
Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6163

IMPACT OF LEAN SOFTWARE DEVELOPMENT INTO
AGILE PROCESS MODEL WITH INTEGRATION TESTING

PRIOR TO UNIT TESTING

1SHAIK MOHAMMAD SHAHABUDDIN, 2DR.PRASANTH YALLA
1PhD Scholar, Department of computer science and engineering, K L University

2Professor, Department of computer science and engineering, K L University

E-mail: 1shaik.shahabuddin@gmail.com, 2prasanthyalla@kluniversity.in

ABSTRACT

The current academic thinking on integration testing prior to unit testing using agile methodology shows
that it is an innovative approach little understood and practiced formally. However, this approach according
to Brown et al. contributes to economic governance, disciplined delivery and measure improvement for
achieving agility at scale in software industry. This has motivated us to investigate and propose a
conceptual model and make an empirical study in our previous work. In this paper, we reinforce the study
with a case study based approach and quantify the real benefits of the new cultural shift in testing known as
integration testing prior to unit testing. In addition to this, we studied the lean software development in
terms of testing and integrated it with the phenomenon of integration testing prior to unit testing. We
identified many aspects of lean principles. Nevertheless, we found mind mapping and identification of
infeasible test cases are two important aspects. They are associated with lean principle like removal of
waste to improve productivity further in agile and lean software development environment. The empirical
results revealed that productivity is increased with the paradigm shift in testing arena. The quantification of
benefits in terms of productivity shows significant performance differences between traditional approach
and the leagile (new term referring to lean and agile) approach in software testing.

Keywords: Lean Software Development, Agile Process Model, Software Testing, Integration Testing Prior
To Unit Testing

1. INTRODUCTION

Right from the year 2001 in which Agile
Manifesto emerged, the agile process model is one
of the software process models widely used by
software industry. Due to its features that contain
the advantages of iterative and incremental models,
it is used to have improved customer satisfaction.
On the other hand, lean software development is the
process of applying lean principles to software
development. Lean is understood as an extension to
agile process model. Lean focuses on removal of
wastage. Wang et al. [1] coined the name “Leagile”
for the software development that is the
combination of agile and lean. Since agile
community started looking at lean and its
applications to software development with agile
process model, the spreading of lean adaption
started. Initially lean

software development was looked as another
agile model. However, it has got significance later
and now it is recognized as a method suitable for
agile process models. It does mean that lean is on
top of agile and both go hand in hand. It is the
application of lean principles in agile methodology.
Middleton and Joyce [2] opined that lean thinking
could reduce error rates to one per million units.
They also said that lean has capability to double
productivity in software development and other
industries.

Lean principles help in software testing as well
in the context of agile. Iberle [3] applied lean
science to software test labs. This researcher
explored lean science, productivity in lean,
modularity in lean, Map for tracking work progress,
visibility of progress and so on. It is understood that
some test cases may become irrelevant as the
software process is dynamic in nature. Time and
resource wastage can lead to failure of projects, risk

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6164

prone and time to market situation cannot be
guaranteed. In this context, this paper focuses on a
methodology that is used for lean software testing
on top of agile methodology. In our prior works, we
focused on a novel approach in testing known as
“Integration testing prior to unit testing”
considering it as a paradigm shift in software
testing process. Our study on this proved that the
proposition “integration testing prior to unit testing
can result in agility at scale, economic performance
and improved customer satisfaction” is true. In this
paper, our focus is to incorporate lean principles
into agile methodology and make potential
observations.

The remainder of the paper is structured as
follows. Section 2 reviews the current academic
thinking on integration testing prior to unit test,
agile methodologies and the lean software
development. Section 3 focuses on understanding
lean science. Section 4 presents the proposed
methodology. Section 5 provides the case study and
results of proposed methodology. Section 6
discusses on the benefits of the proposed
methodology. Section 7 concludes the paper and
provides recommendations for future work.

2. RELATED WORKS

This section throws light into the review of

literature on lean in agile software development.
Antinyan et al. [4] explores risks involved in the
software development when in the presence of agile
and lean development. In such environment, these
researchers proposed a method to identify risks
involved in software code. They followed action
research methodology with two big projects. They
found that complexity and revision history of a
source file could reveal risk areas. Wang et al. [1]
explored application of lean in agile software
development process. They found importance of
lean principle in software development. They
include eliminating waste, building quality in
creating knowledge, deferring commitment,
delivering faster, respecting the people and
optimizing the whole. Middleton and Joyce [2]
provided a case study to explain lean ideas in
software management. The case study is related to
British Broadcasting Corporation (BBC). They
found three important benefits of lean software.
They include quantification of software
development process, simplifying management of
operations, lowering risk and increasing profits.

Rodriguez et al. [5] made empirical study and
found that lean can be combined with agile

methodology. They found that lean provides less
wastage kind of culture in development and
delivery processes. Ahmad et al. [6] presented one
of the lean tools known as Kanban and its usage in
software development process. The researchers
found that the Kanban usage improved customer
satisfaction, improve quality of software
development and delivery approaches. It also could
improve developer motivation and communication
among all stakeholders. Chuanga et al. [7]
assessed agile software process usage and
contributions in institutions and by scholars. They
found that scholarly publications on agile models
have increased significantly. It is observed, that
agile methods usage is increased gradually.
Rodriguez et al. [8] studied the lean thinking in
different industries including software
development. They focused on telecom industry
with respect to lean software development in terms
of strengths and challenges. They found many
advantages and the challenges they found include
creating lean culture, transparency, and achieving
flow.

Silva et al. [9] made a review of the benefits of
combining CMMI and agile software models. They
found that using agile models in software
development could help them to improve processes
to level 5 of CMMI. Thus, CMMI and agile models
have certain relationship. Anslow and Maurer [10]
studied the teaching of agile project development as
a course in education. They said that well-defined
scope is important to students to do projects
successfully using agile methods. Alia et al. [11]
investigated the need for value stream mapping for
process improvement in software development.
Especially their study focused on large-scale
software development. They found the utility of
flow-assisted value stream mapping for
effectiveness. Dwyer [12] provided the significance
of lean and agile research. Rahman et al. [13]
studied agile methods like XP and Scrum and found
that they are very useful for continuous software
deployment. Ali et al. [14] made a simulation study
on value stream mapping in agile software
development. They also found the utility of lean in
agile software development process. Two industrial
cases provided utility of the value stream mapping
and its usage in agile methods.

Suomalainen et al. [15] focused on the study of
continuous planning and its benefits in agile and
lean software development. They found that some
organizations do not follow continuous planning.
The elements involved in continuous planning
include organizational planning and strategic

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6165

planning. They found continuous planning of three
lean and agile cases in terms of day, iteration,
release, product, portfolio, and strategy. Fagerholm
et al. [16] investigated on continuous team
performance in lean and agile environments. They
found the need for different factors like team
identity, values, team spirit and communication in
lean and agile methods. They said that it is
important for the team to have performance
awareness, interpretation of performance and
performance adaptation. Yang et al. [17] worked on
combining software architecture and agile
development process to understand the mapping
between them. They found the lack of knowhow in
the industry with respect to combination. Ruhi and
Akhigbe [18] studied lean usage in design science
research and proposed a conceptual framework for
lean integration. Dreesen et al. [19] investigated on
Agile Global Outsourced Software Development
(AGOSD) that involves software development
using agile methods and lean principles. Kuhrmann
and Munch [20] tried to find group dynamics in
teaching agile methods and with respect to project
management courses. They found different aspects
in teamwork and found that performance depends
on quality of teams with agile methods.

Osadchyy and Webber [21] studied on agile
methodology for continuous and iterative
development and delivery process. With agile and
lean principles, they found that developers could
have good communication and overcome any issues
with communication. Iberle [3] applied principles
of lean to manage software-testing lab. They found
that lean science could improve productivity
dramatically. Isomursu et al. [22] studied the role
of user experiences in the agile models. They found
that user experience was not considered agile.
However, they found the utility of user experience
design into agile process models for better lean

transformation in organizations. They found that
lean thinking in software development testing could
have dramatic impact on the productivity. Kasoju et
al. [23] did their research on Evidence Based
Software Engineering (EBSE) with respect to
automotive testing process. They found that EBSE
is very important with respect to agile and lean
practices and it can help in technology
transformations to be more productive. In this
paper, we investigated on the influence of lean in
software testing process in the context of
integration testing prior to unit testing. This kind of
research, to our knowledge, is novel in nature and
we found the utility of it by quantifying
productivity in testing.

3. UNDERSTAND LEAN SCIENCE

It is crucial to understand lean science or lean
thinking before adapting it to agile methodology.
Lean refers to a set of management practices that
lead to reduction of waste. It was originally
developed for manufacturing industries. However,
it can be adapted to software testing process as well
as it involves technicalities and people orientation.
When waste is reduced, the testing process is
optimized and thus agility is improved further
besides economy of scale. It is important to
understand how the flow of work is in the
organization with respect to testing. Towards this
end it is essential to have a systems view as
illustrated in the ensuing section.
3.1. Systems View
The key to lean science in this paper is to have a
systems view, which reflects workflow through the
testing process in agile methodology. Workflow
refers to chunks of work moving in the system from
one step to another. Sometimes, the work is in
waiting state.

 PEOPLE DOING STEP1 PEOPLE DOING STEP2

Work

Figure 1: Shows Systems View That Can Help In Lean Implementation

QUEUE

QUEUE DONE

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6166

The work is divided into number of
batches. Each batch has a set of chunks of work.
There are two states in the system. They are work
being done and waiting state. The chunks under
waiting are assumed to be in a queue. The main
goal of lean science is to make the batches to reach
the “Done” state faster. This convergence is
expected when lean is practiced. This is general
systems view that can be adapted to Lean Science
implementation in agile process model.

3.2. Modelling Lean
It is possible that the work pertaining to software
testing is divided into number of batches. Then the
progress of the work is visualized and tracked with
acceptable accuracy. Then it is possible to identify
unnecessary work and poorly defined and duplicate
actions with ease. While modelling lean, the work
is considered in accordance with the framework
shown in Figure 1.

3.3. Split Testing Work into Batches
It is actually done easily in manufacturing
industries. However, in this paper we are applying
lean to software testing process. It is challenging as
the batches are made as part of lean science with
the intention of reducing waste, adding value to the
process besides showing significant impact on the
agility at scale. Applying lean science should
increase the output of batches. Some typical
examples of batches are as follows.
 Finding and writing appropriate test cases
that can adequately cover a newly incorporated
features in the software system, then running the
system, apply test cases, discover bugs and report
them properly.
 Designing and executing in-depth tests
pertaining to performance of the system and
reporting what went wrong in performance.
 Writing and running tests that find bugs
pertaining to localization or internationalization and
report defects discovered.
 Generating certain test cases automatically
and executes them as a test suite for discovering
bugs and reporting them.
 Designing and executing a set of
regression tests to discover latent defects that are
related to a new feature incorporated.
 Preparing a status report on the testing
process being carried out and predicting when
software can be finally released.
These batches are designed to target delivering
certain value that is identified by the testing team.
The list of unfixed bugs can help managers to take
well-informed decisions. Effective bug triage is

possible when the lean is applied as it results in
discovery of bugs in a more focused way.
Therefore, it is essential to divide testing work into
batches to deliver value to the testing process.
Batches also can reduce overhead in the testing
process. Rather than providing some benefit
immediately to outsiders or customers, lean science
can help in reducing waste and optimize the testing
process so that it results in reduction of overhead in
the laboratory. When batches are determined, it is
good to identify value of each batch and the exit
criteria that helps in quitting work at right time.
3.4. Batch Optimization
Batch optimization can be done in different ways.
This optimization can help reduce waste and
improve efficiency. The optimization can be
achieved by following activities such as making a
cadence, limiting number of batches, and reducing
batch size.

3.5. Cadence
Manage the batches on a cadence. Cadence is
described here. It is a predictable activity in
software testing process. It is something related to
habit and habit is repeatable action. For instance, a
sprint meeting takes place in the agile development
environment at a fixed time every day. This kind of
cadence brings about rhythm in work environment.
Other cadence activities include taking backup at a
regular interval (it can be automated to reduce time
and effort thus reducing waste), update of web site
in a time specified for maintenance (at that time
visits are least to the web site). Thus, a cadence
provides the following advantages.
 It saves time by reducing waste.
 It also reduces overhead and results in
reduction of waste.
 When any activity is made habitually at
given time, people plan to work effectively and take
the advantage of cadence.
 When batches are in cadence, it is possible
to prioritize and execute.
 Things done at regular intervals can be
configured only once and save time besides
reducing waste. For instance, booking a meeting
room on every specific day of week need not be
done every week. It can be done once and that is
the advantage of cadence.
 Cadence can also avoid regular
prioritization thus discussions on priorities is
avoided which saves time and effort.
 Regularly scheduled review of work
progress can help senior managers to focus more in
the given time avoid disturbing teams when they
are in work.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6167

3.6. Limiting Number of Batches in Progress
It is said that limited number of batches in progress
can help agile testing teams to focus more on tier
work. If not, it can have negative impact on the
progress of work. More number of batches in
progress can have the following disadvantages.

 Increased maintenance
 Wastage of time
 Task-switching can result in waste
 Keeping track of more batches causes
overhead

3.7. Reducing Batch Size
When batch size is less, it can optimize process. If
not, it affects in responsiveness. Small batches
provide the following benefits.
 Early delivery of results
 Faster evaluation and feedback

 Opportunities to include changes
 Reduction of risk
3.8. Visualization of Progress
When progress is visible, it is possible to keep track
of progress of batches and take appropriate
decisions on time. Visualization also can help
discover unnecessary steps thus adding value to the
process besides reducing waste. There are many
visualization methods. They include Visual Stream
Map, Visual Planning Board, and Cumulative Flow
Diagram.
3.9. Sample Visual Stream Map (shows
visible progress)
Visual stream maps provide progress visibility.
Figure 2 is a sample showing the progress of a
software project.

Figure 2: Shows Visual Stream Map

Visual stream map helps in understanding the
progress of work just by a glance. It is useful to
have control the work being carried out in the agile
methodology.

3.10. Sample Visual Planning Board (snapshot

in time)

At any given point of time, it is possible to
monitor the progress of any software project or
product. Sample visual planning board can provide
good picture of the work progress. There are some
tasks which are not started. Some tasks are in
progress while other tasks are already completed.

Not Started Preparing Executing Done

 Wait

State

 Designing

and

writing
tests

 Running

tests

and

filling

defects

 Finished

Testing

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6168

Figure 3: Shows visual planning board

The visual planning board can help the
stakeholders to have good project management
activities that lead to success of software
development. It improves visibility and improves
customer satisfaction.
3.11. Cumulative Flow Diagram (shows
progress trends over a period of time)

Cumulative flow diagram is also part of
lean science in which the progress is shown clearly
on weekly basis. Every week, it shows how many
tasks are in progress, how many are not yet started
and how many are already done. The purpose of the
flow diagram is to show progress trends over a
period of time.

Figure 4: Shows Cumulative Flow Diagram

As shown in Figure 4, it is evident that the
cumulative flow diagram shows the status of any
software project. The trends in the development
process are shown in every week with three data
series plotted in a graph. The result reveals the
portion of work which has been done, in progress
or not yet started.

4. PROPOSED METHODOLOGY
This paper focuses on the impact of Lean

Thinking and lean software development into
Object oriented software testing with new paradigm
shift in testing: Integration testing prior to unit
testing. It is based on the hypothesis that is “Lean
thinking into software development and testing can
eliminate waste, improve quality, help deliver
faster, respects people and optimizes the whole
process well”. This methodology has reference with
our previous work, which proposed a framework to
facilitate integration testing prior to unit testing, a
paradigm shift in software testing.

Figure 5 – Framework Facilitating Integration Testing
Prior To Unit Testing [24]

As shown in Figure 5, the agile process
model is used in modern software development to
optimize the development process. The agility in
terms of testing and the advantages of integration
testing prior to unit testing were realized in our
previous paper. The methodology in this paper is to
focus on the lean thinking or lean science
incorporated into agile methodology in the confines
of the proposed framework shown in Figure 5. It
throws light into the application of lean science to
the software testing process. The intent of lean
science is to optimize an organization or the
process used in an organization. In this paper, our
focus is to optimize software testing process, which

0

20

40

60

80

100

120

140

160

180

200

220

240

260

w
ee

k1

w
ee

k4

w
ee

k7

w
ee

k1
0

w
ee

k1
3

w
ee

k1
6

Not Started

In Progress

Done

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6169

is based on the integration testing prior to unit
testing approach proposed by us.

Figure 6 – Proposed Methodology To Incorporate Lean

Software Development Into Agile Methodology

As mentioned earlier, this methodology
has to be understood in the context of the refined
agile methodology shown in Figure 6. The aim of
this methodology is to know the impact of lean
software development in the agile methodology
when integration testing is made prior to unit
testing. The methodology includes various phases.
They include understanding lean science, model
systems view, and model lean science, divide work
into batches, optimize batches, visualize progress
and take necessary actions when there is deviation
from expected progress and reflection.
4.1. Empirical Approach Pertaining to Lean
in Unit Testing

This section provides most important
empirical study that demonstrates the proof of
concept pertaining to investigating impact of lean
software development into agile process model
with integration testing prior to unit testing. With
respect to agile software process model our prior
research focused on the integration testing prior to
unit testing as a paradigm shift for achieving
economy of scale and delivery of agile projects on
time with high customer satisfaction. This section
provides validation of the approach with reiteration
of that and study of impact of lean in agile process
model. The investigation of lean into agile software

development provided the insights presented in the
previous sections.

Now the focus is on the actual empirical
approach, which contributes in quantifying the
performance improvement of two aspects of this
research.

1. Advantages of integration testing
prior to unit testing.

2. Impact of lean software
development into agile process model.

After careful investigation into these two
aspects, we found that the conceptual framework
presented in Figure 6 is true. However, the lean
parameters that can be empirically demonstrated
with quantification of results are identified as
follows.

a) Mind map to avoid writing
unnecessary test cases

b) Identification and elimination of
infeasible test cases
4.2. Elimination of Infeasible Test Cases

A coverage goal is infeasible if there exists
no test that would exercise it. For some simple
cases, there could be techniques that are able to
identify infeasible targets; for example, dead-code
detection might reveal some infeasible branches,
such as the one listed in Listing 1.

1 public class Stack
2 {
3 int[] values=new int[3];
4 int size=0;
5 void push(int x)
6 {
7 if(size>=values.length)
8 resize();
9 if(size<values.length)
10 values[size++]=x;
11 }
12 int pop()
13 {
14 if(size>0)
15 return values[size--];
16 Else
17 thrownew
18 EmptyStackException()
19 }
20 private void resize()
21 {
22 int[] tmp=new int
23 [values.length*2];

 for(int i=0; i<values.length; i++)
24 tmp[i]=values[i];
25 values=tmp;
26 }

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6170

Listing 1: Stack Implementation with Infeasible Branch

[25]

As shown in Listing 1, it is evident that the
test case with infeasible branch can be avoided
while writing unit test cases. This can save time in
writing test case time and execution time of the
same. The time thus saved can be quantified and
translated to productivity, which can be compared
with the productivity of the approach where lean is
not adapted in the form of eliminating infeasible
test cases.
4.3. Mind Map for Reducing Test Cases

A fundamental goal for lean is fast-flexible
flow. That is, it is useful to think of the
development process as a pipeline where
production takes place. Anything that slows down
the pipeline causes waste. This waste includes any
test case written without relevance in the process of
integration testing. Mind map can reduce such test
cases as this tool can provide accurate mapping to
only mandatory test cases. Mind map is the
graphical representation of main concepts to be
tested mapped to essential test cases. Mind map
shows visual representation of test cases to be
written and tested. This can avoid writing
unnecessary test cases. This feature is part of lean.
The test cases written with mind map and without
having mind map practice can differ. Therefore,
this feature is considered for empirical study.

5. CASE STUDY AND EXPERIMENTAL
RESULTS

A case study is considered for implementation of
lean in agile besides using the integration testing
before unit testing paradigm. The project is split
into number of sprints. They are implemented with
and without proposed approach. The experimental
results are presented in terms of productivity in
time for integration testing prior to unit testing and
lean integration with agile model. The IT before UT
was investigated in our previous work [24]. The
focus of this paper is Lean Integration in terms of
reducing wastage by considering infeasible
branches and mind maps in testing phase. Before
presenting the results of this paper, the
representative results of IT before UT are presented
in Table 1.

Table1: Results of VMS

Sprint
Usual Test Time
(Including
integration)

Test Time
with New
Approach

Testing
Productivity

Delivery
Productivity

1 7 6 1 1

2 10 8 2 2

3 11 7 4 4

4 11 8 3 3

5 11 8 3 3

6 11 8 3 3

7 11 8 3 3

8 11 8 3 3

9 11 7 4 4

10 11 8 3 3

The delivery and testing productivity for
all the sprints is presented to quantify the utility of
IT before UT. By focusing on architectural defects
thru integration testing prior to unit testing could
achieve the aforementioned productivity. The
remainder of this section throw light into the
observations of Lean Integration into agile model
on top of the new paradigm shift known as IT
before UT.

Table 2: Shows Unit Testing Planning, Development And

Execution Details

Sprint No. of

Unit

Test

Cases

Planning

Time

(hh:mm)

Development

Time (hh:mm)

Execution

Time

(hh:mm)

Total

Time

(hh:mm)

1 10 02:50 05:50 00:50 08.50

2 10 02:50 07:00 00:50 10.00

3 10 02:50 06:00 00:50 09.00

4 10 02:50 05:00 00:50 08.00

5 10 02:50 05:00 00:50 08.00

6 10 02:50 07:00 00:50 10.00

7 10 02:50 08:00 00:50 11.00

8 10 02:50 06:00 00:50 09.00

9 10 02:50 05:00 00:50 08.00

10 10 02:50 06:00 00:50 09.00

As shown in Table 2, it is understood that
every sprint in agile methodology can have lean
principles adapted. We found that mind mapping
and identification of infeasible branches in the
source code are two important aspects associated
with lean principles. These two are effective in
reducing wastage.

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6171

Figure 7: Sprint wise total time taken

As shown in Figure 7, it is evident that
each sprint the total time taken for completing unit
test cases with reference to Table 2, the number of
sprints and the corresponding total time of
completion of test cases for each sprint
respectively.

Figure 8: Shows the mind map used to adapt lean testing

in agile process of VMS project

As shown in Figure 8, it is evident that the
VMS project is divided into 10 sprints. Each sprint
has different number of test cases. This mind map
can help test engineers to quickly complete the task
of writing test cases, test data generation and
execution of test cases. It also helped in removal of
unnecessary test cases. The effect of mind maps
observed empirically is reflected in Table 3. Mind
map is drawn using online software known as
Coggle software [26].

Table 3: Shows Expected Outcomes

Sprint Time Saved

(Infeasible

property)

Time

Saved(Mind

Map

property)

Testing

Productivity

(in Man

Hours)

Dollars

Saved($18

per hour)

1 3 4 7 126

2 2 4 6 108

3 2 7 9 162

4 3 6 9 162

5 3 6 9 162

6 2 5 7 126

7 1 6 7 126

8 1 5 6 108

9 2 7 9 162

10 1 5 6 108

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

To
ta
lT
im

e
(h
o
u
rs
)

Sprint

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6172

As shown in Table 3, the results of
empirical study are presented. The number of test
cases reduced due to the adaptation of the lean
principles is shown. Since lean eliminate wastage in

software testing process, the utility of the mind
maps and identification of infeasible branches in
source code are presented.

Figure 9: Shows Outcomes of Proposed Approach

As presented in Figure 9, it is understood
that the productivity is increased in each sprint. The
productivity is indirectly visible in the form of the
number of test cases reduced in each sprint due to
lean principles used in testing. Particularly usage of
mind map and identification

of infeasible test cases could reduce the
number of test cases needed. It does mean that it
was able to avoid wastage by not writing
unnecessary test cases in the software testing where
lean in adapted on top of agile methodology.

Figure 10: Shows productivity in terms of dollars saved in each sprint

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

P
ro
d
u
ct
iv
it
y

Sprint

TimeSaved(Infeasible
Property)

TimeSaved(MindMapProp
erty)

TestingProductivity(in
Man Hours)

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

D
o
lla

rs
 S
av
e
d

Sprints

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6173

As shown in Figure 10, there are 10 sprints and
the details of money saved ($) due to the lean
approach which gets rid of wastage in terms of
removing infeasible branches in testing and usage
of mind maps. This productivity is in agile model
where lean is enforced on top of IT before UT

paradigm. The results reveal that testing phase
alone is capable of increasing efficiency by saving
dollars. Saving $18 per hour is significant
performance improvement and a total of $1350 for
all sprints emphasizes the proposition conveyed in
the results.

6. DISCUSSION

The combination of agile methodology and lean
software development yielded synergic benefits.
This section throws light into the benefits bestowed
by such development environment coupled with
integration testing prior to unit testing paradigm.
Integration testing prior to unit testing is to achieve
transformation from conventional engineering and
governance to more agile economic governance as
envisaged in [27]. Another important aspect of
paradigm shift is to have control over agility by
exploiting lean in software development and
testing. Our research in this paper focused on
testing. In fact, it investigated three aspects in
software engineering. They are transition from
traditional testing to integration testing prior to unit
testing with agile, lean testing incorporated,
benefits to all stakeholders when IT before UT is
coupled with lean. IT before UT, as shown in our
previous work [24], ensured productivity. The lean
implementation in the form of mind maps and
infeasible test cases (avoiding wastage) resulted in
testing productivity as shown in Table 3.

The stakeholders associated with a project done
in agile with lean implementation are development
team, product owner, client, QA Team, Scrum
Master (management) and users. The main
advantage to software development team is that
their mindset is changed from development
orientation to delivery orientation. In addition to
this, they could save 15 to 20% time and effort on
reworking of code as opposed to 40% observed
with traditional approach [28]. It is achieved with
the proposed methodology as IT before UT, mind
maps and infeasible test cases could eliminate
wastage and improve testing productivity by 25%
in each sprint. This is very significant leap forward
in the economic governance in software
engineering. By discovering architecturally
significant challenges as explored in [27], IT before
UT could resolve big uncertainties earlier and made
inroads to faster deliveries of sprints. Thus, the
aforementioned benefits are realized by
development team. The side effects of these
benefits include reduction of stress among team
members, customer satisfaction due to speedy
deliveries to client instead of spending more time

on unit testing. This could improve the confidence
of team members to get the culture of delivery
orientation. An analogy from [27] which is, 10%
reduction in complexity  10% process
improvement  10% more capable team  10%
increase in automation, closely fits here

Economic governance, engineering governance
and delivery orientation are improved with agile
model where IT before UT and lean are applied.
Benefits to client is that, client is able to see the
product (after each sprint) early and happy to
execute and give feedback. Client involvement in
the development process is the key in success of the
project. More details on the quantification of client
satisfaction with IT before UT can be found in our
previous work [24] as shown in Table 1. Measured
improvement is made possible with agile, IT before
UT and lean. Management of software
Development Company gained more evidence and
confidence in the delivery focused environment.
Customer satisfaction boosted their morale and it
paved way for stronger relationship with client. The
management related to problem area are benefited
with time-to-market products that leverage
technology adaptation, change management and
automation. When architectural inconsistencies are
addressed first with IT before UT, it resulted in
timely deliveries to client. Pressure on all
stakeholders is reduced. Continuous evolvement,
value-adding approaches, honesty in dealing with
uncertainties, governance through proper
measurements, and control over agility are the
success factors observed in this research. To sum it
up “less overhead and more freedom is realized by
practitioners while stakeholders achieved
predictable productivity and better measurement”.

Based on the efforts and time saved, cost
estimation is made with COCOMO II model [29]. It
is observed that with agile, lean and IT before UT,
the cost of production is reduced by 25 to 30% for
the software projects studied in this paper,
especially VMS. Cost of software engineering is
significantly reduced with the proposed
methodology. Project management is also affected
by this positively. However, there were some
challenges encountered by development team. Most
of the challenges were related to change
management as the IT before UT is new to the

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6174

team. For instance, they are accustomed to write
unit test cases and avoiding them and directly
writing integration test cases became a problem. To
overcome these challenges, a training program was
conducted to the team for having better
understanding and co-operate with the change
brought into the system. With respect to mind
maps, it is understood that they became good
documentation for the stakeholders. As discussed in
[30], the mind maps provide predictable outcomes
besides guiding project management. They could
improve information recall as they are converted to
technical documentation. Potential opportunities
and risks could be identified with mind maps
incorporated as part of lean in agile software
development.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we studied lean software testing as

part of lean development and its integration with
agile methodology. This study is made in the
context of the paradigm shift in testing arena
known as integration testing prior to unit testing. As
formal unit testing consumes more time and effort,
it can be avoided or minimized by following the
novel approach integration testing prior to unit
testing. This can help agile teams to realize more
agility in delivering project incrementally to client
and gain feedback instead of delaying the delivery.
This strategy is said to have significant impact on
customer satisfaction and revenues of software
companies. However, it is little understood and
practiced by agile teams. We threw light on this by
investigating on the new phenomenon integration
testing prior to unit testing with multiple case
studies in our previous work. We found the utility
of this approach in the context of agile
methodology. In this paper, we reinforced our study
with lean integration. The lean principles such as
finding infeasible branches and avoiding test cases
for that and having mind maps prior to developing
test cases are employed with agile methodology.
We used VMS case study to explore the agile
methodology with 10 sprints and for each sprint, we
quantified the productivity of integration testing
prior to unit testing approach and lean software
testing approach. The empirical results revealed
significant performance improvement in terms of
productivity and frequent delivery of product
increments to customers. In future, it interesting to
build formal metrics for finding benefits of lean and
the new paradigm shift that is integration testing
prior to unit testing.

REFERENCES

[1] Xiaofeng Wang, Kieran Conboy and Oisin
Cawley, “Leagile software development: An
experience report analysis of the application
of lean approaches in agile software
development”, Jss, 2012, p1-13.

[2] Peter Middleton and David Joyce, “Lean
Software Management: BBC Worldwide Case
Study”, IEEE, Vol. 59, No.1, 2012, p1-13.

[3] Kathy Iberle, “Lean in the Software Test
Lab”, Excerpt from PNSQC, 2013, p1-13.

[4] Vard Antinyan, Miroslaw Staron, Wilhelm
Meding, Per Österström, Erik Wikström,
Johan Wranker, Anders Henriksson, Jörgen
Hansson,Ericsson AB and AB Volvo,
“Identifying Risky Areas of Software Code in
Agile/Lean Software Development: An
Industrial Experience Report”, IEEE, 2014,
p1-10.

 [5] Pilar Rodríguez, Jari Partanen, Pasi Kuvaja
and Markku Oivo, “Combining Lean
Thinking and Agile Methods for Software
Development A Case Study of a Finnish
Provider of Wireless Embedded Systems”,
IEEE, 2014, p1-10.

[6] Muhammad Ovais Ahmad, Jouni Markkula
and Markku Ovio, “Kanban in software
development: A systematic literature
review”, IEEE, 2013, p1-8.

[7] Sun-Wen Chuanga, Tainyi Luora and Hsi-
Peng Lu, “Assessment of institutions,
scholars, and contributions on agile software
development”, Jss, 2014, p1-18.

[8] Pilar Rodríguez, Kirsi Mikkonen, Pasi
Kuvaja, Markku Oivo and Juan Garbajosa,
“Building Lean Thinking in a Telecom
Software Development Organization:
Strengths and Challenges”, ACM , 2013, p1-
10.

[9] Fernando Selleri Silva, Felipe Santana
Furtado Soares, Angela Lima Peres, Ivanildo
Monteiro de Azevedo, Ana Paula L.F.
Vasconcelos, Fernando Kenji Kamei and
Silvio Romero de Lem, “Using CMMI
together with agile software development: A
systematic review”, Elsevier, 2015, p20-43.

[10] Craig Anslow and Frank Maurer, “An
Experience Report at Teaching a Group Based
Agile Software Development Project Course”,
ACM, 2015, p1-6.

[11] Nauman Bin Alia,Kai Petersen and Kurt
Schneider, Flow-assisted value stream
mapping in the early phases of large-scale

Journal of Theoretical and Applied Information Technology
30th November 2017. Vol.95. No 22

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6175

software development”, Elsevier , 2015, p1-
15.

[12] Matthew B. Dwyer, “Connecting and Serving
the Software Engineering Community”, IEEE,
2016, Vol. 42, No. 3, 2016, p1-3.

[13] Akond Ashfaque Ur Rahman, Eric Helms,
Laurie Williams, and Chris Parnin,
“Synthesizing Continuous Deployment
Practices Used in Software
Development”, IEEE, 2015, p1-10.

[14] Nauman Bin Ali, Kai Petersen and Breno
Bernard Nicolau de Franca ,“Evaluation of
simulation-assisted value stream mapping for
software product development: two industrial
cases”, Information and Software Technology
, 2015, p1-25.

[15] Tanja Suomalainen, Raija Kuusela and Maarit
Tihinen, “Continuous planning: an important
aspect of agile and lean development”, Int. J.
Agile Systems and Management, Vol. 8, No.
2, 2015, p1-31.

[16] Fabian Fagerholm , Marko Ikonen , Petri
Kettunen , Jürgen Münch , Virpi Roto and
Pekka Abrahamsson, “Performance
Alignment Work: How software developers
experience the continuous adaptation of team
performance in Lean and Agile
environments”, Elsevier , 2015, p1-16.

[17] ChenYanga, PengLianga and ParisAvgeriou,
“A systematic mapping study on the
combination of software architecture and agile
development”, Elsevier, Vol. 111, 2016,
p157-184.

[18] Umar Ruhi and Okhaide Akhigbe, “Lean
Development in Design Science Research:
Deliberating Principles, Prospects and
Pitfalls”, Springer, 2016, p286–300.

[19] Tim Dreesen,Robert Linden,Caroline
Meures,Nikolaus Schmidt and Christoph
Rosenkranz,“ Beyond the Border: A
Comparative Literature Review on
Communication Practices for Agile Global
Outsourced Software Development
Projects”, IEEE , 2016, p1-10.

[20] Marco Kuhrmann and Jürgen Münch, “When
Teams Go Crazy: An Environment to
Experience Group Dynamics in Software
Project Management Courses”, IEEE, 2016,
p1-10.

[21] Alex Osadchyy and Jon Webber, “A
PRACTICAL MANAGEMENT SYSTEM
FOR THE EFFECTIVE USE OF
OFFSHORE SOFTWARE PROJECT
OPPORTUNITIES”, Review of Business &
Finance Studies, Vol. 7, No. 1, 2016, p1-18.

 [22] Minna Isomursu, Andrey Sirotkin,Petri Voltti
and Markku Halonen , “User Experience
Design Goes Agile in Lean Transformation –
A Case Study”, IEEE, 2012, p1-10.

[23] Abhinaya Kasoju , Kai Petersen and Mika V.
Mäntylä, “Analyzing an automotive testing
process with evidence-based software
engineering”, Information and Software
Technology, Vol. 55 , 2013, p1237-1259.

[24] Shahabuddin, S. M. and Prasanth, Y,
“Integration Testing Prior to Unit Testing: A
Paradigm Shift in Object Oriented Software
Testing of Agile Software Engineering”,
Indian Journal of Science and Technology,
Vol. 9, No. 20, 2016, p1-10.

[25] Fraser, G., and Arcuri A, “Whole Test Suite
Generation”, IEEE, Vol. 39, No. 2, 2013, p1-
16.

[26] Coggle, “Coggle.it. Available:
https://coggle.it/. Last accessed 13th July
2017”.

[27] Brown, A. W., Ambler, S., and Royce, W,
“Agility at Scale: Economic Governance,
Measured Improvement, and Disciplined
Delivery. Software Engineering in Practice”,
IEEE, 2013, P873-881.

[28] W. Royce, “Software Project Management A
Unified Approach”, Addison-Wesley, 1998.

[29] Hana Rashied Ismaeel and Abeer Salim Jamil,
“Software Engineering Cost Estimation Using
COCOMO II Model”, 2007, P1-26.

[30] Rachel Burger, “The Ultimate Guide to
Project Management Mind Mapping”,
Retrieved from
http://blog.capterra.com/ultimate-guide-
project-management-mind-mapping/ ,
Accessed on 29 July 2017.

