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ABSTRACT 

This manuscript proposed and explored a novel strategy for query pattern optimization towards parallel 
query planning and execution in Distributed RDF environments. The critical objective of the proposal is to 
optimize the query patterns from the query chains initiated to execute parallel in distributed RDF 
environment, which is unique regard to the earlier contributions related to parallel query planning and 
execution strategies found in contemporary literature. All of these existing models aimed to notify the query 
patterns from the given query chain, which are less significant to optimize the parallel process of the query 
patterns that discovered from multiple query chains submitted in parallel in distributed environment (such 
as cloud computing) to query the distributed triple stores. In order to this, the Discrete Rank based Query 
Pattern Optimization (DR-QPO) strategy is proposed. The DR-QPO optimizes the query patterns from 
multiple query chains initiated in parallel. A novel scale called Discrete Rank Consistence Score (DRDCS) 
defined, which uses the order of other metrics query pattern occurrence count, search space utilization, and 
access cost as input. The experiments conducted on the proposed model and other benchmark models found 
in contemporary literature. The results obtained from the experimental study evincing that the proposed 
model is significant and robust to optimize the query patterns in order to execute distribute query chains in 
parallel. The comparative analysis of the results obtained from DR-QPO and other contemporary models 
performed using ANOVA standards like t-test, Wilcoxon signed rank test. 

Keywords: RDF, Query Optimising, Parallel Planning, SPARQL, DRDCS, Access Cost Search Space 
Utilization Distributed Query Science.

1 INTRODUCTION 

Semantic web solutions are gaining 
prominence, and RDF (Resource Description 
Framework) is one of the flexible data models that 
are developed for semantic web [1]. RDF is 
profoundly used in varied range of applications like 
Semantic Web [2] [3], scientific applications and 
web 2.0 solutions [4] and databases [5].  Numerous 
researches were carried out and contemporary 
solutions were developed with distributed solutions 
for storage and querying in RDF data.  

Some of the contemporary RDF data storage 
solutions are Babel Peers [6], 3rdf [7], RDF Peers 
[8], Atlas [9] and Gride Vine [10] which uses P2P 

overlay networks for storing and querying RDF 
data using distributed process. To obtain quality 
search results, RDF triples with same concept, 
predicament is stored three times in the network for 
every triple component in an individual manner, in 
the RDF data stores.  

Usually the triples are clustered with same 
identifier over the same peer, and such action 
address the issue of constraint search for a specific 
subject, predicate or an object from a local 
database. Though SPARQL3, RDF query language 
has varied salient features like aggregation and 
optional clause, still the popular dialect adapted is 
the conjunctive queries like BGP (Basic Graph 
Pattern) queries that typically feature in many 
equality joins.  
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Despite the fact that no single partitioning can 
assure that all the queries are PWOC, still majority 
of the queries need processing across varied nodes 
and hence, data redistribution across nodes are 
essential. Based on the complexity of the processed 
query, the impact of evaluating distributed part of 
the query plan might vary. In deciding the pattern 
of decomposing and evaluating a RDF query over a 
parallel context, logical query optimization plays a 
vital role.  In the distributed data management [11], 
for effective assessment of queries, there is need for 
maximizing parallelism and taking advantage of 
distributed processing capacity, which essentially 
reduces the response time.  

In the context of a parallel RDF query 
evaluation, intra-operator parallelism depends on 
combined operators which process the chunks of 
data in parallel. Developing massively –parallel 
plans can support in improving the inter-operator 
parallelism, as few combined operators are feasible 
to any root-to-leaf path in the plan. Such 
development could be attributed to processing 
carried out by the joints directly and it doubles up 
in the response time. Some of the earlier works like 
binary joints organized in bushy plans [12] with 
joints (n>2) in the first level of plans and the binary 
joins in next level [13] [14] [15] or the joins at all 
the levels [16], but with organized in left deep 
plans. The aforesaid methods result in high plans 
and high responses times.  

However, Hadoop RDF [17] is an effective 
model designed for developing bushy plans of 
joins, but the constraints pertaining to assurance of 
flat plans is not guaranteed. The other major 
constraint observed in the aforesaidmodels are 
about overlay load balancing. As a result of non-
uniform distribution of the frequency relate to 
subject, predicate and object oriented occurrences 
in triples, it is feasible that the triples may not be 
stored over the peers of underlying the networks in 
a uniform manner.  

It is imperative from the constraints discussed 
above, that query optimization is certainly a NP-
hard problem and many of the near-optimal query 
plans proposed are of NP-hard [18]. Runtime 
increment issues are envisaged for the algorithms 
upon the rising number of joins and contemporary 
application scenarios [19]. Also the complexity of 
systems over which the query is processed also 

increases because of load factor. To address such 
issues, contemporary models have put forth new 
models and contemporary processing operators for 
introducing varied new parameters for tuning the 
query processing [20] [21]. Such significant 
developments can support query optimization much 
harder than the size of search space increment. 
Further, many of the developments also influence 
new cost metrics for considering query plans apart 
from the execution time. In the other dimension, the 
challenge is that when multiple plan cost metrics 
are considered, it could lead to harder-set of query 
optimization too [22] [23] [24]. In a comprehensive 
scenario, it can be stated that majority of the 
emerging solutions for query optimization are 
resulting in NP hard and also increase the need for 
parallel query optimization algorithms. 

In regard to this, the contribution of the 
manuscript tends to achieve the following: 

 Optimizing the parallel queries targeted to 
search on distributed RDF store. 

 A distributed ranking model should depict 
to optimize the query processing time and 
resource utilization  

 Optimization process should evince the 
linear complexity  

2 RELATED WORK 

Parallel query optimization can be termed as 
the serial optimization algorithms generating plans, 
which are executed in parallel [25] for query 
processing. Though contextually there are varied 
considerations in realizing the term, in the current 
scenario a parallel algorithm for generating query 
plans are discussed.  

In [8] the authors have focused on issue of 
load-balancing by curtailing the storage of very 
popular URIs and literals, depending on storage 
capacity of local peers. Though the process might 
provide the desired outcome, still the challenge is 
about probable loss of complete result. In [6] the 
study has targeted to address the problem by 
developing an overlay tree over DHT position of an 
overly popular triple component. Such type of load 
balancing shall be very fragile in the instance of 
node failure in overlay tree, and could even result 
in loss of the complete branch of tree.  

In [26], the study has worked on huge 
variation among the peer’s data load upon triples 
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being indexed 3 times by fixed hash depth of 1. For 
improving the data distribution, the proposed model 
has focused on idea of indexing triples using 
random hash depth, wherein for every depth there 
shall be equal number of potential location keys for 
triple components. It showed that with higher value 
of hash depth, the better is the triples distribution 
among peers. But it comes with cost of network 
communication in the instance of query evaluation, 
as many peers are queried for evaluation of triple 
pattern.  

In [27], for addressing the hotspots of unfair 
load balancing, a solution in terms of indexing a 
triple for every possible combination of its two 
components like subject + object, predicate + 
object, subject + predicate  and such combination  
are proposed. The impact of such process was extra 
storage of triples in the network, despite of 
achieving fair triple load distribution.  

In [9], for improving the query load 
distribution, study has focused on additionally 
indexed triples by combination of varied triple 
components, resulting in 7 replications for every 
triple in total. It is used in extra storage overhead 
for distribution of query processing load amidst the 
peers. But the key element missing was about 
studying the utilization of overhead for improving 
the response time for query processing.  

In [28], the notion of quad is used for 
representing the RDF data and a solution with 
optimized index structure for supporting evaluation 
of RDF queries in centralized RDF data stores are 
considered.  

The study reflects that only 6 indexes are 
essential for covering the entire range of 16 access 
patterns, but every access pattern is considered a 
quad when there is combination of subject, 
predicate, object or the context is either defined or a 
variable. Considering such scope for reducing the 
number of essential indexes, in section IV-B only 3 
indexes are required for new index scheme to 
ensure coverage of all the 8 possible triple patterns.  

The proposed work connects to the earlier 
works that parallelize classical dynamic program 
designed with query optimization algorithm [29], 
[30], [31], [32], [33], [34], and [35]. Many of the 
prior algorithms were devised for shared-memory 
structures, which lack scalability over a certain 
level of parallelism [36]. In the other way, prior 
algorithms evaluated to consider certain volume, 
but the algorithm devised in [35] evinced 
scalability with shared-nothing architecture 

comprising over 250 workers. Some of the key 
factors that differentiate prior algorithms to 
proposed algorithm is the limitation and scalability.  

In the earlier algorithms, the query patterns 
that are independent, cyclic or recursive only 
planned to execute in parallel as independent 
threads and there is presumption that all the threads 
might share common data structures and thus it is 
easier to access intermediary results generated in 
the other threads. This practiceleads to huge 
communication overhead over shared-nothing 
architectures and moreover, these algorithms least 
significant towards optimizing query patterns found 
multiple query chains submitted in distributed 
environment. In addition, the earlier algorithms 
have relied on central coordinator for assigning 
rather fine-tuned optimization of tasks to the work 
threads. Two of the key disadvantages of such 
process are: i) it needs considerable communication 
among the master and workers ii) increased levels 
of time complexity in managing at central system, 
which leads to delay in implementing parallelism. 

In regard to this, the proposed algorithm does 
optimize the query patterns that are independent, 
recursive or cyclic in multiple query chains that 
effectively workin shared nothing distributed 
environment with multiple clients and multiple 
distributed triple stores.  

3 DISCRETE RANK BASED QUERY 
PATTERN OPTIMIZATION 

This section explores the methods and 
materials used discrete rank based query pattern 
optimization for distributed query planning for 
RDF stores. The initial step of the proposed model 
finds the query patterns of size 1 to n and ranks 
them in ascending order of their occurrence count, 
such that highest rank is most optimal. Further rank 
these patterns in descending of respective search 
space utilization, such that the query pattern with 
highest rank is most optimal. Afterwards, allocate 
ranks to the same patterns in descending order of 
their access cost that similar to the ranking strategy 
followed for search space utilization, such that the 
pattern with highest rank is most optimal towards 
access cost. At this stage, each pattern discovered 
enlisted with three discrete ranks corresponding to 
their occurrence count, search space utilization and 
access cost. Further the process of estimating 
theDiscrete Rank distribution consistency score 
(DRDCS) of the query patterns is performed, which 
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considers further toallocate global rank of each of 
the pattern. The global rank assigned to all of these 
patterns in descending order of their DRDCS. The 
detailed exploration of these phases depicted in 
following sections. 

RDF structure based semantic web search usually 
carried out using SPARQL queries by indicating 
them in the form of tree structure. Query chosen for 
the process categorizes in to three distinct formats 
like left deep, right deep and bidirectional deep 
tree, which is termed as bushy tree. In the instance 
of any of the trees retaining subjects, predicates, or 
the objects as leads and join them as nodes, then the 
depth first tree is formed first, and the connection 
amidst the nodes will form a bushy structure, 
whereas the join connected to subject predicate or 
object connects to the other join which could 
conclude left deep tree. The emphasis of proposed 
model is to optimize the parallel query planning 
process and reduce the cost of execution. Hence, 
the query structure chosen for exploring the 
proposed solution is bidirectional or bushy tree. 

The depicted model is explored by considering 
the query structures defined in renowned query 
language called SPARQL However this model can 
adapt to any of the formal query languages 
available. 

3.1 Query Patterns discovery 

This section explores the Tabu Search based 
query patterns and their occurrence count 
discovery. Initial task of the proposed model is to 
identify the query patterns of size 1andtabu 
transactions (no need to search) respective to each 
discovered pattern of size 1. Further, the search will 
be conducted recursively for two-size query 
patterns to max possible size of query patterns. 
During the search, the insignificant patterns and 
insignificant transactions respective to significant 
patterns place in respective tabu lists, which ignores 
from search space in further iterations.The 
proposed model is using tabu search in order to 
limit the process time.The detailed pattern 
discovery process explored following:  

All query elements  1 2, , mE e e e      of size

m are a finite set those appear in the set Q of 

distributed query-chains given. The query-chain set
Q of size n  represents the all distributed query 

chains 1 2 3{ , , , ....., }nq q q q  such that each query-

chain formed by the subset of query elements in set
E , such that each query-chain 
{ 1 }r rq q Q r n      is the superset of one or 

more query elements QE . Each query-chain is 

notified by a unique query-chain id{ 1 }r r n   , 

which referred further as qid . Each query element

je  in a given query-chain represents query element

e  with id1 j m  . 

Further, the query elements E considers as 1-size 
patterns set and determines their occurrence count 
and tabu list of transactions respective to each 1-
size pattern as follows. 

1qp E // clone the set of all query elements as 1-

size query patterns set 1qp  

1qps qp  // The set qps  retains all possible query 

patterns discovered that initialized by moving all 1-
size patterns  

step 1.  11

m

i ii
p p qp


    Begin 

step 2. ( ) 0io p   // denotes the occurrence count 

of pattern ip  that initialized to 0; 

step 3.  
1

( ) 1
n

i i j j
j

o p p q q Q


      

step 4. ( )itlq p  // is an empty list contains the 

query chains those not having query pattern 

ip  

step 5.  
1

( )
n

i j i j jj
tlq p q p q q Q


      // 

moving all query chains those not having 
query pattern ip  

step 6. End //of step 1 
The notations used in the algorithm are as follows:      

step 1. 2s  // represents the size of the query-
patterns to be discovered in sequence, which 
is initialized by 2. Since the algorithm uses 
the query-patterns of size 1 as input. 

step 2. tlp  // Tabu list of query-patterns: 

step 3. Tabu list of query-chains tlqc  : 

step 4. Prepare tabu list of Query-chains tlt  : 
query-chains that are having one or zero 
items from 1-size patterns list 

step 5. Main Loop: While (True) Begin 
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step 6. Pick 1s   size patterns 

step 7. 
( 1)| |

( 1)1
{ }

sqp

j j s jj
p p qp p tlp




     Begin //for 

each query pattern 
jp  in 

( 1)sqp   

step 8. 
( 1)| |

( 1)
1

{ }
sqp

k k s k
k

p p qp j k p tlp



      

Begin //for each query pattern kp  in 
( 1)sqp  , 

such that j k  

step 9. jk j kp p p   // results new query pattern 

jkp  that contains all unique query elements 

in jp  and kp  

step 10.  
1

( ) 1
n

jk jk j j
j

o p p q q Q


     // find 

the occurrence of pattern jkp  

step 11. ( ( ) 0)jkif o p   Begin 

step 12. s jkqp p //move pattern jkp  to the 

query pattern set sqp  

step 13.  
1

( )
n

jk j jk j jj
tlq p q p q q Q


      find 

all tabu query chains related to pattern jkp  

step 14. End // of step 11 
step 15. Else jktlp p  // move pattern jkp  to 

tabu pattern list tlp , since the pattern does 

not exists in an query chain 
step 16. End // of step 8 
step 17. End // of step 7 

step 18. (| | 0)sif qp   begin //If sqp  is not empty  

step 19. Update tabu list of Query-chains: query-
chains that are having one or zero patterns 

from sqp list 

step 20. sqps qp  // moving all patterns from 

sqp  to qps  

step 21. 1s s   
step 22. End //of step 19 
step 23. Else break the main loop in step 5 
step 24. End // of step 5 
The process explored in step 1 to step 24, 

discovers all possible patterns as set qps  and their 

respective occurrence count. Further, this set qps  

used as input to allocate discrete ranks to all 
patterns about occurrence count, max search space 
required and access cost required respectively. The 

discrete rank allocation for each pattern explored in 
following sections.   

3.2 Search Space Utilization 

To track the optimality of a query formed in to a 
bushy tree, two metrics “minimal access cost” and 
“search of minimal combinations” were defined in 
the earlier contribution [37]. As both the metrics 
are fundamental for estimating the optimality of a 
query pattern, the search space is used is 
proportionate to the varied combinations traversed 
because of tow query elements connected under a 
join node pattern. Hence, the metric search of 
minimal combinations supports to assess the search 
space utilization. About this observation, the metric 
“search of minimal combinations” [37] adapted and 
the result obtained for this metric from each query 
pattern considered as search space utilization of the 
respective query pattern. The process of the 
estimating this metric of a given query pattern is as 
follows: 

Search of minimal combinations could be defined 
as the cumulative outcome of combinations amidst 
the subjects and count of objects in a chosen 
predicate. Estimation of max possible combination 
are carried out as:  

| | | |

1 1

( ) {1 ( ) }
S O

k i j
i j

mpc p p s o P
 

     

// in the equation above, the counting of the 
possible combinations for a subject is  and object 

jo  with anticipated predicate P , ( )i jp s o  is 

concrete predicate of the subject is  and object jo . “

( )kmpc J ” denotes the max possible combinations 

for a query pattern kp //. 

3.3 Query Pattern Access cost 

Other significant factor is the access time which 
is unique for all query elements in a query pattern 
which targets the single RDF store. However, if the 
triple stores that are targeted are differing from the 
every query element in a chosen query pattern 
constituted, accordingly the access time might vary 
for varied query elements. In order to address the 
constraint, the other significant metric “minimal 
cost” is considered in the earlier solution [37], 
which is also adapted in the second model. The 
metric is very much reliant on the metric “search by 



Journal of Theoretical and Applied Information Technology 
30th November 2017. Vol.95. No 22 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
6016 

 

minimal combinations”. The process of evaluating 
the metric explored are:  

Minimal access cost is the cumulative of costs for 
accessing the Distributed RDFs over varied 
subjects to attain the objects within expected 
predicate that is assessed using the following 
equation.  

| | | |

1 1

( ) { ( ) }
S DRDF

k i j
i j

ac p ac s rdf vc
 

     

// in the equation above, |S| is the cumulative 
number of subjects over a given query pattern,  

 
| |DRDF Is the number of RDFs measured under 

distributed architecture, ( )i jac s rdf shall be 

access cost to jrdf  under the selected subject is  

and vc is indicating the number of visits. The 

notation ( )kac p indicates the minimal access cost 

of the query pattern kp . 

3.4 Ranking by their occurrence count 

Clone qps  as set oqps and refine it as if any 

pattern ip  is subset of other pattern jp  with same 

occurrence count, then discard ip from oqps . The 

model adapted to prune the patterns as follow: 

step 1:  
| |

1

oqps

i i
i

p p oqps

    Begin // for each 

pattern ip  that exists in opqs  

step 2:  
| |

1

oqps

j j i j
j i

p p oqps p p
 
      Begin // for 

each pattern jp  of set opqs , which is not 

equal to pattern ip  

step 3:  ( ) ( )i j i iif p p o p o p    Begin // if 

pattern ip  is subset of jp  and the occurrence 

count of both patterns is identical 
step 4: \ iopqs p //prune the pattern ip  from set 

opqs  

step 5: 1i i   // decrementing the index of the 
loop in step 1 

step 6: Go to step 1; 
step 7: End // of step 3 
step 8: End // of step 2 
step 9: End // of step 1 

Rank the query patterns in oqps in ascending order 

of their respective occurrence count, such that 
patterns having same occurrence count will have 
same rank and pattern with highest occurrence 
count entitles highest rank. The process of rank 
allocation as follows: 

step 10:  
| |

1

oqps

i i
i

p p oqps

    Begin // for each 

pattern ip  that exists in opqs  

step 11:  
| |

1

oqps

j j i j
j i

p p oqps p p
 
     Begin // for 

each pattern jp  of set opqs , which is not 

equal to pattern ip  

step 12: t j  

step 13:  
| |

1

oqps

k k k j
k j

p p oqps p p
 
     Begin // 

for each pattern kp  of set opqs , which is not 

equal to pattern jp  

step 14:  ( ) ( )k jif o p o p t k  

step 15: End // of step 4 
step 16: End //of step 2 

step 17:  ( ) ( )i kif o p o p i kp p�  // if 

occurrence count of pattern ip is greater than 

occurrence count of pattern kp  swap their 

positions in oqps  

step 18: 0idx   // ranking index initialized by 0 

step 19:  
| |

1

oqps

i i
i

p p oqps

   Begin // 

step 20:  11&& ( ) ( )i iif i o p o p  ( )o ir p idx  

step 21: Else Begin 
step 22: 1idx   
step 23: ( )o ir p idx  

step 24: End //of step 12 

3.5 Ranking by search space utilization 

Clone qps  as set sqps , and refine the set sqps , 

such that if any pattern ip  is subset of other pattern 

jp  and search space usage of ip  is equal to search 

space usage of jp  then discard ip from sqps . 

Further, Rank the query patterns in sqps in 

descending order of their respective occurrence 
count, such that patterns having same search space 
usage will have same rank and pattern with 
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lowestsearch space usage entitles highest rank. The 
sorting and ranking procedure depicted as follows: 

 
| | | |

1 1
\ ( ) ( )

[ , ]

i j
sqps sqps

i i j
i j

i j

p p

sqps p mpc p mpc p

p p sqps
 

    
            
        

 

// The equation is pruning the query patterns if any 
of the pattern ip  is subset of the pattern jp  and the 

search space utilization of the both patterns 
( ) ( )i jmpc p and mpc p  are identical.  

Then sort the leftover patterns of sqps  in 

descending order of their search space utilization 
(the similar process that explored in steps 10 to 17 
in section 3.4 should apply on sqps  instead of 

oqps and comparison should do about search space 

utilization instead of occurrence count. Further, 
rank them according to their order of presence in 
the set sqps , such that the distinct query patterns 

having same search space utilization enlists with 
same rank. The process explored in steps 18 to 24 
is compatible to tank the query patterns in set sqps , 

which should do by comparing their search space 
utilization instead of occurrence count. The ranks 
allotted to each query pattern ip  in set sqps  

denoted by ( )s ir p .  

3.6 Ranking by access cost 

Clone qps  as set aqps , and refine if any pattern

ip  is subset of other pattern jp  and access cost of 

ip  is more or equal access cost of jp  then discard

ip . Further, rank the query patterns in aqps in 

descending order of their respective occurrence 
count, such that patterns having same access cost 
will have same rank and pattern with lowest access 
cost entitles highest rank. The process that adapted 
to prune the query patterns in section 3.3 can 
merely follow to prune records from set aqps . The 

condition to prune record should compare their 
access cost instead occurrence count (see step 1 to 
9 in section 3.4). Further, the sorting and ranking is 
similar to steps 10 to 24 in sec 3.3 and the query 
patterns should sort in descending order of their 
access cost instead occurrence count. 

The ranks assigned to the query patterns in 
set aqps  refersas the notation ( )a ir p , which 

denotes the rank assigned to query pattern ip  based 

on its access cost. 

3.7 Discrete Rank Distribution Consistency 
Score (DRDCS) 

This section adapts the mean square distance [38] 
between the distinct ranks assigned to each query 
pattern to estimate the rank distribution 
consistency. In order to define the DRDC for each 
pattern, initially identifies all unique patterns from 
set oqps , set sqps and set aqps , which denotes 

further as set uqps . The foremost step to discover 

DRDCS of the patterns in uqps  is, if any of the 

query pattern ip from set uqps not exists in any of 

the sets ,oqps sqps and aqps , then identify the 

super set of that query pattern jp  with highest rank 

from the respective set and assign the rank of 
superset query pattern jp  to the corresponding 

query pattern ip . Further assess the DRDCS of the 

each pattern from the respective ranks of 
occurrence count, search space utilization and 
access cost those assigned to each query pattern as 
follows: 

step 1:  
| |

1

uqps

i i
i

p p uqps

   Begin / for each query 

pattern ip   in set uqps  

step 2: 
( ) ( ) ( )

( )
3

o i s i a i
r i

r p r p r p
m p

 
 // Finding 

the mean of the all distinct ranks assigned to 
pattern ip  

step 3: 

 

 

 

2

2

2

( ) ( )

( ) ( )

( ) ( )
( )

3

r i o i

r i o i

r i o i

r i

m p r p

m p r p

m p r p
d p

   
 

  
 
 
  /Finding the mean 

square distance of the distinct ranks assigned 
to pattern ip  

step 4: 

1
( )

( )
( )

r i
i

o i

d p
cs p

r p


 

  
 

// the discrete rank 

distribution consistence score is estimated as 
inverse ratio of the mean square distance 
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against the rank assigned for occurrence 
count.  

step 5: End//  of step 1 
The discrete rank distribution consistence score 

estimated as the ratio of mean square distance 
against the rank assigned to occurrence count of the 
respective query pattern. This is due to the 
ambiguity of the root mean square distance 
obtained for the distinct lowest ranks that 
approximately equal and the distinct highest ranks 
that also approximately equal. As an example, the 
rank set (3, 2, 1) of query pattern ip  and the rank 

set (33, 32, 31) of query pattern jp gets the equal 

value 2 a mean square distance, but ratio of these 
mean square distances against to the rank assigned 
under occurrence count of the respective query 
patterns i jp and p  are 0.666666667 and 

0.060606061 which are distinct. These ratio values 
are lowest for highest distinct ranks and highest for 
lowest distinct ranks. Hence, the inverse ratio s 
obtained as consistency score. The consistence 
score observed for respective  example given are 
1.5 for query pattern ip with distinct rank set (3, 2, 

1)and 16.5 for query pattern jp  with distinct rank 

set (33, 32, 31) . Here the rank assigned for 
occurrence count is considered to assess the 
discrete rank consistence score, which is since the 
most occurrences indicates the associability of the 
respective pattern towards the multiple query 
chains given as input to query processing. If a 
query pattern is having highest rank in regard to 
occurrence count, the execution of respective query 
pattern accomplish the partial results extraction for 
the multiple number of query chains that 
represented by the occurrence count of the 
respective query pattern.    

These query patterns scheduled further in the order 
of their discrete rank distribution consistence score. 
The scheduling of these patterns is parallel, which 
in the context of first come first serve scheduling 
strategy.  

4 EXPERIMENTAL SETUP AND 
PERFORMANCE ANALYSIS 

The proposed model DR-QPO and other 
contemporary models [31] [32] [33] [35] adapted to 
compare are implemented using java and executed 
on Intel 5th generation platform. The distributed 

environment of multiple triple stores and multiple 
clients is simulated using java RMI, such that 
clients can submit SPARQL queries in parallel. The 
performance statistics of the results obtained from 
DR-QPO and other contemporary models assessed 
using expression language R [39]. 

4.1 The Input Query Formation 

Each client of the distributed environment creates 
synthesizes set of SPARQL query chains such that 
each query chain contains varied number of query 
patterns that extracts the results from triple stores 
and submits to query processing module in parallel. 
The set of noteworthy RDF stores such as 
FACTBOOK, FOAF, and LUBM [40-42] adapted 
as distributed triple stores for experiments. The 
number of query elements in each query chain is in 
the range of 5 to 25 and total number of query 
chains submitted in parallel is in between 10 to 60. 

4.2 Performance Analysis 

The metric “average query processing time” 
considered for assessing the performance of the 
DR-QPO and other contemporary models adapted. 
The “residual memory ratio”, which is the 
percentage of the memory not in use against to total 
memory allocated for query processing. Along the 
side of these two metrics, access cost dissemination 
ratio, which is the ratio of access cost diffused by 
executing a cyclic or recursive query pattern only 
once. The existing contemporary models are 
considering these cyclic recursive patterns exist in a 
given single query chain, contrast to this, the DR-
QPO is considering the recursive query patterns 
from the multiple query chains submitted in 
parallel.   

Table 1: The Results Obtained For T-Test and Wilcoxon 
Test Performed On Average Query Processing Time 
Observed From Dr-Qpo and Other Contemporary 

Models 

Average Query Processing Time 

T-test 
Wilcoxon 

Test 
t-

score 
p-

value 
z-

score 
p-

value 

Trummer et al., 
[35] 

-
6.277

86 

< 
.0000

1 

-
3.059

4 
0.001

11 

chen et al.,[33] 
-

6.475
< 

.0000
-

3.059
0.001

11 
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w. zuo et al., 
[32] 

-
6.503

51 

< 
.0000

1 

-
3.059

4 
0.001

11 

F.M waas et 
al., [31] 

-
8.591

06 

< 
.0000

1 

-
3.059

4 
0.001

11 

Table 2: The results obtained for t-test and Wilcoxon test 
performed on residual memory observed from DR-QPO 

and other contemporary models 

Residual Memory 

T-test 
Wilcoxon 

Test 

t-score 
p-

value 
z-

score 
p-

value 

Trummer et 
al., [35] 

-
6.4020

3 

< 
.0000

1 

-
3.05
94 

0.00
111 

chen et 
al.,[33] 

-
9.2817

3 

< 
.0000

1 

-
3.05
94 

0.00
111 

w. zuo et al., 
[32] 

-
9.3581

5 

< 
.0000

1 

-
3.05
94 

0.00
111 

F.M waas et 
al., [31] 

-
13.128

42 

< 
.0000

1 

-
3.05
94 

0.00
111 

Table 3: The results obtained for t-test and Wilcoxon test 
performed on access cost dissemination observed from 

DR-QPO and other contemporary models 

Access Cost Dissemination 

T-test 
Wilcoxon 

Test 
t-

score 
p-

value 
z-

score 
p-

value 

Trummer et 
al., [35] 

4.012
21 

0.000
293 

-
3.05
94 

0.001
11 

chen et 
al.,[33] 

3.773
02 

0.000
524 

-
3.05
94 

0.001
11 

w. zuo et al., 
[32] 

3.749
15 

0.000
555 

-
3.05
94 

0.001
11 

F.M waas et 
al., [31] 

3.808
87 

0.000
48 

-
3.05
94 

0.001
11 

 
The consistency of the proposed model 

evinced through t–test and Wilcoxon signed rank 
test [43] applied on the values obtained for 

respective metrics of DR-QPO and other 
contemporary models adapted. The tables 1, 2 and 
3 exploredthe t-score, z-score and respective degree 
of probability observed between the divergent 
metric values obtained from DR-QPO and other 
models. The degree of probability observed for t-
test and Wilcoxon signed rank test between DR-
QPO and other models is almost nullified (almost 
zero), hence it is obvious to conclude that the 
proposed model DR-QPO significantly 
outperformed all other contemporary models 
considered for comparison. 

5 CONCLUSION 

Discrete Rank based Query Pattern 
Optimization (DR-QPO) towards Parallel Query 
Planning and Execution for RDF Stores proposed 
here in this manuscript. Unlike the existing parallel 
query planning and execution models [31-33, 35] 
found in contemporary literature, the proposed 
model is optimizing the query patterns planning 
and execution in parallel for distributed query 
chains. The contemporary models limited to 
optimize the cyclic and recursive patterns found in 
individual query chain. Contrast to this, the DR-
QPO optimizing the query patterns those are 
recursive in multiple query chains submitted in 
distributed environment. The metrics such as query 
pattern occurrence count (pattern exists in multiple 
query chains), search space utilization and access 
cost are consider to assign distinct ranks to each 
query pattern. Further, estimates the discrete rank 
distribution consistence score (DRDCS) of each 
query pattern, which is critical contribution of the 
manuscript. Further, query patterns planned to 
execute according to their DRDC observed. The 
results obtained from experimental study evincing 
that the proposed model consistently outperformed 
the other contemporary models. The performance 
analysis of the model proposed and other 
contemporary models done, which is by comparing 
the results obtained suing ANOVA standards like t-
test and Wilcoxon signed rank test. The scope of 
this manuscript is optimizing the query patterns 
discovered from distributed query chains given as 
input to parallel query processing against 
diversified triple stores. Hence, in this regard the 
exploration limited to the model devised to 
optimize the order of query patterns in regard to 
discrete ranks assigned under divergent factors such 
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as the pattern associability to query chains 
(occurrence count), search by minimal 
combinations (search space utilization) and 
minimal access cost. The future research can 
contribute an optimal scheduling strategy to 
schedule the query patterns to execute in parallel. 
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