
Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6011

DR-QPO: DISCRETE RANK BASED QUERY PATTERN
OPTIMIZATION TOWARDS PARALLEL QUERY PLANNING

AND EXECUTION FOR DISTRIBUTE TRIPLE STORES

K.SHAILAJA1, DR. P.V. KUMAR2, DR S.DURGA BHAVANI3
1Department of CSE, Methodist College of Engineering and Technology, Hyderabad, Telangana State,

India
2UCE, OU, HYDERABAD, Telangana State

3School of IT, JNTUH Hyderabad, Telangana State, India
Email: 1 shailajamtech2006@yahoo.co.in, 2 pvkumar58@gmail.com, 3 sdurga.bhavani@gmail.com

ABSTRACT

This manuscript proposed and explored a novel strategy for query pattern optimization towards parallel
query planning and execution in Distributed RDF environments. The critical objective of the proposal is to
optimize the query patterns from the query chains initiated to execute parallel in distributed RDF
environment, which is unique regard to the earlier contributions related to parallel query planning and
execution strategies found in contemporary literature. All of these existing models aimed to notify the query
patterns from the given query chain, which are less significant to optimize the parallel process of the query
patterns that discovered from multiple query chains submitted in parallel in distributed environment (such
as cloud computing) to query the distributed triple stores. In order to this, the Discrete Rank based Query
Pattern Optimization (DR-QPO) strategy is proposed. The DR-QPO optimizes the query patterns from
multiple query chains initiated in parallel. A novel scale called Discrete Rank Consistence Score (DRDCS)
defined, which uses the order of other metrics query pattern occurrence count, search space utilization, and
access cost as input. The experiments conducted on the proposed model and other benchmark models found
in contemporary literature. The results obtained from the experimental study evincing that the proposed
model is significant and robust to optimize the query patterns in order to execute distribute query chains in
parallel. The comparative analysis of the results obtained from DR-QPO and other contemporary models
performed using ANOVA standards like t-test, Wilcoxon signed rank test.

Keywords: RDF, Query Optimising, Parallel Planning, SPARQL, DRDCS, Access Cost Search Space
Utilization Distributed Query Science.

1 INTRODUCTION

Semantic web solutions are gaining
prominence, and RDF (Resource Description
Framework) is one of the flexible data models that
are developed for semantic web [1]. RDF is
profoundly used in varied range of applications like
Semantic Web [2] [3], scientific applications and
web 2.0 solutions [4] and databases [5]. Numerous
researches were carried out and contemporary
solutions were developed with distributed solutions
for storage and querying in RDF data.

Some of the contemporary RDF data storage
solutions are Babel Peers [6], 3rdf [7], RDF Peers
[8], Atlas [9] and Gride Vine [10] which uses P2P

overlay networks for storing and querying RDF
data using distributed process. To obtain quality
search results, RDF triples with same concept,
predicament is stored three times in the network for
every triple component in an individual manner, in
the RDF data stores.

Usually the triples are clustered with same
identifier over the same peer, and such action
address the issue of constraint search for a specific
subject, predicate or an object from a local
database. Though SPARQL3, RDF query language
has varied salient features like aggregation and
optional clause, still the popular dialect adapted is
the conjunctive queries like BGP (Basic Graph
Pattern) queries that typically feature in many
equality joins.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6012

Despite the fact that no single partitioning can
assure that all the queries are PWOC, still majority
of the queries need processing across varied nodes
and hence, data redistribution across nodes are
essential. Based on the complexity of the processed
query, the impact of evaluating distributed part of
the query plan might vary. In deciding the pattern
of decomposing and evaluating a RDF query over a
parallel context, logical query optimization plays a
vital role. In the distributed data management [11],
for effective assessment of queries, there is need for
maximizing parallelism and taking advantage of
distributed processing capacity, which essentially
reduces the response time.

In the context of a parallel RDF query
evaluation, intra-operator parallelism depends on
combined operators which process the chunks of
data in parallel. Developing massively –parallel
plans can support in improving the inter-operator
parallelism, as few combined operators are feasible
to any root-to-leaf path in the plan. Such
development could be attributed to processing
carried out by the joints directly and it doubles up
in the response time. Some of the earlier works like
binary joints organized in bushy plans [12] with
joints (n>2) in the first level of plans and the binary
joins in next level [13] [14] [15] or the joins at all
the levels [16], but with organized in left deep
plans. The aforesaid methods result in high plans
and high responses times.

However, Hadoop RDF [17] is an effective
model designed for developing bushy plans of
joins, but the constraints pertaining to assurance of
flat plans is not guaranteed. The other major
constraint observed in the aforesaidmodels are
about overlay load balancing. As a result of non-
uniform distribution of the frequency relate to
subject, predicate and object oriented occurrences
in triples, it is feasible that the triples may not be
stored over the peers of underlying the networks in
a uniform manner.

It is imperative from the constraints discussed
above, that query optimization is certainly a NP-
hard problem and many of the near-optimal query
plans proposed are of NP-hard [18]. Runtime
increment issues are envisaged for the algorithms
upon the rising number of joins and contemporary
application scenarios [19]. Also the complexity of
systems over which the query is processed also

increases because of load factor. To address such
issues, contemporary models have put forth new
models and contemporary processing operators for
introducing varied new parameters for tuning the
query processing [20] [21]. Such significant
developments can support query optimization much
harder than the size of search space increment.
Further, many of the developments also influence
new cost metrics for considering query plans apart
from the execution time. In the other dimension, the
challenge is that when multiple plan cost metrics
are considered, it could lead to harder-set of query
optimization too [22] [23] [24]. In a comprehensive
scenario, it can be stated that majority of the
emerging solutions for query optimization are
resulting in NP hard and also increase the need for
parallel query optimization algorithms.

In regard to this, the contribution of the
manuscript tends to achieve the following:

 Optimizing the parallel queries targeted to
search on distributed RDF store.

 A distributed ranking model should depict
to optimize the query processing time and
resource utilization

 Optimization process should evince the
linear complexity

2 RELATED WORK

Parallel query optimization can be termed as
the serial optimization algorithms generating plans,
which are executed in parallel [25] for query
processing. Though contextually there are varied
considerations in realizing the term, in the current
scenario a parallel algorithm for generating query
plans are discussed.

In [8] the authors have focused on issue of
load-balancing by curtailing the storage of very
popular URIs and literals, depending on storage
capacity of local peers. Though the process might
provide the desired outcome, still the challenge is
about probable loss of complete result. In [6] the
study has targeted to address the problem by
developing an overlay tree over DHT position of an
overly popular triple component. Such type of load
balancing shall be very fragile in the instance of
node failure in overlay tree, and could even result
in loss of the complete branch of tree.

In [26], the study has worked on huge
variation among the peer’s data load upon triples

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6013

being indexed 3 times by fixed hash depth of 1. For
improving the data distribution, the proposed model
has focused on idea of indexing triples using
random hash depth, wherein for every depth there
shall be equal number of potential location keys for
triple components. It showed that with higher value
of hash depth, the better is the triples distribution
among peers. But it comes with cost of network
communication in the instance of query evaluation,
as many peers are queried for evaluation of triple
pattern.

In [27], for addressing the hotspots of unfair
load balancing, a solution in terms of indexing a
triple for every possible combination of its two
components like subject + object, predicate +
object, subject + predicate and such combination
are proposed. The impact of such process was extra
storage of triples in the network, despite of
achieving fair triple load distribution.

In [9], for improving the query load
distribution, study has focused on additionally
indexed triples by combination of varied triple
components, resulting in 7 replications for every
triple in total. It is used in extra storage overhead
for distribution of query processing load amidst the
peers. But the key element missing was about
studying the utilization of overhead for improving
the response time for query processing.

In [28], the notion of quad is used for
representing the RDF data and a solution with
optimized index structure for supporting evaluation
of RDF queries in centralized RDF data stores are
considered.

The study reflects that only 6 indexes are
essential for covering the entire range of 16 access
patterns, but every access pattern is considered a
quad when there is combination of subject,
predicate, object or the context is either defined or a
variable. Considering such scope for reducing the
number of essential indexes, in section IV-B only 3
indexes are required for new index scheme to
ensure coverage of all the 8 possible triple patterns.

The proposed work connects to the earlier
works that parallelize classical dynamic program
designed with query optimization algorithm [29],
[30], [31], [32], [33], [34], and [35]. Many of the
prior algorithms were devised for shared-memory
structures, which lack scalability over a certain
level of parallelism [36]. In the other way, prior
algorithms evaluated to consider certain volume,
but the algorithm devised in [35] evinced
scalability with shared-nothing architecture

comprising over 250 workers. Some of the key
factors that differentiate prior algorithms to
proposed algorithm is the limitation and scalability.

In the earlier algorithms, the query patterns
that are independent, cyclic or recursive only
planned to execute in parallel as independent
threads and there is presumption that all the threads
might share common data structures and thus it is
easier to access intermediary results generated in
the other threads. This practiceleads to huge
communication overhead over shared-nothing
architectures and moreover, these algorithms least
significant towards optimizing query patterns found
multiple query chains submitted in distributed
environment. In addition, the earlier algorithms
have relied on central coordinator for assigning
rather fine-tuned optimization of tasks to the work
threads. Two of the key disadvantages of such
process are: i) it needs considerable communication
among the master and workers ii) increased levels
of time complexity in managing at central system,
which leads to delay in implementing parallelism.

In regard to this, the proposed algorithm does
optimize the query patterns that are independent,
recursive or cyclic in multiple query chains that
effectively workin shared nothing distributed
environment with multiple clients and multiple
distributed triple stores.

3 DISCRETE RANK BASED QUERY
PATTERN OPTIMIZATION

This section explores the methods and
materials used discrete rank based query pattern
optimization for distributed query planning for
RDF stores. The initial step of the proposed model
finds the query patterns of size 1 to n and ranks
them in ascending order of their occurrence count,
such that highest rank is most optimal. Further rank
these patterns in descending of respective search
space utilization, such that the query pattern with
highest rank is most optimal. Afterwards, allocate
ranks to the same patterns in descending order of
their access cost that similar to the ranking strategy
followed for search space utilization, such that the
pattern with highest rank is most optimal towards
access cost. At this stage, each pattern discovered
enlisted with three discrete ranks corresponding to
their occurrence count, search space utilization and
access cost. Further the process of estimating
theDiscrete Rank distribution consistency score
(DRDCS) of the query patterns is performed, which

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6014

considers further toallocate global rank of each of
the pattern. The global rank assigned to all of these
patterns in descending order of their DRDCS. The
detailed exploration of these phases depicted in
following sections.

RDF structure based semantic web search usually
carried out using SPARQL queries by indicating
them in the form of tree structure. Query chosen for
the process categorizes in to three distinct formats
like left deep, right deep and bidirectional deep
tree, which is termed as bushy tree. In the instance
of any of the trees retaining subjects, predicates, or
the objects as leads and join them as nodes, then the
depth first tree is formed first, and the connection
amidst the nodes will form a bushy structure,
whereas the join connected to subject predicate or
object connects to the other join which could
conclude left deep tree. The emphasis of proposed
model is to optimize the parallel query planning
process and reduce the cost of execution. Hence,
the query structure chosen for exploring the
proposed solution is bidirectional or bushy tree.

The depicted model is explored by considering
the query structures defined in renowned query
language called SPARQL However this model can
adapt to any of the formal query languages
available.

3.1 Query Patterns discovery

This section explores the Tabu Search based
query patterns and their occurrence count
discovery. Initial task of the proposed model is to
identify the query patterns of size 1andtabu
transactions (no need to search) respective to each
discovered pattern of size 1. Further, the search will
be conducted recursively for two-size query
patterns to max possible size of query patterns.
During the search, the insignificant patterns and
insignificant transactions respective to significant
patterns place in respective tabu lists, which ignores
from search space in further iterations.The
proposed model is using tabu search in order to
limit the process time.The detailed pattern
discovery process explored following:

All query elements  1 2, , mE e e e     of size

m are a finite set those appear in the set Q of

distributed query-chains given. The query-chain set
Q of size n represents the all distributed query

chains 1 2 3{ , , ,, }nq q q q such that each query-

chain formed by the subset of query elements in set
E , such that each query-chain
{ 1 }r rq q Q r n     is the superset of one or

more query elements QE . Each query-chain is

notified by a unique query-chain id{ 1 }r r n   ,

which referred further as qid . Each query element

je in a given query-chain represents query element

e with id1 j m  .

Further, the query elements E considers as 1-size
patterns set and determines their occurrence count
and tabu list of transactions respective to each 1-
size pattern as follows.

1qp E // clone the set of all query elements as 1-

size query patterns set 1qp

1qps qp // The set qps retains all possible query

patterns discovered that initialized by moving all 1-
size patterns

step 1.  11

m

i ii
p p qp


   Begin

step 2. () 0io p  // denotes the occurrence count

of pattern ip that initialized to 0;

step 3.  
1

() 1
n

i i j j
j

o p p q q Q


    

step 4. ()itlq p // is an empty list contains the

query chains those not having query pattern

ip

step 5.  
1

()
n

i j i j jj
tlq p q p q q Q


      //

moving all query chains those not having
query pattern ip

step 6. End //of step 1
The notations used in the algorithm are as follows:

step 1. 2s // represents the size of the query-
patterns to be discovered in sequence, which
is initialized by 2. Since the algorithm uses
the query-patterns of size 1 as input.

step 2. tlp // Tabu list of query-patterns:

step 3. Tabu list of query-chains tlqc :

step 4. Prepare tabu list of Query-chains tlt :
query-chains that are having one or zero
items from 1-size patterns list

step 5. Main Loop: While (True) Begin

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6015

step 6. Pick 1s  size patterns

step 7.
(1)| |

(1)1
{ }

sqp

j j s jj
p p qp p tlp




     Begin //for

each query pattern
jp in

(1)sqp 

step 8.
(1)| |

(1)
1

{ }
sqp

k k s k
k

p p qp j k p tlp



      

Begin //for each query pattern kp in
(1)sqp  ,

such that j k

step 9. jk j kp p p  // results new query pattern

jkp that contains all unique query elements

in jp and kp

step 10.  
1

() 1
n

jk jk j j
j

o p p q q Q


     // find

the occurrence of pattern jkp

step 11. (() 0)jkif o p  Begin

step 12. s jkqp p //move pattern jkp to the

query pattern set sqp

step 13.  
1

()
n

jk j jk j jj
tlq p q p q q Q


      find

all tabu query chains related to pattern jkp

step 14. End // of step 11
step 15. Else jktlp p // move pattern jkp to

tabu pattern list tlp , since the pattern does

not exists in an query chain
step 16. End // of step 8
step 17. End // of step 7

step 18. (| | 0)sif qp  begin //If sqp is not empty

step 19. Update tabu list of Query-chains: query-
chains that are having one or zero patterns

from sqp list

step 20. sqps qp // moving all patterns from

sqp to qps

step 21. 1s s 
step 22. End //of step 19
step 23. Else break the main loop in step 5
step 24. End // of step 5
The process explored in step 1 to step 24,

discovers all possible patterns as set qps and their

respective occurrence count. Further, this set qps

used as input to allocate discrete ranks to all
patterns about occurrence count, max search space
required and access cost required respectively. The

discrete rank allocation for each pattern explored in
following sections.

3.2 Search Space Utilization

To track the optimality of a query formed in to a
bushy tree, two metrics “minimal access cost” and
“search of minimal combinations” were defined in
the earlier contribution [37]. As both the metrics
are fundamental for estimating the optimality of a
query pattern, the search space is used is
proportionate to the varied combinations traversed
because of tow query elements connected under a
join node pattern. Hence, the metric search of
minimal combinations supports to assess the search
space utilization. About this observation, the metric
“search of minimal combinations” [37] adapted and
the result obtained for this metric from each query
pattern considered as search space utilization of the
respective query pattern. The process of the
estimating this metric of a given query pattern is as
follows:

Search of minimal combinations could be defined
as the cumulative outcome of combinations amidst
the subjects and count of objects in a chosen
predicate. Estimation of max possible combination
are carried out as:

| | | |

1 1

() {1 () }
S O

k i j
i j

mpc p p s o P
 

   

// in the equation above, the counting of the
possible combinations for a subject is and object

jo with anticipated predicate P , ()i jp s o is

concrete predicate of the subject is and object jo . “

()kmpc J ” denotes the max possible combinations

for a query pattern kp //.

3.3 Query Pattern Access cost

Other significant factor is the access time which
is unique for all query elements in a query pattern
which targets the single RDF store. However, if the
triple stores that are targeted are differing from the
every query element in a chosen query pattern
constituted, accordingly the access time might vary
for varied query elements. In order to address the
constraint, the other significant metric “minimal
cost” is considered in the earlier solution [37],
which is also adapted in the second model. The
metric is very much reliant on the metric “search by

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6016

minimal combinations”. The process of evaluating
the metric explored are:

Minimal access cost is the cumulative of costs for
accessing the Distributed RDFs over varied
subjects to attain the objects within expected
predicate that is assessed using the following
equation.

| | | |

1 1

() { () }
S DRDF

k i j
i j

ac p ac s rdf vc
 

   

// in the equation above, |S| is the cumulative
number of subjects over a given query pattern,

| |DRDF Is the number of RDFs measured under

distributed architecture, ()i jac s rdf shall be

access cost to jrdf under the selected subject is

and vc is indicating the number of visits. The

notation ()kac p indicates the minimal access cost

of the query pattern kp .

3.4 Ranking by their occurrence count

Clone qps as set oqps and refine it as if any

pattern ip is subset of other pattern jp with same

occurrence count, then discard ip from oqps . The

model adapted to prune the patterns as follow:

step 1:  
| |

1

oqps

i i
i

p p oqps

   Begin // for each

pattern ip that exists in opqs

step 2:  
| |

1

oqps

j j i j
j i

p p oqps p p
 
     Begin // for

each pattern jp of set opqs , which is not

equal to pattern ip

step 3:  () ()i j i iif p p o p o p   Begin // if

pattern ip is subset of jp and the occurrence

count of both patterns is identical
step 4: \ iopqs p //prune the pattern ip from set

opqs

step 5: 1i i  // decrementing the index of the
loop in step 1

step 6: Go to step 1;
step 7: End // of step 3
step 8: End // of step 2
step 9: End // of step 1

Rank the query patterns in oqps in ascending order

of their respective occurrence count, such that
patterns having same occurrence count will have
same rank and pattern with highest occurrence
count entitles highest rank. The process of rank
allocation as follows:

step 10:  
| |

1

oqps

i i
i

p p oqps

   Begin // for each

pattern ip that exists in opqs

step 11:  
| |

1

oqps

j j i j
j i

p p oqps p p
 
     Begin // for

each pattern jp of set opqs , which is not

equal to pattern ip

step 12: t j

step 13:  
| |

1

oqps

k k k j
k j

p p oqps p p
 
     Begin //

for each pattern kp of set opqs , which is not

equal to pattern jp

step 14:  () ()k jif o p o p t k

step 15: End // of step 4
step 16: End //of step 2

step 17:  () ()i kif o p o p i kp p� // if

occurrence count of pattern ip is greater than

occurrence count of pattern kp swap their

positions in oqps

step 18: 0idx  // ranking index initialized by 0

step 19:  
| |

1

oqps

i i
i

p p oqps

   Begin //

step 20:  11&& () ()i iif i o p o p  ()o ir p idx

step 21: Else Begin
step 22: 1idx 
step 23: ()o ir p idx

step 24: End //of step 12

3.5 Ranking by search space utilization

Clone qps as set sqps , and refine the set sqps ,

such that if any pattern ip is subset of other pattern

jp and search space usage of ip is equal to search

space usage of jp then discard ip from sqps .

Further, Rank the query patterns in sqps in

descending order of their respective occurrence
count, such that patterns having same search space
usage will have same rank and pattern with

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6017

lowestsearch space usage entitles highest rank. The
sorting and ranking procedure depicted as follows:

 
| | | |

1 1
\ () ()

[,]

i j
sqps sqps

i i j
i j

i j

p p

sqps p mpc p mpc p

p p sqps
 

    
            
        

// The equation is pruning the query patterns if any
of the pattern ip is subset of the pattern jp and the

search space utilization of the both patterns
() ()i jmpc p and mpc p are identical.

Then sort the leftover patterns of sqps in

descending order of their search space utilization
(the similar process that explored in steps 10 to 17
in section 3.4 should apply on sqps instead of

oqps and comparison should do about search space

utilization instead of occurrence count. Further,
rank them according to their order of presence in
the set sqps , such that the distinct query patterns

having same search space utilization enlists with
same rank. The process explored in steps 18 to 24
is compatible to tank the query patterns in set sqps ,

which should do by comparing their search space
utilization instead of occurrence count. The ranks
allotted to each query pattern ip in set sqps

denoted by ()s ir p .

3.6 Ranking by access cost

Clone qps as set aqps , and refine if any pattern

ip is subset of other pattern jp and access cost of

ip is more or equal access cost of jp then discard

ip . Further, rank the query patterns in aqps in

descending order of their respective occurrence
count, such that patterns having same access cost
will have same rank and pattern with lowest access
cost entitles highest rank. The process that adapted
to prune the query patterns in section 3.3 can
merely follow to prune records from set aqps . The

condition to prune record should compare their
access cost instead occurrence count (see step 1 to
9 in section 3.4). Further, the sorting and ranking is
similar to steps 10 to 24 in sec 3.3 and the query
patterns should sort in descending order of their
access cost instead occurrence count.

The ranks assigned to the query patterns in
set aqps refersas the notation ()a ir p , which

denotes the rank assigned to query pattern ip based

on its access cost.

3.7 Discrete Rank Distribution Consistency
Score (DRDCS)

This section adapts the mean square distance [38]
between the distinct ranks assigned to each query
pattern to estimate the rank distribution
consistency. In order to define the DRDC for each
pattern, initially identifies all unique patterns from
set oqps , set sqps and set aqps , which denotes

further as set uqps . The foremost step to discover

DRDCS of the patterns in uqps is, if any of the

query pattern ip from set uqps not exists in any of

the sets ,oqps sqps and aqps , then identify the

super set of that query pattern jp with highest rank

from the respective set and assign the rank of
superset query pattern jp to the corresponding

query pattern ip . Further assess the DRDCS of the

each pattern from the respective ranks of
occurrence count, search space utilization and
access cost those assigned to each query pattern as
follows:

step 1:  
| |

1

uqps

i i
i

p p uqps

   Begin / for each query

pattern ip in set uqps

step 2:
() () ()

()
3

o i s i a i
r i

r p r p r p
m p

 
 // Finding

the mean of the all distinct ranks assigned to
pattern ip

step 3:

 

 

 

2

2

2

() ()

() ()

() ()
()

3

r i o i

r i o i

r i o i

r i

m p r p

m p r p

m p r p
d p

   
 

  
 
 
  /Finding the mean

square distance of the distinct ranks assigned
to pattern ip

step 4:

1
()

()
()

r i
i

o i

d p
cs p

r p


 

  
 

// the discrete rank

distribution consistence score is estimated as
inverse ratio of the mean square distance

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6018

against the rank assigned for occurrence
count.

step 5: End// of step 1
The discrete rank distribution consistence score

estimated as the ratio of mean square distance
against the rank assigned to occurrence count of the
respective query pattern. This is due to the
ambiguity of the root mean square distance
obtained for the distinct lowest ranks that
approximately equal and the distinct highest ranks
that also approximately equal. As an example, the
rank set (3, 2, 1) of query pattern ip and the rank

set (33, 32, 31) of query pattern jp gets the equal

value 2 a mean square distance, but ratio of these
mean square distances against to the rank assigned
under occurrence count of the respective query
patterns i jp and p are 0.666666667 and

0.060606061 which are distinct. These ratio values
are lowest for highest distinct ranks and highest for
lowest distinct ranks. Hence, the inverse ratio s
obtained as consistency score. The consistence
score observed for respective example given are
1.5 for query pattern ip with distinct rank set (3, 2,

1)and 16.5 for query pattern jp with distinct rank

set (33, 32, 31) . Here the rank assigned for
occurrence count is considered to assess the
discrete rank consistence score, which is since the
most occurrences indicates the associability of the
respective pattern towards the multiple query
chains given as input to query processing. If a
query pattern is having highest rank in regard to
occurrence count, the execution of respective query
pattern accomplish the partial results extraction for
the multiple number of query chains that
represented by the occurrence count of the
respective query pattern.

These query patterns scheduled further in the order
of their discrete rank distribution consistence score.
The scheduling of these patterns is parallel, which
in the context of first come first serve scheduling
strategy.

4 EXPERIMENTAL SETUP AND
PERFORMANCE ANALYSIS

The proposed model DR-QPO and other
contemporary models [31] [32] [33] [35] adapted to
compare are implemented using java and executed
on Intel 5th generation platform. The distributed

environment of multiple triple stores and multiple
clients is simulated using java RMI, such that
clients can submit SPARQL queries in parallel. The
performance statistics of the results obtained from
DR-QPO and other contemporary models assessed
using expression language R [39].

4.1 The Input Query Formation

Each client of the distributed environment creates
synthesizes set of SPARQL query chains such that
each query chain contains varied number of query
patterns that extracts the results from triple stores
and submits to query processing module in parallel.
The set of noteworthy RDF stores such as
FACTBOOK, FOAF, and LUBM [40-42] adapted
as distributed triple stores for experiments. The
number of query elements in each query chain is in
the range of 5 to 25 and total number of query
chains submitted in parallel is in between 10 to 60.

4.2 Performance Analysis

The metric “average query processing time”
considered for assessing the performance of the
DR-QPO and other contemporary models adapted.
The “residual memory ratio”, which is the
percentage of the memory not in use against to total
memory allocated for query processing. Along the
side of these two metrics, access cost dissemination
ratio, which is the ratio of access cost diffused by
executing a cyclic or recursive query pattern only
once. The existing contemporary models are
considering these cyclic recursive patterns exist in a
given single query chain, contrast to this, the DR-
QPO is considering the recursive query patterns
from the multiple query chains submitted in
parallel.

Table 1: The Results Obtained For T-Test and Wilcoxon
Test Performed On Average Query Processing Time
Observed From Dr-Qpo and Other Contemporary

Models

Average Query Processing Time

T-test
Wilcoxon

Test
t-

score
p-

value
z-

score
p-

value

Trummer et al.,
[35]

-
6.277

86

<
.0000

1

-
3.059

4
0.001

11

chen et al.,[33]
-

6.475
<

.0000
-

3.059
0.001

11

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6019

81 1 4

w. zuo et al.,
[32]

-
6.503

51

<
.0000

1

-
3.059

4
0.001

11

F.M waas et
al., [31]

-
8.591

06

<
.0000

1

-
3.059

4
0.001

11

Table 2: The results obtained for t-test and Wilcoxon test
performed on residual memory observed from DR-QPO

and other contemporary models

Residual Memory

T-test
Wilcoxon

Test

t-score
p-

value
z-

score
p-

value

Trummer et
al., [35]

-
6.4020

3

<
.0000

1

-
3.05
94

0.00
111

chen et
al.,[33]

-
9.2817

3

<
.0000

1

-
3.05
94

0.00
111

w. zuo et al.,
[32]

-
9.3581

5

<
.0000

1

-
3.05
94

0.00
111

F.M waas et
al., [31]

-
13.128

42

<
.0000

1

-
3.05
94

0.00
111

Table 3: The results obtained for t-test and Wilcoxon test
performed on access cost dissemination observed from

DR-QPO and other contemporary models

Access Cost Dissemination

T-test
Wilcoxon

Test
t-

score
p-

value
z-

score
p-

value

Trummer et
al., [35]

4.012
21

0.000
293

-
3.05
94

0.001
11

chen et
al.,[33]

3.773
02

0.000
524

-
3.05
94

0.001
11

w. zuo et al.,
[32]

3.749
15

0.000
555

-
3.05
94

0.001
11

F.M waas et
al., [31]

3.808
87

0.000
48

-
3.05
94

0.001
11

The consistency of the proposed model

evinced through t–test and Wilcoxon signed rank
test [43] applied on the values obtained for

respective metrics of DR-QPO and other
contemporary models adapted. The tables 1, 2 and
3 exploredthe t-score, z-score and respective degree
of probability observed between the divergent
metric values obtained from DR-QPO and other
models. The degree of probability observed for t-
test and Wilcoxon signed rank test between DR-
QPO and other models is almost nullified (almost
zero), hence it is obvious to conclude that the
proposed model DR-QPO significantly
outperformed all other contemporary models
considered for comparison.

5 CONCLUSION

Discrete Rank based Query Pattern
Optimization (DR-QPO) towards Parallel Query
Planning and Execution for RDF Stores proposed
here in this manuscript. Unlike the existing parallel
query planning and execution models [31-33, 35]
found in contemporary literature, the proposed
model is optimizing the query patterns planning
and execution in parallel for distributed query
chains. The contemporary models limited to
optimize the cyclic and recursive patterns found in
individual query chain. Contrast to this, the DR-
QPO optimizing the query patterns those are
recursive in multiple query chains submitted in
distributed environment. The metrics such as query
pattern occurrence count (pattern exists in multiple
query chains), search space utilization and access
cost are consider to assign distinct ranks to each
query pattern. Further, estimates the discrete rank
distribution consistence score (DRDCS) of each
query pattern, which is critical contribution of the
manuscript. Further, query patterns planned to
execute according to their DRDC observed. The
results obtained from experimental study evincing
that the proposed model consistently outperformed
the other contemporary models. The performance
analysis of the model proposed and other
contemporary models done, which is by comparing
the results obtained suing ANOVA standards like t-
test and Wilcoxon signed rank test. The scope of
this manuscript is optimizing the query patterns
discovered from distributed query chains given as
input to parallel query processing against
diversified triple stores. Hence, in this regard the
exploration limited to the model devised to
optimize the order of query patterns in regard to
discrete ranks assigned under divergent factors such

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6020

as the pattern associability to query chains
(occurrence count), search by minimal
combinations (search space utilization) and
minimal access cost. The future research can
contribute an optimal scheduling strategy to
schedule the query patterns to execute in parallel.

REFERENCES

[1] P. Hayes, “RDF Semantics,” W3C
Recommendation, February 2004,
http://www.w3.org/TR/rdf-mt/.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R.
Cyganiak, and Z. G. Ives, “DBpedia: A Nucleus
for a Web of Open Data,” in ISWC, 2007.

[3] F. M. Suchanek, G. Kasneci, and G. Weikum,
“Yago: A Core of Semantic Knowledge,” in
WWW, 2007.

[4] D. Huynh, S. Mazzocchi, and D. R. Karger,
“Piggy Bank: Experience the Semantic Web
inside your web browser,” J. Web Sem., vol. 5,
no. 1, 2007.

[5] E. I. Chong, S. Das, G. Eadon, and J.
Srinivasan, “An Efficient SQL based RDF
Querying Scheme,” in VLDB, 2005.

[6] D. Battr´e, F. Heine, A. H¨oing, and O. Kao,
“On Triple Dissemination, Forward-Chaining,
and Load Balancing in DHT based RDF
Stores,” in Proceedings of the 2005/2006
international conference on Databases,
information systems, and peer-to-peer
computing, 2007, pp. 343–354.

[7] L. Ali, T. Janson, and G. Lausen, “3rdf: Storing
and Querying RDF Data on Top of the 3nuts
Overlay Network,” in 10th International
Workshop on Web Semantics, Toulouse,
France, August 2011, pp. 257–261.

[8] M. Cai and M. Frank, “RDFPeers: a scalable
distributed RDF repository based on a
structured peer-to-peer network,” in
Proceedings of the 13th international conference
on World Wide Web, 2004, pp. 650–657.

[9] E. Liarou, S. Idreos, and M. Koubarakis,
“Evaluating Conjunctive Triple Pattern Queries
over Large Structured Overlay Networks,” in
International Semantic Web Conference, 2006,
pp. 399–413.

[10] K. Aberer, P. Cudre-Mauroux, M. Hauswirth,
and T. V. Pelt, “GridVine: Building Internet-

Scale Semantic Overlay Networks,” in the
Semantic Web – ISWC 2004, vol. 3298.
Springer-Verlag, 2004, pp. 107–121.

[11] M. T. O¨ zsu and P. Valduriez, Distributed and
Parallel Database Systems (3rd. ed.). Springer,
2011.

[12] L. Galarraga, K. Hose, and R. Schenkel,
“Partout: A Distributed Engine for Efficient
RDF Processing,” Technical Report: CoRR
abs/1212.5636, 2012.

[13] J. Huang, D. J. Abadi, and K. Ren, “Scalable
SPARQL Querying of Large RDF Graphs,”
PVLDB, vol. 4, no. 11, 2011.

[14] K. Lee and L. Liu, “Scaling Queries over Big
RDF Graphs with Semantic Hash Partitioning,”
PVLDB, vol. 6, no. 14, Sep. 2013.

[15] K. Hose and R. Schenkel, “WARP: Workload-
Aware Replication and Partitioning for RDF,”
in DESWEB, 2013.

[16] N. Papailiou, I. Konstantinou, D. Tsoumakos,
P. Karras, and N. Koziris, “H2RDF+: High-
performance Distributed Joins over Large-scale
RDF Graphs,” in IEEE BigData, 2013.

[17] M. Husain, J. McGlothlin, M. M. Masud, L.
Khan, and B. M. Thuraisingham, “Heuristics-
Based Query Processing for Large RDF Graphs
Using Cloud Computing,” IEEE TKDE, vol. 23,
no. 9, Sep. 2011.

[18] S. Chatterji and S. Evani. On the complexity of
approximate query optimization. In PODS,
pages 282–292, 2002.

[19] O. Cure and G. Blin.RDF Database Systems:
Triples Storage and SPARQL Query
Processing. 2014.

[20] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y.
E. Ioannidis. Schedule Optimization for Data
Processing Flows on the Cloud. In SIGMOD,
2011.

[21] S. Agarwal, A. Iyer, and A. Panda. Blink and
it’s done: interactive queries on very large data.
In VLDB, volume 5, pages 1902–1905, 2012.

[22] I. Trummer and C. Koch. Approximation
schemes for many-objective query optimization.
In SIGMOD, pages 1299–1310, 2014.

[23] I. Trummer and C. Koch. An incremental
anytime algorithm for multi-objective queries
optimization. In SIGMOD, pages 1941–1953,
2015.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6021

[24] I. Trummer and C. Koch.Multi-objective
parametric query optimization. VLDB,
8(3):221–232, 2015.

[25] C. Chekuri, W. Hasan, and R. Motwani.
Scheduling Problems in Parallel Query
Optimization. In PODS, pages 255–265, 1995.

[26] R. Mietz, S. Groppe, O. Kleine, D. Bimschas,
S. Fischer, K. Roomer, and D. Pfisterer, “A p2p
semantic query framework for the internet of
things,” Praxis der Informationsverarbeitung
und Kommunikation, vol. 36, no. 2, pp. 73–79,
2013.

[27] L. Ali, T. Janson, G. Lausen, and C.
Schindelhauer, “Effects of Network Structure
Improvement on Distributed RDF Querying,” in
6th International Conference on Data
Management in Cloud, Grid and P2P Systems
(Globe 2013), Prague, Czech Republic,
September 2013.

[28] A. Harth and S. Decker, “Optimized index
structures for querying rdf from the web,” Web
Congress, Latin American, vol. 0, pp. 71–80,
2005.

[29] W.-S.Han, W. Kwak, J. Lee, G. M. Lohman,
and V. Markl. Parallelizing query optimization.
VLDB, 1(1):188–200, Aug. 2008.

[30] W.-S.Han and J. Lee. Dependency-aware
reordering for parallelizing query optimization
in multi-core CPUs. In SIGMOD, pages 45–58,
2009.

[31] F. M. Waas and J. M. Hellerstein. Parallelizing
extensible query optimizers. In SIGMOD, page
871, New York, New York, USA, 2009.ACM
Press.

[32] W. Zuo, Y. Chen, F.He, and K. Chen.
Optimization Strategy of Top-Down Join
Enumeration on Modern Multi-Core CPUs.
Journal of Computers, 6(10):2004–2012, Oct.
2011.

[33] Y. Chen and C. Yin. Graceful Degradation for
Top-Down Join Enumeration via similar sub-
queries measure on Chip Multi-Processor.
Applied Mathematics and Information Sciences,
941(3):935–941, 2012.

[34] M. a. Soliman, M. Petropoulos, F. Waas, S.
Narayanan, K. Krikellas, R. Baldwin, L.
Antova, V. Raghavan, A. El-Helw, Z. Gu, E.
Shen, G. C. Caragea, C. Garcia-Alvarado, and
F. Rahman. Orca: A modular query optimizer
architecture for big data. In SIGMOD, pages
337–348, 2014.

[35] Trummer, Immanuel, and Christoph
Koch."Parallelizing query optimization on
shared-nothing architectures." Proceedings of
the VLDB Endowment 9.9 (2016): 660-671.

[36] M. Stonebraker. The Case for Shared Nothing.
IEEE Database Engineering Bulletin, 9(1):4–9,
1986.

[37] Shailaja, K., P. V. Kumar, and S. Durga
Bhavani. "Progressive Genetic Evolutions-
Based Join Cost Optimization (PGE-JCO) for
Distributed RDF Chain Queries." Proceedings
of the First International Conference on
Computational Intelligence and Informatics.
Springer Singapore, 2017.

[38] Carmines, Edward G., and Richard A. Zeller.
Reliability and validity assessment. Vol. 17.
Sage publications, 1979.

[39] Ihaka, Ross, and Robert Gentleman. "R: a
language for data analysis and graphics."
Journal of computational and graphical statistics
5.3 (1996): 299-314.

[40] The Friend of a Friend (FOAF) project.
Retrieved from foaf-project.org:
http://www.foaf-project.org/ (2000).

[41] Agency, C. I. The CIA World Factbook
2015.New Yark: Skyhorse Publishing Inc
(2014).

[42] Guo, Yuanbo, Zhengxiang Pan, and Jeff
Heflin. "LUBM: A benchmark for OWL
knowledge base systems." Web Semantics:
Science, Services and Agents on the World
Wide Web 3.2 (2005): 158-182.

[43] Cleophas, Ton J., and Aeilko H. Zwinderman.
"Paired Continuous Data (Paired T-Test,
Wilcoxon Signed Rank Test)." Clinical Data
Analysis on a Pocket Calculator. Springer
International Publishing,2016.31-36.

