
Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6204

HYBRID GENETIC VARIABLE NEIGHBORHOOD SEARCH
BASED JOB SCHEDULING WITH DUPLICATION FOR

CLOUD DATA CENTERS

1RACHHPAL SINGH, 2KARANJIT SINGH KAHLON, 3GURVINDER SINGH
1 Research Fellow, Department of Computer Science and Applications, GNDU, Amritsar, India

2Professor. Department of Computer Science and Applications, GNDU, Amritsar, India
3Professor. Department of Computer Science and Applications, GNDU, Amritsar, India

E-mail: 1rachhpal1969@gmail.com, 2karankahlon@gndu.ac.in, 3gsbawa71@yahoo.com

ABSTRACT

Background/Objectives: Scheduling is one of the important way to provide high availability of processors
to cloud users. Majority of scheduling approaches are NP-Hard. Therefore, meta-heuristics techniques are
required to schedule the jobs on virtual machines (VMs). Meta-heuristic techniques usually suffer from
inter-processor communication issues as well as premature convergence and global optima.
Methods: To handle these issues, hybrid scheduling technique was proposed using Genetic Algorithm
(GA) and Variable Neighborhood Search (VNS) with Task Duplication (TD). Thus, proposed technique
can reduce the inter-processor scheduling overheads among high-end servers.
Results: To attain the objectives of the proposed approach, the cloud based model was designed by
considering well-known Fast Fourier Transformation (FFT) problem using Directed Acyclic Graph (DAG).
A simulation environment was designed to implement the proposed technique. Extensive experiments have
shown that the proposed technique outperforms over available techniques regarding Makespan, Speedup,
and Efficiency. Conclusion: From a comparative analysis of existing and scheduling techniques it has been
found that the mean reduction in makespan is 7.07%. The comparative studies have demonstrated that the
mean improvement of proposed technique over other techniques concerning efficiency is 0.031%.

Keywords: Cloud Environment, Task Duplication, Variable Neighborhood Search, Genetic Algorithm,

Directed Acyclic Graph

1. INTRODUCTION

 Technologies related to cloud environment have
attained straightforward and standard framework
for all the areas of business and research [1].
Clients expect to get more benefit for changing the
platform; infrastructure and network etc. into
payable services per transaction without affecting
the performance of system or occurrences of any
overprovision or bottlenecks [2]. Due to popularity,
the job of the cloud becomes more crucial and its
first step to provide on-demand any static or
dynamic service according to the customer's
requirements [3]. Any application can be accessed
from anywhere, and associated data can be accessed
easily with the help of cloud computing. It provides
interesting and alternative solutions for the
development of software [4]. It is straightforward to
access contents having transparent feature for any
local infrastructure [5]. Data centers have decreased
the power consumption cost and similar occurrence

of environmental threats which makes its massive
demand for the energy efficient controlling and
computing [6,7]. Therefore, besides, the importance
of such system, there is needed to do some work for
the introduction of some new models which are
efficiently managing this consumption [8].
 In a cloud environment, task scheduling plays a
vital role, and for this purpose, resource scheduling
process can be executed [9]. The job of resource
scheduling is to assign the accurate and precise task
or job to the server or processing unit, storage
media and in the network system [10]. The
objective of this process is to make the peak
usability of tasks or resources. So, cloud user and
cloud provider want well-organized task or
resource scheduling [11]. In a cloud environment,
the meaning of task scheduling is to assign best
resources for the tasks to be executed having some
parameters like load balancing, latency time, cost,
makespan, execution time, scalability, availability,
reliability, utilization of resources, throughput,

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6205

energy efficiency and so on [12,13]. Till now, some
parameters have been taken for a quality of service
as discussed earlier, but the important parameter is
the allocation cost in scheduling mechanism [14].
So, to minimize the total allocation cost is a major
factor in cloud environment [15]. Many scheduling
related problems are solved by heuristic and meta-
heuristic techniques due to NP hard and NP-
Complete problem respectively [16,17]. Task
scheduling reduces power consumption by
decreasing the execution time resulting in
improving the service provider’s profit [18]. A
good scheduling technique efficiently allocates a
priority list to every subtask to minimize the
makespan [19].
 Inter processor communication can be reduced
by using task duplication technique. Some tasks are
duplicated on multiple machines to adjust the data
locally, and some techniques use the task
duplication concept for handling classic scheduling
models that also manage concurrent communication
among tasks and pay no attention to an argument
for communication resources [20]. It means task
duplication reduces the communication delay [21].
The main goal of task duplication is to resolve the
deadlock matter, minimize the communication cost
and make improvement in program process to
communication ratio [22]. A cost effective meta-
heuristic genetic algorithm minimizes the
computation cost of process or workflow in cloud
environment [23]. Some meta-heuristic approaches
such as HEFT [24], VNS [25] and GVNS [26] can
be used to avoid the trap in local minima and avoid
premature convergence with optimal use of
mutation operator (genetic operator) in the whole
population.
 Our main contributions in this paper are
described as follows:
i. This paper has proposed a meta-heuristic based
job scheduling technique for cloud computing
environment.
ii. The proposed approach so called “Hybrid Meta-
heuristic based job scheduling with job duplication
(HSTD4)" uses the features of GA, VNS along with
the job duplication strategy. Here, 4 states that
every fourth job is duplicated while doing the
scheduling on cloud servers.
iii. The job duplication procedure is used to reduce
the inter-processor communication.
iv. To simulate the proposed technique, the cloud-
based model was designed by considering well-
known FFT graph [18] problem using DAG.
v. The experimental evaluations have shown that
the proposed technique provides high availability to

cloud users by optimistically placing the jobs of
users to available high-end servers.

2. PROPOSED METHODOLOGY

 To attain the objectives of this paper, a step by
step methodology was used. Initially, a cloud based
model is designed by considering the well-known
FFT problem in the department of Computer
Science and Applications in Guru Nanak Dev
University, Amritsar, Punjab, India during the
period of 2015-17. MATLAB tool 2013a was used
to successfully simulate the proposed technique.
The Directed Acyclic Graph (DAG) is designed for
the FFT problem. Then, the proposed method was
formulated. In the proposed method, first of all,
random initialization of given set of solutions was
conducted by considering the concept of task
duplication. Then, this was followed by the genetic
algorithm in action to optimize the random solution
by utilizing the mutation and crossover operators.
Since the genetic algorithm is limited to local
optima only, therefore, the proposed technique ends
up by optimizing the solution with the variable
neighborhood search (VNS) technique. Thus, the
proposed technique can find the optimal solution
more optimistically. The subsequent section
contains the detail of each technique with suitable
procedures and required formulas.

2.1 Cloud Based Model

 A fully inter connected network having a set of
high speed and high-end m processors in a
heterogeneous environment was proposed in this
task scheduling mechanism. The whole system was
executed having same bandwidth with same
processing speed on all interconnected channels
[19].

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6206

Figure 1. Directed Acyclic Graph with 11 tasks

 As shown in Figure 1, a DAG (Directed Acyclic
Graph) G having n vertices V or nodes or subtasks
and n-1 edges E or sub tasks dependencies.
Whenever two sub tasks are not connected with the
same processor, communication cost will be
evaluated between these tasks. So, edges having
communication cost must be labeled. Sub tasks
were ordered in such a way that only one sub task is
executed on high-end processor, and others were
scheduled according to the assigned scheduling
technique or criteria. Some of the tasks are slower,
and some are faster according to their scheduling
procedure. Here, sub task or small job w0 to w10

were scheduled as shown in the DAG. Entry job is
w0, and exit job is w10. From the DAG, a
computation cost matrix is shown as in Table 1
(shows the first column for sub tasks or jobs,
second-third-fourth columns for high-end
processors Ð, Ðଵ,	Ðଶ and fifth column shows ܧത	for
the average computation cost for every sub task
executed on all the high-end servers.

Table 1. Cost Matrix for 11 tasks assignment on 3 servers

Task Ð Ðଵ Ðଶ ത (Edge line)ܧ

ݓ 30 31 32 31

ଵݓ 31 32 33 32

ଶݓ 32 28 33 31

ଷݓ 34 30 38 34

ସݓ 47 50 39 45

ହݓ 35 32 38 35

ݓ 29 34 38 33

ݓ 39 32 34 34

଼ݓ 34 30 35 33

 ଽݓ 35 32 35 34

ଵݓ 38 30 37 35

2.2 Task Duplication Based Genetic Mechanism

 To solve complicated issues, the genetic
approach is more effective and optimized [20]. It is
an evolutionary meta-heuristic technique based on a
natural system having genetic optimization criteria
[20] considering random population set as an initial
value and produce the individuals in optimized
form with the help of different operators of GA. In
GA, solutions are called chromosomes or
individuals. To converge and for finding the better-
optimized values, the role of GA operator
(Selection, Crossover, and Mutation) is vital and
essential [21]. A set of solutions is obtained using
the selection method or operator (Ranking, Route
wheel, etc…) from the parent population.
 Further, to optimize a cross-breeding of parents
must be done with the help of crossover operator
based on crossover rate. This newly obtained
offspring is used to get a more optimized solution
with the help of mutation operator using mutation
rate and rules and gives a better optimized solution.
This is the first iteration or generation. This process
continues till nth generation or according to the
stopping criteria.

Procedure 1. Primary Procedure
1. Input the GA and Task Scheduling

parameters.
2. Call Procedure 2 for initializing population

and Call Procedure 3 for subtasks assignment
to high-end processors and computation of
fitness function.

3. Repeat step 4 and 5 till stopping criteria met.
4. A new set of an optimized solution is obtained

from elitism individuals.
5. Apply selection and crossover operator by

crossover rate and finally call the procedure to
get the more optimized solution with the help
of mutation operator using mutation rate.

6. Get the optimized solution as output and
return with a final optimized set of values.

2.2.1. Generating population
 First of all, encoding is done to create the set of
chromosomes, and every chromosome in
population set has a solution. The construction of

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6207

chromosomes takes place by selecting integer
numbers 0,1,2,3,….n-1 randomly (i.e., with the
help of permutation technique). It shows the n sub
tasks or genes or jobs in a sequence or priority
order according to their scheduling order as shown
in Figure 2.

Figure 2. Encoding basic layout of chromosome in the
GA-TD procedure

 All the sub tasks are arranged in such a way that
there occurs one entry point and one exit point, the
rest subtasks are arranged in the topological order
according to their occurrences and evaluation as
shown in the DAG. P_size=4 is the initial
population size. Three heuristic rank mechanisms
naming top level rank, bottom level rank and top-
bottom rank are used as illustrated in Eq. (1), Eq.
(2) and Eq. (3) [20] respectively for better seeding
of an initial population as shown in DAG for
presenting a better priority queue [19]. By using the
concept of rank value [23], subtask ranks are
developed as shown in Table 2. Three heuristic
priority queue values are also developed as shown
in Table 3 with the help of Table 2.

Table 2. Subtask ranks of Directed Acyclic Graph

Table 3. List of Queues having a Task priority or Priority

Queue (PQ)

Position of

gene

0 1 2 3 4 5 6 7 8 9 10

HEFT-

bottom PQ
ݓ ସݓ ଷݓ

ݓ ଵݓ
ଶݓ

ݓ
ହݓ

଼ݓ
ଽݓ

ଵݓ

HEFT-top

PQ
ଵݓ ଷݓ

ଶݓ
଼ݓ ଵݓ

ସݓ ݓ
ହݓ

ݓ
ଽݓ

ଵݓ

HEFT-

leveled PQ
ݓ ସݓ ଷݓ

ଶݓ ଵݓ
ݓ

ହݓ
ݓ

଼ݓ
ଽݓ

ଵݓ

 The rank for each task can be mathematically
evaluated using Eq. (1) [20].

ሻݓሺ݇݊ܽݎ ൌ ܴሺݓሻതതതതതതതത
,ݓ௪ೞ∈௦௨ሺ௪ೌሻሺĆሺݔܽ݉ ௦ݓ (1)	௦ሻሻݓሺ݇݊ܽݎ

 Here, the ܴሺݓሻ is the average computational
cost of subtask ݓ, Ćሺݓ,ݓ௦) is a quantity of
communication between the subtasks ݓ and
 ௦ሻ is the upward rank of subtaskݓሺ݇݊ܽݎ and	௦ݓ
 ‘s successor. Weight rank for every subtask canݓ
be evaluated using Eq. (2) [20].

௪ೞ∈ௗሺ௪ೌሻݔܽ݉=ሻݓ௪ሺ݇݊ܽݎ ቀ݇݊ܽݎሺݓ௦ሻ

൫ܴሺݓ௦ሻതതതതതതതത Ćሺݓ, (2)			௦ሻቁݓ
Here, ݇݊ܽݎ௪ሺݓሻ is the downward rank of the
subtask ݓ′ precedence. Level for each subtask can	ݏ
be mathematically evaluated using Eq. (3) [20].

Level ሺݓ௦ሻ ൌ ቐ

0, ݓ			݂݅	 ൌ ;௧௬ݓ

௦ሻ൯ݓሺ݈݁ݒ൫ሺ݈݁ݔܽ݉ 1,
	

௦∈ௗሺ௪ೌሻݓ

Otherwise

 (3)
Here,	ݓ௦ is the subtask ݓݏ	the precedence.

 The processing of initial population by taking
population size, i.e., P_size and chromosome size
C_sie was described in Procedure 2.

Procedure 2: Creating Initial Population
1. Input the Population size P_size and

Chromosome size C_size.
2. Randomly generate the population by

initializing three chromosomes set with three
heuristic rank mechanisms and Set i=3.

3. While(i<=P_size-1) do Set j=0 and
While(j<=C_size-1) do randomly create a new
gene j.

4. Change the position of the gene I from left to
the right in a queue and stop.

2.2.2 Assignment of sub tasks to high-end

machines

 In the case of originated population, every
individual should have a significant priority
mechanism having permutation process. Therefore,
subtasks should follow precedence conditions for
this process [20]. A sub task will be allocated to the
server with maximum speed, if and only if it is not
already scheduled. In case of the proposed
approach, HEFT technique is utilized to define the
sub tasks with maximum priority in the individuals.

Subtask (w a) ranke rankw rankw+e level

 10 32 42 0ݓ

 ଵ 16 40 56 0ݓ

 ଶ 90 40 130 1ݓ

 ଷ 100 52 152 1ݓ

 ସ 120 55 175 2ݓ

 ହ 80 100 180 2ݓ

 68 120 188 2ݓ

 58 132 190 3ݓ

 3 195 135 60 ଼ݓ

 ଽ 20 180 200 4ݓ

 ଵ 22 190 212 4ݓ

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6208

Further, it allocates given sub tasks to the server(s)
in such a way that it minimizes the overall
makespan. The earliest start time (EST) of the
subtask ݓon processor Ð݈ is symbolized as EST
 which is obtained by Eq. (4) and Eq. (5)	,Ðሻݓ)
[20]:
௧௬,ᇲÐ൯ݓ൫ܶܵܧ ൌ 0											(4)

Ð൯	,ݓ൫ܶܵܧ ൌ ௦ሻݓሺܶܵܣ௪ೞ∈ௗሺ௪ೞሻሺݔܽ݉
,ݓሺܥ ௦ሻሻ (5)ݓ
 The actual start of sub task ݓon processor Ð݈	is
symbolized as AST (ݓ,Ð݈ሻ. This is obtained using
Eq. (6) [20]:
AST (ݓ,Ð݈ሻ ൌ
max	ሺܶܵܧሺ(ݓ,Ð݈ሻ, (6)									ሺÐ݈ሻሻ݈݅ܽݒܽ
 Here, avail(Ð݈ሻ	is a time that the processor
Ð݈	has idle and ready for the task execution. The
earliest finish time of subtask ݓ	on processor Ð݈	is
symbolized as EFT (ݓ, Ð݈ሻ which is obtained by
Eq. (7) [12] as:
,ݓሺܶܨܧ Ð݈ሻ ൌ ܴሺݓ, Ð݈ሻ ,ݓሺܶܵܣ Ð݈ሻ								(7)

 Here, ܴሺݓ, Ð݈ሻ is the computational cost of the
subtask ݓ on processor Ð݈. The actual finish time
of subtask ݓ on processor Ð݈	is symbolized as
AFT (ሺݓ, Ð݈ሻ is obtained by Eq. (8) [12] as
follows:
,ݓሺܶܨܣ Ð݈ሻ ൌ ݉݅݊ଵஸɬஸ	ܶܨܧሺݓ, Ð݈ሻ (8)

 Assigning subtasks to processors is described in
Procedure 3. Allocating subtasks to high-end
servers is a significant achievement in proposed
system and is illustrated in Procedure 3 as below:

Procedure 3. Allocation of Subtasks to High-End
Servers Based upon Task Duplication Criteria
1. Input the P_size of a chromosome and its

present population.
2. To compute makespan create a PQ (priority

queue) of sub tasks.
3. While (PQ#Null) do
4. Selection of the first subtask from PQ.
5. For high-end server pi=1 to n high-end

servers.
6. Compute the fitness value using HEFT

scheduling technique.
7. Allocate jobs on high-end processors

a. If ݀݊ܽݎ then assign ith subtask to ܴܦܶ
all high-end processors and compute
maximum schedule length

b. Else allocate ith subtask to the jth high-end
processor and compute maximum schedule
length.

8. Makespan = maximum(schedule length).

9. End For loop
10. Delete ith task from PQ.
11. End While loop
12. Print makespan and return.

 Here, TDR represents task duplication rate
which is taken 0.5 for experimental purposes. That
means there is 50% chance, a given job is going to
be duplicated on available high-end servers.

2.2.3. Computation of fitness value

 The importance of fitness function is to find and
compute the generation population according to
available chromosome set. It also creates a next
generation population set for every iteration or
generation. In this scheduling mechanisms, it
computes the makespan from its maximum
schedule length value (current finish time of sub
tasks) as another scheduling technique computes
makespan of application [23]. Makespan is defined
in Eq. (9) [20] as given by:

݊ܽݏ݁݇ܽ݉ ൌ ௫௧ሻ (9)ݓሺ	ܶܨܣ

 In GA, the fitness value of chromosome is
acquired by Eq. (10) [20].

	ݏݏ݁݊ݐ݅ܨ ൌ (10)	݊ܽݏ݁݇ܽ݉

2.2.4 Crossover operation
 To get variation and better evolution in the
population set, there is need of crossover operator.
According to Keshanchi et al. [22], the role of
crossover operator in this proposed evolutionary
technique is to make a change in population. With
the help of crossover point or crossover rate,
diversity in parent side and child side will occur
[20].

2.2.5 Mutation operation

 Mutation operator is used for mutation operation
in the GA to apply diversity in chromosome
population having some mutation probability rate.
It avoids the local optima and violates the
precedence constraints in this algorithm [12].

2.2.6 Termination condition

 The fundamental difference between natural
evolution and artificial evolution in complex
problem solving is that the natural evolution species
are not used for termination. On the other hand, in
the problem solving, purposely need to stop the
generation of the process. There are some
approaches such as setting a limitation on the

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6209

number of fitness evaluations or the computer clock
time or to trace the population's diversity and stop
when this falls below a present threshold for
terminating evolutionary algorithms. Termination
condition occurs when all the chromosomes are
converged into the same fitness.

2.3 Applying VNS For Optimized Result

 Below is the nomenclature of VNS shown in
Table 4 used in VNS illustrations.

Table 4. Nomenclature used in VNS
Symbol Meaning

S Group of Servers
TS Set of Tasks

TI Time slice or interval

P Group of parameters
cdpt the makespan computation time t w.r.t.

parameter p
Csp The energy of server S w.r.t. parameter P

x0ds the temperature of the jobs

bwsdp(besdp) Inserting disk performance d to Server S
w.r.t. parameter P

Bwsp(Besp) Maximum allowed a speedup of
inserting jobs to Server S w.r.t.
parameter P.

xds= 1 if disk d is located on Server S, otherwise
xds= 0

Ystp Speedup on Server S in time t w.r.t.
parameter P.

 To be able to generate heuristic based local
search, select the suitable neighborhoods. The
efficiency of the VNS increases the accurate choice
of neighborhoods. Mostly three neighborhoods
used in getting the better efficiency. One is having
exponential size, and other two have polynomial
size. In task scheduling, the assignment is the
biggest problem, and optimal solutions can be
obtained with the use of large neighborhood
elements. Efficiency can be increased by doing so.

 Let us take x = (xds) as a feasible solution.

 Taking Move(x) operation that represents
reasonable solutions set. It can be attained from x
by selecting one disk, removing the disk from a
server. Further, insert the removed disk into another
server. It will create a relationship of a server with
disk, and such neighborhood has most |D| ・ |S|
solutions.

 All the feasible solutions can be obtained from
other neighborhood denoted as Swap(x). It can be
done from x by exchanging two tasks between
different servers. It consists of at most |D|2
solutions. Randomized versions of neighborhoods

can be used due to polynomial nature of
neighborhoods. So efficiency in local search can be
increased that will also minimize computational
cost per iteration.

 Let q be the parameter used in the randomized
neighborhood having operation Moveq(x). Here, q
ranged from 0<q<1. Moveq(x) is an element of
neighborhood Move(x). Every part of Move(x) is
inclusive into Moveq(x) having probability q.
Similarly, neighborhood Swapq(x) is defined.

 Assign(x) neighborhood introduced and used for
the construction of elements. Elements
development takes place using server and tasks. For
every server, a set of tasks Ds is defined. Here, s�
S be removed from server s. Further, remove one
disk from every set Ds. D is denoted as a subset of
deleted tasks. In case of Ds = infinity occurs for the
server s, and then remove a dummy or temporary
disk. Dummy disk has no overhead expenses and
load.

 The primary purpose of this operation is to
enhance the performance of all servers in a
particular time interval. The given condition
ensures the disk movement, i.e., every disk has
movement only to one server, and so every server
has exactly one disk. General Procedure for the
VNS approach is described in procedure 4 as:

Procedure 4: To get the better-optimized results
using VNS mechanism

1. Take xds:=x0ds, define parameters q, lmax, kmax
having some stopping criteria.
2. This step is repeated till stopping criteria met:
(i) i:= 1;
(ii) do while i= imax:
a). Select i tasks from optimistic solution developed
by GA procedure
b). Move these tasks to other servers
c). By applying local enhancement procedure on
neighborhood Moveq, Swapq.
d). By applying the assignment operation to
improve the current solution lmax times.
e). If improved solutionx1is better than x,

then x := x1,i:= 1,
else
i:=i+ 1
endif

3. return x.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6210

 In this procedure, running time or execution
time can be computed as soon as stopping criteria
met. Select the elements from sets Ds randomly
having a uniform distribution. To accelerate this
procedure, take q = 0.1, lmax= 7 and imax=9.

3. EXPERIMENTAL SET-UP

 Comparative results of proposed methodology
with well-known available techniques are discussed
here. First of all, take the values of standard task
graphs for better results and to improve the
performance. Further, a discussion takes place by a
comparative report and settings of parameters from
the given comparative table. At the end,
experimental values of comparisons showing the
better performance of results in boxplots.

3.1. Test Bed

 Proposed HSTD4 approach improves the
performance of the system with test-bed criteria.
For this, task graphs values taken to represent the
features of traditional parallel theories that is using
Fast Fourier transformation (FFT) [18]. Task graph
builds by using some new parameters, taking the
number of tasks and matrix size m. FFT for task
graph taking matrix size 2, 3 and 4 respectively, as
shown in Figure 3.

 Due to the same structure of graph with the
variations of matrix sizes, FFT task graph has a
total number of VMs or client machines, or nodes
are equal to m2, (m2 + m)/2 and mlog2m + 2m-1,
respectively. We have considered “4, 8 and 16”
Matrix size for applications with "0.25, 0.50, 1.00
and 2.00" as CCR value with "2, 4 and 8" high-end
servers.

Figure 3. FFT (Fast Fourier Transformation Task
Graph)

 Testing of every task graph takes place with
variations of settings in VMs and communication to
computation ratio. The communication costs of
various pairs of machines working independently
have the same values. For instance, if 40 is the
average computation cost having CCR value 0.25
then two dependent task has 10 value of
communication cost (in case allocated to different
machines). Also, for every test case, 10 data
configurations are generated randomly. Note that,
by using the Poisson distribution, computation time
for every task on every machine varies among 10
configurations [24].

3.2. Comparison Metrics:

 The different metrics are used to compute the
algorithms, i.e., makespan, speedup, efficiency, and
utilization.
Speed-up is a metric used for showing the better
performance for comparing the proposed
techniques with available one. Speed-up is shown
in Eq. (11) [12]:

݀ݏ ൌ 	
௦

௦
														(11)

Here, in Eq. (11) serial length is represented by ݈ݏ
and makespan as ݉ݏ. Also, the speedup is
represented by using ݀ݏ and ݈ݏ is evaluated by
allocating all the tasks to a single VM. The serial
length ݈ݏ	is computed as in Eq. (12) [12] as:

݈ݏ ൌ min
ೕ∈

ሼ∑ ∈							ሽݓ (12)

Here,	ݓ is execution time of ݊ task on VM.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6211

Efficiency is another metric to measure the
algorithm performance. In a cloud, a comparative
report of all the algorithms described w.r.t.
efficiency. The efficiency ݂ܧ in a cloud is
calculated as shown in Eq. (13) [12]:

݂ܧ ൌ
௦ௗ								

													(13)

Here, nop is the number of processors. The formula
of efficiency in Eq. (13) [18], describes the
Speedup of all VMs.

At the end, Utilization ሺܷݐሻ of all the machines in
the cloud system is defined as in Eq. (14) [18]:

ݐܷ ൌ
∑௦௧ು

்௧௨௦௦
												(14)

Here, ݐݏ denotes scheduling time for every
machine’s and ݐݏis computed as in Eq. (15) [18]:

ݐݏ ൌ

	௦

௦
 (15)

Here,	 ܲ
௧	݈ݏ denotes ݅௧	machine's schedule length

and ݈ݏ denote the machine's maximum schedule
length among all parallel machines.

 The makespan of a project is the total time that
elapses from the beginning to the end. Makespan is
computed from the maximize value of schedule
length. This is shown in Eq. (16) [18] as:

makespan = max {݈ݏ }(16)
Here, ݈ݏ	is the schedule length and so minimum the
makespan, better the optimized value.

3.3 Results And Discussion

 Fine-tuning of parameters for each problem
gives better solutions separately. So, the primary
objective of HSTD4 is to solve task scheduling
problems using same parameter values. To compare
HSTD4 approach, three well-known methods, i.e.,
HEFT [24], VNS [25] and GVNS [26] are also
implemented. HSTD4, HEFT [24], VNS [25] and
GVNS [26] are implemented in MATLAB 2013a
version. The simulations are done on the Intel Core
i5, 3.30 GHz, and 8 GB RAM. To successfully
implement the proposed technique, we have taken
Population size = 250, Number of generations as
800, Selection operator is a Binary tournament,
Crossover Operator is a random one point,
Mutation rate=0.001, Crossover rate 0.05, and
Sampling rate 0.005.

4. PERFORMANCE ANALYSIS

 Figure 4 is showing the comparison of HSTD4,
HEFT [24], VNS [25] and GVNS [26] regarding
Makespan. It is demonstrating that the HSTD4 has

enough significant improvement over the available
techniques, as the makespan of the proposed
method is quite less than other technologies. The
simulation is run 15 times, and averages values of
makespan of each technique are represented in
Figure 4. In descriptive statistics, a box plot or
boxplot is a convenient way of graphically
depicting groups of numerical data through their
quartiles. Box plots may also have lines extending
vertically from the boxes (whiskers) indicating
variability outside the upper and lower quartiles,
hence the terms box-and-whisker plot and box-and-
whisker diagram. All the boxplots are designed by
considering the FFT=16 and VM=8. Figure 4 is
showing the boxplot analysis of the HSTD4, HEFT
[24], VNS [25] and GVNS [26] regarding the
Makespan. As the proposed technique HSTD4 is
showing lesser variability, therefore it performs
consistently every time. Also, proposed outcomes
are always less than the box values of other
techniques thus have better results.

Figure 4. Comparative analysis of Makespan

 Figure 5 describes the boxplot analysis of
Speedup among HSTD4, HEFT [24], VNS [25] and
GVNS [26]. The HSTD4 has lesser variability; thus
it achieves consistent Speedup in every iteration.
Also, proposed technique has more Speedup than
other technologies.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6212

Figure 5. Comparative analysis of Speedup

Figure 6. Comparative analysis of Efficiency

 Figure 6 depicts boxplot analysis of HSTD4 over
others by considering the Efficiency. HSTD4 has
better Efficiency compared to other techniques.
Also, it has more consistent results as it provides
consistent Efficiency in every experiment by
considering the same problem size.

Figure 7. Comparative analysis of Utilization
 Figure 7 shows a comparative analysis of
Utilization between HSTD4, HEFT [24], VNS [25]
and GVNS [26] with the help of boxplot. HSTD4

seems to be more consistent with others as it has
lesser variability. Also, it has higher utilization
value over other techniques. Therefore, proposed
method outperforms over others.

5. CONCLUSION

 This paper has proposed a hybrid metaheuristic
technique to provide high availability to cloud
users. The proposed method utilizes GA and VNS
using task duplication (HSTD4) to improve the
stability of global search and to reduce inter-
processor communication. To obtain the objectives
of HSTD4, the cloud based model is designed by
considering well-known FFT problem. DAG is
designed for the FFT problem. Here, HSTD4,
HEFT, VNS and GVNS based scheduling
techniques are designed and implemented in the
MATLAB 2013a tool with the help of parallel
processing toolbox. Comparisons with existing
meta-heuristic based scheduling techniques show
that HSTD4 has the mean reduction in makespan is
7.07%, incrimination of speed is 0.13%,
improvement of utilization is 0.03% and increase in
efficiency is 0.031% as compared to the best-
optimized result, and so HSTD4 have more
optimistic results.

REFERENCES:

[1] Sharkh. M. A., Kanso. A., Shami. A. and

Ohlen. P., “Building a cloud on earth: A study
of cloud computing data center simulators”,
Computer Networks, 108, 2016, pp:78-96.

[2] Sharma. Y., Javadi. B., Si. W. and Sun. D.,
“Reliability and energy efficiency in cloud
computing systems: Survey and taxonomy”,
Journal of Network and Computer
Applications, 74, 2016, pp: 66-85.

[3] Pradhan. P., Behera. K. P. and Ray. B. N. B.,
“Modified Round Robin Algorithm for
Resource Allocation in Cloud Computing”,
Procedia Computer Science, 85(1), 2016, pp:
878-890.

[4] Ismail. L. and Fardoun. A., “EATS: Energy-
Aware Tasks Scheduling in Cloud Computing
Systems”, Procedia Computer Science, 83,
2016, pp: 870-877.

[5] Madni. S. H. H. , Latiff. M. S. A. and
Coulibaly. Y., “Resource scheduling for
infrastructure as a service (IaaS) in cloud
computing: Challenges and opportunities”,

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6213

Journal of Network and Computer
Applications, 68, 2016, pp:173-200.

[6] Awad. A. I., El-Hefnawy N. A. and Abdel-
kader. H. M., “Enhanced Particle Swarm
Optimization for Task Scheduling in Cloud
Computing Environments”, Procedia
Computer Science, 65, 2015, pp: 920-929.

[7] Bansal. N., Maurya. A., Kumar. T., Singh. M.
and Bansal. S., “Cost performance of QoS
Driven task scheduling in cloud
computing”, Procedia Computer Science, 57,
2015, pp: 126-130.

[8] Sinnen. O., “Reducing the solution space of
optimal task scheduling”, Computers &
Operations Research., 43, 2014, pp:201-214.

[9] Awad. A. I., El-Hefnawy N. A. and
Abdel_kader. H. M., “Enhanced Particle
Swarm Optimization for Task Scheduling in
Cloud Computing Environments”, Procedia
Computer Science, 65, 2015, pp:920-929.

[10] Keshanchi. B., Souri. A. and Navimipour. N.
J., “An improved genetic algorithm for task
scheduling in the cloud environments using
the priority queues: formal verification,
simulation, and statistical testing”, Journal of
Systems and Software, 2016.

[11] Jena. R. K.., “Multi Objective Task
Scheduling in Cloud Environment Using
Nested PSO Framework”, Procedia Computer
Science, 57, 2015, pp:1219-1227.

[12] Yuming. X., Kenli. L., Jingtong. H. and
Keqin. L., “A genetic algorithm for task
scheduling on heterogeneous computing
systems using multiple priority
queues”, Information Sciences, 270. 2014,
pp:255-287.

[13] Sinnen. O., To. A. and Kaur. M., “Contention-
aware scheduling with task duplication”,
Journal of Parallel and Distributed
Computing, 71(1), 2011, pp:77-86.

[14] Hashimoto. K., Tsuchiya. T. and Kikuno. T.,
“A new approach to fault-tolerant scheduling
using task duplication in multiprocessor
systems”, Journal of Systems and Software,
53(2), 2000, pp:159-171.

[15] Arafeh. B. R., “A task duplication scheme for
resolving deadlocks in clustered
DAGs”, Parallel Computing, 29(6), 2003,
pp:795-820.

[16] Jasraj. M., Kumar. M. and Vardhan. M., “Cost
Effective Genetic Algorithm for Workflow
Scheduling in Cloud under Deadline
Constraint”, IEEE Access, 4, 2016, pp:5065-
5082.

[17] Ali. A. F. and Mohamed. A. T., “A hybrid
particle swarm optimization and genetic
algorithm with population partitioning for
large scale optimization problems”, Ain
Shams Engineering Journal, 2016.

[18] Gülcü. Ş. and Kodaz. H., “A novel parallel
multi-swarm algorithm based on
comprehensive learning particle swarm
optimization”, Engineering Applications of
Artificial Intelligence, 45, 2015. pp:33-45.

[19] Jun-qing. L., Quan-ke. P. and Fa-tao. W., “A
hybrid variable neighborhood search for
solving the hybrid flow shop scheduling
problem”, Applied Soft Computing, 24, 2014,
pp:63-77.

[20] Yuming. X., Kenli. L., Jingtong. H. and
Keqin. L., “A genetic algorithm for task
scheduling on heterogeneous computing
systems using multiple priority
queues”, Information Sciences, 270, 2014,
pp:255-287.

[21] Keshanchi. B., Navimipour. J., “Priority-based
task scheduling on cloud computing
environment using a memetic algorithm”,
Journal of Circuits, Systems and Computers,
2015.

[22] Keshanchi. B., Souri. A. and Navimipour. N.
J., “An improved genetic algorithm for task
scheduling in the cloud environments using
the priority queues: Formal verification,
simulation, and statistical testing”, Journal of
Systems and Software, 124, 2017, pp:1-21.

[23] Yu. H., “Optimizing task schedules using an
artificial immune system approach”,
Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation.
Atlanta. GA. USA, 2008, pp:151–158.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6214

[24] Topcuoglu. H., Hariri. S. and Wu. M.,
“Performance-effective and low-complexity
task scheduling for heterogeneous
computing”, IEEE Transactions on Parallel
and Distributed Systems, 13, 2002, pp:260–
274.

[25] Davidovic. T., Hansen. P. and Mladenovic.
N., “Permutation-based genetic, tabu and
variable neighborhood search heuristics for
multi VM scheduling with communication
delays”, Asia–Pacific Journal of Operational
Research, 22, 2005, pp:297–326.

[26] Wu. A., Yu. H., Jin. S. Lin. K. and Schiavone
G., “An incremental genetic algorithm
approach to multi VM scheduling”, IEEE
Transactions on Parallel and Distributed
Systems, 15, 2004, pp:824–834.

