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ABSTRACT 
 

Electroencephalography (EEG) is one of the most used techniques for evaluating the functional status of 
the brain. It is essential for diseases’ diagnosis such as epilepsy. This pathology results from a cerebral 
dysfunction. The diagnosis of this pathology consists of detecting the appearance of paroxysmal activities 
in the EEG signals. The diagnostic of Epilepsy in EEG plays a crucial role in Computer Aided Diagnosis 
system (CAD). In this article, we suggest an approach based on the orthogonal adaptive transformation 
theory which makes it possible to extract the informative features of the EEG signals. The size of the 
vectors of the informative features obtained by this method is very short. This will allow to improve the 
quality of signals analysis and to increase their certainty of diagnosis 
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1. INTRODUCTION  
 

The EEG is one of the main medical 
diagnostic tools [1]. The provided information on 
the bioelectric activity of the brain makes it 
possible to estimate not only the state of the 
nervous system but the whole organism as well. 
Electroencephalography (EEG) is widely used in 
neurology and it is essential for diseases diagnosis 
such as epilepsy [2]. This pathology results from a 
cerebral dysfunction which is noticed through 
repetitive and unpredictable brief crises. 

 
Epileptic seizures are reflected in 

electroencephalogram (EEG) by the appearance of 
paroxysmal activities [3]. 
 

The diagnosis of this pathology therefore 
consists of detecting paroxysmal activities in the 
EEG signals of the patient. In diagnosis, the 
extracting of the informative features of the EEG 
signal is the most important step. 
 

The analysis of the electroencephalogram 
signal (EEG) is quite complicated because of its no-
stationary behavior [4]. 

 
The Karhunen-Loeve transformation [5] 

can be considered as an optimal mathematical 

instrument for analyzing non-stationary signals. 
However, its practical use is limited because of the 
difficulty of calculating the singular functions of 
the covariance matrix of the signal to be analyzed 
and the absence of a fast transformation algorithm 
for the calculation of the spectrum. 

 
To deal with these processes, the spectral 

methods based on conventional orthogonal 
transformations are often used (Fourier, Haar, 
Walsh,...) [6] thanks to the advantage of their fast 
algorithm of transformation. However, in the 
spectral domain these changes do not provide a 
higher distinction between the standard vector and 
the signal to be analyzed because of the 
enlargement of the obtained spectral. Therefore it is 
necessary for a spectral method to accurately detect 
this difference. If the features’ vector changes 
values in a considerable way from one class to 
another, this confirms the possibility of 
constructing an effective system for the diagnostic 
of signals. This is why the method of extraction of 
informative features constructs the most important 
phase in diagnosis. 

 
In this paper, we propose the use of 

adaptive orthogonal transformation to detect the 
existence of paroxysmal activities in EEG signals. 
The proposed method allows to adapt the 
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transformation operator to the standard vector of a 
class of the processed signals and to obtain a very 
short spectrum of informative characteristics. 

 
 This method improves the quality of 

analysis and increases the certainty of classification 
of EEG signals which leads to a better diagnosis of 
the state of the patient. 

 
The aim is not to fully characterize the 

activities observed in the EEG signals. The pointed 
form, common to a large part of the paroxysmal 
activities, will be used as the main characteristic of 
the activities to be detected. 
 
2. METHODS USED 
 

The automatic detection of epileptic peaks 
in EEG was studied over the past 40 years 
[7],[8],[9]. Through the existing solutions, we 
distinguish essentially five types of techniques used 
in the domain of automatic detection of epileptic 
points: 

 
2.1 Mimetic Techniques 

These techniques attempt to reproduce the 
behavior of expert EEG readers (EEGers) to 
automatically detect the peaks. They compare 
characteristics established by the expert, such as the 
amplitude or duration of a wave with the 
characteristics of the processed signal. Peaks are 
detected by thresholding these criteria. The major 
disadvantage of this approach is that it detects 
events that are not peaks (for example cardiac 
artifacts or eye blinks may correspond to the same 
criteria as a peak). 
2.2 Pattern Matching Techniques  

These techniques consist in detecting 
points based on several points previously identified 
by an EEGer [10]. From these points, a pattern is 
constructed and is compared to the processed 
signal. The pattern can be a time representation, a 
frequency representation or a spatiotemporal 
representation of the peaks [11].  
2.3 Parametric Techniques  

These techniques assume that a signal that 
does not contain epileptic points is stationary, and 
the non-stationary of the signal reflects the presence 
of an epileptic points. Like mimetic techniques, this 
approach is sensitive to the presence of artifacts in 
the signal. 
2.4 Neural Network Techniques  

These techniques model signal processing 
tools; they are schematically close to the 
functioning of biological neurons. Several units 

cooperate to form an assembly which, after training 
on different EEG signals containing epileptic 
points, is capable of detecting these points in any 
signal. In addition to the difficulty of defining a 
training database, the main complexity is to define 
the parameters at the input of the architecture of a 
neural network. 
2.5 Spectral or Time-Frequency Analysis  

This method consists in extracting 
information from the signal via its frequency 
representation. While some works use only Fourier 
transformation (to construct the spectrum which 
only presents the global frequencies of the signal), 
others exploit more elaborate Time-Frequency 
methods such as the wavelet transform [12]. They 
prove to be very effective in detecting epileptic 
points, but the choice of the wavelet to use is the 
major disadvantage of this approach. 
 
3. METHOD AND ALGORITHM 
 

In digital signal processing, the orthogonal 
linear transform of a signal X can be represented by 
the equation: 

HX
N

Y
1

   (1) 

Where: 

 H is the matrix operator of the transform size  
N x N whose number of rows corresponds to 
the number of basic functions to decompose 
the vector X. 

 X = [x1, x2,……,xN]T  is the original signal to 
transform having the size N = 2n. 

 Y = [y1, y2, …, yN]T is the vector of spectral 
coefficients calculated by the orthogonal 
spectral operator H of dimension N x N. 
 

The process of calculation of the spectrum 
using Equation 1 requires N2 addition and 
multiplication operations. The most effective means 
for reducing the number of operation is the rapid 
transformation algorithm (FFT) based on the 
method of Good [13] which consists of expressing 
the matrix operator H as a product of sparse 
matrices Gi composed by elementary matrices 
minimum dimension:  
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these are called spectral kernels.  
 

Thus, the Equation 1 can be written as 
follows:  
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where : 

Nn 2log  
is the number of matrices Gi. So, each 

matrix Gi contains 
2

N  spectral kernels Vi,j (ϕi,j) 

sized 2 х 2.  
 

In the procedure of the adaptation of 
operator H to a class of signals (to be analyzed), the 
first step consists of calculating statistical 
characteristics (mean value in this case) of some 
signals recording for learning the classifier to form 
the class average vector Xm .  

The synthesis of adaptive operator's basis 
functions H system is therefore based on average 
vector Xm. In other words, the operator of the 
transform is adapted to a class of signals 
represented by the average vector Xm if it replies to 
the following condition:          

    tcT yYXH
N

0,,0,
1

1ma      (3) 

where TY  is the target vector, the first non-zero 

component yT,1, builds the adaptation criterion 
operator transform. Moreover, if the vectors are 
normalized, the Equation 3 becomes:                                   

 TTYXH
N

0,,0,1
1

ma         (4)                        

According to Parseval's relation, the 
transform operator Ha is adaptive if the energy of 
the standard vector is concentrated in the first 

component of the target vector TY . The synthesis of 

adaptive operator Ha requires to determine the 

angular parameters ji , of the spectral kernels Vi,j 

during the calculation of Gi . In [14], the Good’s 
matrix has a predetermined a fixed structure. The 
spectral kernels are arranged diagonally; the 
operator's synthesis is based on their kronecker’s 
product (the modified form). In this article, we 
suggest an approach based on the calculation of the 
angles of Givens’ rotation.  

Let be )(, lrT  the Givens’ rotation 

matrix Figure 1 where cos (φ) and sin (φ) appear at 
the r rows and l columns respectively (r < l):   

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Representation of the Givens’ rotation matrix 

The matrices Gi are calculated using the 

product of matrices )( ,, ji
j
lrT   : 
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The calculation of the target vector YT  can 
be achieved  step by step using the matrix Gi with 
an iterative procedure using the following recursive 
relation:  

1 iii YGY          

 where:  

 i = 1 …log2 N   and   Y0 = Xm 

 

The angular parameters ji,  of the 

matrices j
lrT , are calculated according to the 

components of the vector Yi-1  by the following 
relation: 
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  (6)        

To clarify the idea of the algorithm, we 
consider the following example of the calculation 
of the transform operator size N = 4. 
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Lets be  Tmmmm xxxxX 4,3,2,1,m ,,, the 

vector standard. 
 

In the first iteration i = 1, we will calculate 
the matrices                     
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with:  

ci,j=cos(i,j) and  si,j=sin(i,j). 
 

Using the Equation 6, we calculate the 
parameters i,j, and we obtain:      
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For the second iteration i = 2, we calculate 

the parameters ji ,  in an analogous manner, from 

the vector Y1 which will determine the matrices: 
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The decomposition of the vector Y1 gives: 
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So in a similar manner as previously, after 
the last iteration we have: 
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The Y3 vector is obtained by: 
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Finally the calculation of the target vector 
YT is therefore ensured by: 
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Which replies to the criterion (4) of the 

operator transform adaptation Ha. 
 

The iterative process and the proposed 
algorithm for the synthesis of suitable operator Ha 
are illustrated in the Figure 2 and 3 respectively. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Iterative Procedure Of Good’Matrix 
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Figure 3: Diagram Of The Algorithm Synthesis Of 
Adaptive Orthogonal Transformation Operator 

The method developed for the diagnosis of 
EEG signals using adaptive orthogonal 
transformations, illustrated in Figure 6, includes 
two subsystems: a learning subsystem and a 
classification subsystem. In comparison with other 
classification methods [15][16], the proposed model 
has certain peculiarities. In this one sees two 
groups’ recordings for the learning of the system. 
The first group makes it possible to form the 
standard vector Xm (mean of the statistical 
characteristics invariant of the recordings) which 
serves to the synthesis of the adaptive basis 
functions of the operator Ha, while the second 
selection of the records allows to form a standard in 
the spectral domain (standard classifier) Ym, 
obtained by the average of their decomposition in 
the adaptive basis Ha : 
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The classification procedure of a signal is 
therefore to project it into the adaptive basis of each 
class Figure 4. To increase the certainty of 
diagnosis, a rule of decision formed by two criteria 
has been suggested: 
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where: 

Ci  Refers to the class of signals EEG (pathological 
or normal) 
 
Y0,i  Is the decomposition of the signal X0 in the 
basis adaptive to class i.  
 
Ym,i is the standard vector in the spectral domain of 
the class i. 

2
i,0,1y  and  2

i,m,1y  represent respectively the energy 

of the first coefficients of the decomposition of the 
vector Y0,i and Ym,i. 
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Figure 4: Proposed Of Classification 

4. RESULTS AND DISCUSSION 
 

EEG signals data are taken from CHB-
MIT scalp EEG Database (chbmit), from Physionet, 
it is freely accessible via the link [17].This 
database, collected at the Children’s Hospital 
Boston, consists of EEG recordings from pediatric 
subjects. 

 
To demonstrate the effectiveness of the 

proposed method, we use two classes of signals, 
one class contains normal signals and another one 
contains pathological signals that represent the 
paroxysmal abnormalities which characterize the 
existence of epilepsy. In the Figure 5 are illustrated 
two fragments of EEG signals (Normal and 
pathological EEG) and their projections in adaptive 
basis.  
 

Thanks to the selectivity of the transform, 
the aspects of the Yi spectra of the informative 
features are clearly distinguished. The presence of a 
peak (epileptic point) in the signal causes a sharp 
variation in the spectrum. This leads to a better 
classification and a diagnosis with a high certainty. 
 
 

 

 

 

 
 
Figure 5: Calculation Of The Spectrum Of EEG Signals 

Using Adaptive Basis Functions 

5. CONCLUSION 
 

In this approach, the resolution of the 
problem of biological signals diagnosis is based on 
the use of the adaptive orthogonal transform whose 
functions can be set according to the data to be 
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analyzed. This approach has helped to develop a 
method of identification in which the property is 
used in the selectivity of the conversion and 
reached a high distinction of vector features of 
signals.  
 

The major advantage of this method lies in 
the possibility of adapting the operator of the 
transform to the standard vector of a class of the 
given signals; this allows extracting a vector of the 
most relevant features from the signals. 

 
The proposed approach cannot be used in 

unsupervised classification where signal classes are 
unknown. In fact, the synthesis of the operator 
adaptable to a given class requires prior information 
on the signals of the class that we can obtain by the 
calculation of one of the statistical characteristics 
which are invariant at the moment of emission of 
the signal (correlation, energetic spectrum and 
others). 

 
The obtained results in this article allow 

drawing a conclusion about the prospect of the 
application of the methodology developed for the 
resolution of various problems such as 
classification, identification, technical and medical 
diagnostic and pattern recognition. It may be noted 
that this method can be projected on low variable 
signals related applications, that is to say the 
spectral shape signals in the low frequencies. 
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Figure 6: Proposed System Of Diagnostic 
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