difficult to detect 
the valleys precisely, because valleys are flat and 
broad and the peaks are unequal in height, making 
valleys untraceable. One of the peak and valley 
based segmented image is displayed in Figure 9(a) 
but for entire brain volume this derivative based 
peak valley method fails as all slices within a 
volume needs different value for peak detection. So 
Unconstrained Nonlinear Optimization method is 
used which is commonly known as Nelder Mead 
method or downhill simplex method [6]. Figure 
9(b) shows the segmented image where thresholds 
are obtained from Nelder Mead method; the result 
is thus an improved version in comparison to 
Figure 9(a). Possible optimization steps of the 
downhill simplex algorithm in Թଷ in search of best 
possible thresholds that separates the four classes in 
brain MR images with three thresholds namely݇ଵ, 

݇ଶ and  ݇ଷ are illustrated in Figure 10. The steps 
allow the tetrahedron to move in space at every 
iteration via reflection, expansion, inside 
contraction, outside contraction and shrink 
operations. We have used different colors to show 

each operation on simplex in 3D space, see Figure 
10. The geometrical simplex (tetrahedron) can 

adapt to the surface of function ݂ ൌ ߪ	
ଶ where ߪ

ଶ 
means between class variance, a very well-known 
measure for statistical discriminant analysis. When 
minimum point is far from minimum, the expansion 
step allows the tetrahedron to move in the descent 
direction. On the other hand, when the minimum is 
inside the tetrahedron, contraction and shrink steps 
allow vertices to be moved closer to it. Figure 10 
also demonstrates the search path for complete 
iteration of down-hill simplex method along on xz 
plane. The 2D projection is a much better tool to 
have a look at search direction and step length. In 
Figure 10 the initial simple is shown in red with 
initial guess threshold of (64,127,191). A series of 
such expansions and reflections in three 
dimensional space along search path goes through: 
       
(57,134,201),(57,121,210),(57,117,218),(57,114,20
5),(42,112,210),(44,97,203),(33,87,196) and 
(30,83,189). 
 
There is no shrink and inside contraction occur in 
this particular iteration. Most of the time the search 
utilizes the expansion and reflection operations to 
reach to the minima I this case. More iterations of 
downhill simplex are tabulated in Table I ahead in 
the paper for better visualization and understanding 
of Simplex method. 

E. Binarization 

To create masks from an image having more than 
one gray level, one has to mainly go through 
connected component (CC) analysis of segmented 
regions.  The Otsu’s thresholds kଵ

∗  kଶ
∗ , and kଷ

∗  
obtained in previous step are applied on multi-
threshold segmented image one by one to obtain 
four binary images shown in Figure. 11. Figure 
11(a) shows whole brain surface as white area and 
rest of the pixel represents background i.e. 
fሺx, yሻ ൏ 	kଵ

∗ . Binary Image in Figure 11(b) 

represents region where kଵ
∗ ൏ fሺx, yሻ ൏ 	 kଶ

∗  and 
it clearly contains pixels that consist of CSF and 
GM together in one image while Binary Image in 
Figure 11(c) is the segmented WM region for 
which kଶ

∗  ൏ fሺx, yሻ ൏ kଷ
∗ . Processing of these 

binary images obtained after applying multiple 
thresholds needs combining some morphological 
processing as well to achieve reliable segmentation. 
For example, it is important to get rid of the 
parasitic components “spurs”. In our context spurs 
are caused during labeling of binary images by non-
uniformities of gray levels in the segmented image. 
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It is also important to pick up the “tips” of parasitic 
branches and eliminate them. It has to be noted that 
some of these eliminated spurs and branches are 
picked up again during dilation because they are 
valid pixels of regions. The results of these binary 
operations are shown in Figure 11(d) till Figure 
11(f).  To separate CSF and GM as they are in one 
image (see Figure 11(b), we use histogram 
thresholding. These binary images would help a lot 
in label matrix creation and volume measurements 
but it is difficult to create all these masks in a fully 
automatic fashion. Another simple strategy is to 
determine unique gray levels in the segmented 
image and assigning them the desired class labels. 
This uniformly runs over entire brain volume and 
we get the corresponding label matrix for each 
slice. This label matrix creation completes our 
segmentation and classification step whose sample 
results are shown in Figure 12. The dark gray areas 
in Figure 12 corresponds to BG means label 0, the 
blue areas correspond to CSF whose label is 1, the 
GM region is shown in cyan and has label 3; 
finally, WM is shown in yellow and is assigned 
label 4. 
 

F. Volume Measurements 

The objective here is to determine brain and non-
brain voxels and to calculate volume occupied by 
CSF voxels, GM voxels and WM voxels in the ten 
phantom data sets. 

 
Figure 11 Binary Images Obtained By Otsu’s 

Segmentation 

 
Figure 12 Labeling And Voxel Classification 

The brain voxels in an MRI dataset are determined 
by taking summation of brain volumes over all 
slices, where brain volume of each slice is the 
product of brain voxel count in that slice and voxel 
size. The volume of a single brain MR data  ܸis 
expressed as: 
 
ܸ ൌ ∑ ሺ݊ ∗	 ௩ܸ௫ሻ௦௦ 	                      (12) 

 
ܸௌி ൌ ∑ ሺ݊ଵ ∗ 	 ௩ܸ௫ሻ௦௦                   (13) 

 
Where ݊ voxel is count per slice and ௩ܸ௫  
represents the volume of an individual voxel in 
slice. The voxel counting process is done with the 
help of label matrix created at binarization stage. 
Volume density of a particular tissue in all slices of 
a single brain volume is measured to determine 
total tissue density with in a subject and can be 
expressed as:  
 
					ܸீ ெ ൌ ∑ ሺ݊ଶ ∗ 	 ௩ܸ௫ሻ௦௦               (14) 
 
   	 ௐܸெ ൌ 		∑ ሺ݊ଷ ∗ 	 ௩ܸ௫ሻ௦௦             (15) 
Where	݊ଵ,݊ଶ, ݊ଷare voxel count for CSF, GM and 
WM respectively and  since we assume that all 
pixel either belong to background BG ore any one 
of this tissue, therefore: 
 
݊ ൌ 	݊ଵ 	݊ଶ 	݊ଷ	                          (16) 
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Subject No. 
Slice No. 

     Original Slice Skull Stripped Brain Multimodal Histogram Optimization Otsu’s 
thresholds and 

ߪ
ଶ

 
 
Subject I 
 
Slice 50 

                 (a)               (b) 
 

(c)                   (d) 

݇ଵ
∗ ൌ 51 

݇ଶ
∗ ൌ 117 
݇ଷ
∗ ൌ 181 

 
ߟ ൌ 0.9265 

  
          (e) 

 
Subject I 
 
Slice 90 

(a) (b)                   (c) (d) 

݇ଵ
∗ ൌ 53 

݇ଶ
∗ ൌ 132 
݇ଷ
∗ ൌ 205 

 
ߟ ൌ 0.9906 

(e) 

 
Subject I 
 
Slice 140 

(a) (b)  (c) (d) 

݇ଵ
∗ ൌ 53 

݇ଶ
∗ ൌ 127 
݇ଷ
∗ ൌ 200 

 
ߟ ൌ 0.9883 

(e) 

 
 
Subject V 
 
Slice 50 

(a)                   (b) (c) (d) 

݇ଵ
∗ ൌ 27 
݇ଶ
∗ ൌ 74 

݇ଷ
∗ ൌ 125 

 
ߟ ൌ 0.970 

 
(e) 

 
Subject V 
 
Slice 90 

(a)                 (b) 
 (c) 

(d) 

݇ଵ
∗ ൌ 51 

݇ଶ
∗ ൌ 122 
݇ଷ
∗ ൌ 185 

 
ߟ ൌ 0.99 

(e) 

 
Subject V 
 
Slice 140 

                 (a)              (b) 
                     (c) 

(d) 

݇ଵ
∗ ൌ 46 

݇ଶ
∗ ൌ 124 
݇ଷ
∗ ൌ 188 

 
ߟ ൌ 0.99 

 
(e) 

 
Subject X 
 
Slice 50 

              (a)               (b)                      (c) (d) 

݇ଵ
∗ ൌ 56 

݇ଶ
∗ ൌ 152 
݇ଷ
∗ ൌ 187 

 
ߟ ൌ 0.99 

(e) 
 
Subject X 
 
Slice 90 

     (a)                (b)                      (c)        (d) 

݇ଵ
∗ ൌ 49 

݇ଶ
∗ ൌ 161 
݇ଷ
∗ ൌ 193 

 
ߟ ൌ 0.99 

             
          (e) 

 
Subject X 
 
Slice 120 

             (a)                (b)                     (c) (d) 

݇ଵ
∗ ൌ 61 

݇ଶ
∗ ൌ 139 
݇ଷ
∗ ൌ 178 

 
ߟ ൌ 0.99 

            (e) 

Table 1  Skull Stripping Challenge Of Different Brain  Subjects 
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MR tissue density can be estimated as the ratio of 
tissue volume to total volume of the brain and thus 
is given by: 

௧௦௦௨ܦ ൌ 	
ೞೞೠ
ಳ

                (18) 

 
Where tissue may replace {CSF, GM, WM} and 
thus  ܦ௧௦௦௨ refers the respective tissue density. 
After each brain volume measurements results can 
be combined to measure total tissue volume 
densities over all subjects under consideration for 
analysis as follows: 
	ௌி	௧௧ܦ ൌ 	∑ ܸௌி	௩௨         (19) 

 
	ௐெ	௧௧ܦ ൌ 	∑ ௪ܸெ	௩௨          (20)  

 
	ௐெ	௧௧ܦ ൌ 	∑ ௪ܸெ	௩௨          (21)  

 
4. OTSU’S METHOD IN MEDICAL 

IMAGING 
 
The two recent and important work on structural 
brain MR Images are [31][32]. Both addresses 
Skull Stripping problem where [32] claims to be 
more robust than [31] in the presence of some 
pathology in brain. The purpose of mentioning 
these works here is to bring the attention of readers 
towards forever importance of Otsu’s segmentation. 
[31], organizes his skull stripping procedure as a 
suit of eight algorithms in which Algorithm 2 is 
written to obtain an initial mask to obtain rough 
segmentation of middle brain slice. This procedure 
comprises of four main steps namely: Otsu’s 
Thresholding, Erosion, Finding Largent connected 
component and Dilation.  
 
5. RESULT AND DISCUSSION 
 
We have done fully automatic segmentation, 
classification and volume measurement for ten 
phantom datasets. Optimization and Segmentation 
results for subject I, V and X are shown in Table I. 
Column (1) contains original slices, column (2) 
contains skull stripped brains, column 3 shows the 
multimodal histogram of current slice, and column 
4 shows how the best threshold is selected using 
downhill simplex optimization. And finally column 
(5) provides us with the result and performance of 
optimization and thresholding. The first three rows 
correspond to slice 50, 90 and 140 of subject I, 
which has 1% noise and 20% inhomogeneity. Row 
number 4, 5 and 6 shown results for subject V, 
having 5% noise and 20% inhomogeneity. While 
the last three rows of Table I show results for 
subject X with maximum noise of 9% and 

maximum inhomogeneity of 40%. It is clearly seen 
skull stripped results in column (1) works fine if a 
particular slice belongs to the middle of volume and 
also when the noise and inhomogeneity is low. But 
if noise and inhomogeneity level is high the skull 
stripping doesn’t work as before which is obviously 
becomes a problem in automated segmentation of 
brain. The histograms result in Column (3) also 
reflect some important observations: 
 

(i) The extreme and middle slice histograms 
are not same. 

(ii) The clear three peaks in a brain MR 
histogram belongs to middle of the 
volume. The peaks and valleys get worse 
due to noise and INU as shown in subject 
V and Subject X results in Figure 13.   

(iii) Noise and inhomogeneity seriously affects 
tissue thresholds and densities in a brain 
volume. 

(iv) The histogram is strongly affected by skull 
stripping step if it is opted as a 
preprocessing step in brain MR 
segmentation. 

(v) At extreme slices degenerate input may 
occur (zero volume) due to bad skull 
stripping and sparse slices. 

(vi) The thresholds decrease as noise in a brain 
volume increases. 

The optimization by Unconstrained Nonlinear 
Optimization [6] seems quite effective as it finds 

the minima of error function ߪ
ଶ which is function 

of several variables. It would be easily observed in 
column (4) that at each iteration the threshold 
vector [݇ଵ, ݇ଶ, ݇ଷሿ points away from the vertex 

having the highest value of ߪ
ଶ  to the other vertices 

in the simplex which is tetrahedron in this case. 
Thus, the direction of search changes via reflection, 
expansion, inside contraction, outside contraction 
and shrink operations. We have use following color 
codes for better visualization of optimization 
results. The direction of search and step size can be 
better visualized by projection of 3D simplex onto 
2D plane which mostly follow a zigzag pattern. 
Reader can revise the color code from Figure 14.   
Hence if the inhomogeneity and noise is below 
certain level or the brain MR image is improved for 
bias and partial volume effects. We believe that 
results would become significantly better than this. 
 

 
Figure 13  Color Code For Visualization 
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Finally the column (5) contains thresholds 
݇ଵ
∗	, ݇ଶ

∗, ݇ଷ
∗ along with separability criterion 

measure	ߟ∗ሺ݇ଵ
∗	, ݇ଶ

∗, ݇ଷ
∗ሻ. The mean of thresholds 

over ten subject’s thresholds measurement where 
each subject comprises of 181 slices with 217 x 181 
voxels per slice is tabulated in Table II. The 
Discriminant analysis amongst tissues is also 
supported by variance analysis with p < 0.01 and F 
>>1 showing there is significant difference amongst 
the intensities of three tissues. The box plot in 
Figure 12.  confirms this graphically. Note the 
intensity or gray level L amongst tissues is in the 
range [0 255]. 
Table 2 Average Threshold Over Ten Phantom Data Sets 

Subject ݇ଵ
∗ ݇ଶ

∗ ݇ଷ
∗ 

1 39 108  177 
2 37 105  174 
3 38 107  173 
4 37 105  173 
5 39 106  172 
6 35 97  164 
7 35 100  165 
8 34 100  166 
9 35 101  166 
10 35 101  162 

 
After grouping and labeling via optimization and 
discriminant analysis we have performed tissue 
density volume measurements using the process of 
voxel counting. The volume variability for the three 
tissue density volumes between 10 subjects are 
shown in Figure 14(a), (b) and (c) respectively for 
CSF, GM and WM. Box plot of Figure 14(a) shows 
that tissue volume densities for CSF in all ten 
subjects is significantly different. We believe that 
the outliers for 10 subjects in CSF can be improved 
via better skull stripping procedure and improving 
filtering and inhomogeneity effects in MR images. 
The box plot of Figure 15 (b) shows that   
difference amongst GM density exists but not as 
significant as in case of CSF. The density is also 
much greater than CSF volume density. Finally, the 
box plot of Figure 15(c) represents WM density 
volume in the ten subjects showing significant 
variation in all subjects.  In terms of volume density 
these normal brain phantom data sets contain 
highest GM density, then WM density and least 
volume is occupied by CSF voxels.  
 
6. CONCLUSION AND FUTURE WORK 
 
The goodness of thresholds for tissue separation is 
tested empirically by measure of separability of the 

tissue gray levels and is found to be varying 
between 0.90 and 0.99 for every slice of every 
subject. The discriminant analysis is also supported 
by ANOVA and significant difference is found with 
p < 0.01 and F >>1 for the mean gray levels of 
tissues. Followed by segmentation and 
classification, volume measurements were also 
demonstrated for all ten subjects. Amongst 181 
slices in each of 10 subjects, the highest volume is 
occupied by GM voxels and the least volume is 
occupied by CSF voxels. The sum of tissue 
volumes over all 10 subjects is also significantly 
different from each other. Majority outliers appear 
in CSF voxel count due to partial volume effect and 
improper skull stripping especially for extreme 
slices from both ends of each brain volume. Future 
work incorporates improved skull stripping 
procedure to separate non- tissue voxels from brain 
voxel at an initial stage. The experimental results 
become more robust if noise, inhomogeneity and 
partial volume effect are addressed in brain MR 
images before or after skull stripping.  

 
Figure 14 (A) CSF Volume Density In ݉݉ଷ For 10 

Subjects 

 
Figure 14 (B) GM Volume Density In ݉݉ଷ For 10 

Subjects 
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Figure 14 (C) WM Volume Density In ݉݉ଷ For 10 

Subjects 
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