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ABSTRACT 
 

In this paper, the error-Gaussian-kernelled input of the algorithm developed by maximization of zero-error 
probability of constant modulus error (MZEP-CME) is studied for developing a method to reduce the 
weight perturbation of the MZEP-CME under impulsive noise. The proposed method is to normalize the 
input of MZEP-CME with the norm of the error-Gaussian-kernelled input (EGKI) in order to reduce weight 
perturbation. Then the denominator of the step size can make the algorithm unstable when it has a very 
small value or wide fluctuations. To prevent these incidents, a balanced power of EGKI between the current 
power and the past one is employed. This normalization with balance power provides an additional function 
for reducing further the weight perturbation in impulsive noise environment. Simulation results show that 
the weight fluctuation after convergence of the proposed algorithm is below half of that of the MZEP-CME. 
Also compared with the MZEP-CME, the proposed approach lowers the steady state MSE (mean squared 
error) by about 1 dB under impulsive noise.                                      2)  

Keywords: Impulsive Noise, Maximization Of Zero-Error Probability, Constant Modulus, Error-
Gaussian-Kernelled Input, Weight Perturbation 

 
1. INTRODUCTION  
 

Communication systems suffer from Gaussian 
noise as well as impulsive noise generated from 
various impulsive noise sources [1][2]. To deal with 
such harsh problems, new performance criteria and 
signal processing methods have been introduced. As 
information theory-based criteria designed by using a 
combination of a nonparametric probability density 
function (PDF) estimator and a procedure to compute 
entropy, error entropy (EE) for supervised learning 
based on Gaussian noise environment and 
correntropy for blind learning in situations with 
impulsive noise problem have been introduced and 
experimented in the work [3] and [4], respectively. 
Minimization of EE (MEE) as an alternative to the 
mean squared error (MSE) criterion has shown 
superior performance in supervised channel 
equalization applications [5].  

For unsupervised or blind equalization, the 
constant modulus algorithm (CMA) is widely used 
[6][7]. It minimizes the averaged power of constant 
modulus error (CME) defined as the difference 
between an instant output power and a constant 
modulus. As another information theory-based 
criterion, zero-error probability (ZEP) has been 

proposed and further developed to employ CME for 
blind learning which will be referred to in this paper 
as ZEP-CME [8].  

In the work [9] theoretical and simulation analysis 
of maximization of ZEP-CME (MZEP-CME) have 
been studied. The MZEP-CME method initially 
proposed for Gaussian noise environments produces 
acceptable performance in impulsive noise 
environment as well. Gaussian kernel of MZEP-
CME has an effect of making the system insensitive 
to the large differences between the power of 
impulse-infected outputs and the constant modulus.  

On the other hand, correntropy blind method 
introduced for impulsive-noise resistance has shown 
acceptable but not very satisfying against impulsive 
noise in modulation schemes with independent 
source symbols. Not to mention, it is known that 
constant modulus algorithms based on MSE fails to 
converge in impulsive noise environment [9]. 

A decision feedback (DF) version of MZEP-CME 
(DF-MZEP-CME) has been proposed for 
compensation of severe channel distortions [10]. The 
inherent characteristics of the DF-MZEP-CME 
algorithm are that its Gaussian kernel plays a role of 
reducing the impact of large constant modulus errors 
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on weight adjustment process. This effect allows the 
DF structure to be equipped so that the residual ISI 
cancellation can be carried out effectively.   

The MZEP-CME type blind algorithms have some 
computational burden in its gradient calculations. For 
reducing this heavy computational complexity, a 
recursive approach to the estimation of the ZEP of 
CME and its gradient has been introduced in [11].  

The problem in this MZEP-CME algorithm is that 
the factors or properties that play the key role of 
making the algorithm immune to impulsive noise 
have not been investigated enough, which leads 
researchers to be difficult to find some ways to 
improve its performance in any impulsive noise 
environments. In this situation, further improvement 
of the performance of the algorithm may require    
research in-depth and the improved performance 
resulted from the research can bring significant 
breakthrough to wireless channel equalization fields 
under severe channel environments with strong 
impulsive noise and multipath distortions inflicted by 
heavy intersymbol interference.         

The research questions we may raise can be what 
we should look at in order to find out the key factors 
which are linked to the algorithm’s immunity against 
impulsive noise. The possible answers to this 
question may be the Gaussian kernel for the constant 
modulus error and input signal multiplied by this 
kernel. Another question can be how we improve the 
performance of the algorithm by exploiting the 
factors found from the research. One of the answers 
to this question can be the normalization approach 
which has been successfully employed in the 
normalized least mean square (NLMS) algorithm 
[12].     

Associated another difficulties are the instability 
that can be occurred when the input power at an 
instant has a very low value or heavy fluctuations. 
This difficulty is also presented in this paper and 
some strategies to cope with it by employing 
balancing the past power and the current power are 
discussed.      

In this study, it is analyzed that the error-
Gaussian-kernelled input (EGKI) of MZEP-CME 
algorithm plays the role of keeping the algorithm 
undisturbed from impulsive noise. Based on the 
analysis of the role of EGKI against impulsive noise, 
a method of performance enhancement of the MZEP-
CME algorithm is proposed. When compared with 
the conventional MZEP-CME algorithm, the 
proposed method has different properties of 
normalizing the step size by the averaged power of 
EGKI. So the fact that the information of input 

statistics is effectively utilized can be a core property 
that the proposed algorithm owns. Other properties 
that can be strengths of the proposed algorithm may 
be that the minimum MSE of the proposed method 
can be lowered in any severe impulsive noise 
conditions.  

One of limitations of the proposed algorithm may 
be that the convergence speed is still not faster than 
the original MZEP –CME algorithm. Further study is 
needed to investigate other factors related with its 
convergence rate and find effective methods to 
enhance the rate for higher data rates of wireless 
communications under impulsive noise.               

2. BLIND IMPULSIVE NOISE MODEL 

In common communication channels with 
impulsive-noise, the noise is usually composed of 
the background Gaussian noise (GN) and impulse 
noise (IN) together [1][4]. The IN occurs according 
to a Poisson process and the average number of 
impulse occurrences per information symbol 
duration is defined as  . The IN has a Gaussian 

distribution with variance 2
IN . The distribution 

function of IN is expressed as  
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where 1 , 22
2 INGN   , GN 1 ,  

and 2
2

2
1   .   

This impulsive noise model is known to be widely 
used [1][4].  
 
3. BLIND ALGORITHMS BASED ON MSE 

CRITERION 
 

Figures For a tapped delay line (TDL) equalizer 
with weight vector W of L elements in training-

aided equalization, error sample ke  at time 

k between the desired training symbol kd and 

output ky are produced by  

 

kk de   k
T
kkk dy XW                       (  ) 

 

where the equalizer input vector is 
T

Lkkkkk xxxx ],...,,,[ 121 X .  

Based on mean squared error (MSE) 

criterion ][ 2
keE where ][E denotes statistical 

expectation, the least mean squared (LMS) algorithm 
in (4) has been developed and widely used in 
supervised learning [12].  

 

kkLMSkk e XWW  21                  (4) 

 

For unsupervised learning, many of channel 
equalization methods without the aid of a training 

sequence kd  (referred to as blind equalization) 

employ nonlinearity at the equalizer output ky  to 

generate the error signal. In most CMA-type 

algorithms, the error CMEe is defined as  

 

2
2

, Rye kkCME                         (  ) 

 

where the constant modulus 2R  of the modulation 

scheme is  

][/][ 24
2 kk dEdER                        (  ) 

 

The CMA has been developed based on the 

following cost function ][ 2
,kCMEeE  [6][12]. 

 

])[(][ 2
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 Minimization of the cost function ][ 2
CMEeE  

yields  

  

kkkCMECMAkk ye XWW  ,1 2       (5) 

 

Comparing the LMS algorithm (4) and CMA (5), 

we may regard kky X as a modified input 


kX scaled 

by the scalar output ky .  

kkk y XX 


                                 (6) 

 

Then the CMA can be expressed as   

 



  kkCMECMAkk e XWW ,1 2         (7) 

 

When we define the weight perturbation as 
2

1 kk WW  , we may observe from (7) that the 

weight perturbation  becomes zero only when the 

error kCMEe , is zero. This indicates that a single large 

impulsive noise sample can generate a big error so 
that the weight update process (7) becomes unstable 
under impulsive noise.  

 
4. BLIND ALGORITHMS BASED ON 
GAUSSIAN KERNEL 
 

As a Gaussian kernel-based blind signal 
processing approach for the linear TDL structure, 
correntropy concept and zero-error probability have 
been introduced in [4] and [8], respectively.  
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The correntropy function ][mVX is a similarity 

function measuring kernel-difference between two 

random processes kX  and mkX  defined as  

 

)]([][ mkkX XXGEmV               (8)  

 

 where )(G is a zero-mean Gaussian kernel 

with standard deviation   as   
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Then (8) can be estimated through the sample 

mean with a sample size N as   
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The researchers in [4] proposed the cost function 



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M

m
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1

2
, where mSYe , is correntropy error 

defined as ][][, mVmVe YSmSY   between the 

source correntropy ][mVS  and the output 

correntropy ][mVY and M is the number of lags. 

Minimization of CEP by using a gradient descent 

method with a step size CE yields the correntropy 

blind algorithm described in (11).   
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As in (6), we may regard 

))(( miimii yy   XX as a modified input 



mi ,X scaled by the scalar output difference 

)( mii yy  .   
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Then correntropy algorithm becomes   
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In (13), the weight perturbation kk WW 1  

becomes zero when the error mSYe , is zero or 

)( mii yyG   is zero. This means that the weight 

perturbation becomes small when the output 

difference mii yy   is large, i.e., )( mii yyG   is 

very small. This incident can be observed when the 
input is inflicted with impulsive noise. This may 
explain why the correntropy algorithm is robust 
against impulsive noise.  

When we define the output-difference-Gaussian-

kernelled input (ODGKI) ODGKI
mk ,X as  
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Then we can express (13) as   
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 The other criterion that is dealt with in this paper 

is Zero-Error Probability that can control the 
concentration of error samples around zero [8]. 
Using the kernel density estimation method in [13] 
based on Gaussian kernel and N  error samples, we 

have the error distribution )(efE as   
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Inserting 0e , the ZEP )0(Ef reduces to 
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By replacing ie in (17) with constant modulus 

error 2
2

, Rye iiCME   in (5), we obtain the 

following ZEP-CME for blind processing with N 
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constant modulus error samples 

 kCMENkCMENkCME eee ,2,1, ,...,,    .  
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Through the maximization of )0(CMEf  in (18), 

we obtain the following MZEP-CME algorithm [8].  
 




 
k

Nki
iCMEMZEPCMEkk e

N 1
,21

2


WW                



 iiCMEeG X)( ,        (19)  

 

In (19), the weight perturbation 
2

1 kk WW   

becomes zero when the error kCMEe ,  is zero or 

)( ,kCMEeG  is zero. Even when a single large 

impulsive noise sample creates a big error, the 
weight perturbation becomes very small due to the 

decaying property of Gaussian kernel )( ,kCMEeG . 

We can notice that the weight update process (19) 
has a function of dual check control of errors that 
can be very large under impulsive noise.   

On the other hand, the term 


kkCMEeG X)( , in 

(19) may be regarded as dual-controlled input by 

output-scaling in kkk y XX 


firstly and then error-

Gaussian kernelling by )( ,kCMEeG as depicted in 

Figure 1. In this respect, defining the error-

Gaussian-kernelled input (EGKI), EGKI
kX as  

 
∧
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Then (19) can be expressed as   
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Figure 1: Generation Of Error-Gaussian-Kernelled 
Input. 

 
 

Then the modified input (MI), 


kX of CMA in 

(6) may be interpreted as scaled only by the output 

sample ky . The output-difference-Gaussian-

kernelled input in the correntropy algorithm (15), 
ODGKI

mk ,X can be interpreted as scaled by 

)( mkk yyG  and output-

difference )( mkk yy  .  Similarly, the error-

Gaussian-kernelled input, EGKI
kX in the MZEP-

CME (21) may be interpreted as scaled by error-

Gaussian kernel )( ,kCMEeG  and output 

sample ky .   

 
5. PROPOSED ALGORITHM BASED ON 
MZEP-CME CRITERION 
 

As mentioned in the previous section, due to the 

decaying property of Gaussian kernel )( ,kCMEeG  

against large errors, the error-Gaussian-kernelled 
input of MZEP-CME algorithm (21) plays the core 
role of keeping the algorithm less disturbed from 
impulsive noise. Utilizing this role of EGKI against 
impulsive noise, a method for enhancing 
performance of the MZEP-CME algorithm is 
proposed in this section.  

kCMEe ,  

kX  

)( ,kCMEσ eG  

EGKI
kX  

ky  

∧

kX  



Journal of Theoretical and Applied Information Technology 
30th November 2017. Vol.95. No 22 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
6061 

 

For the purpose of reducing the weight 

perturbation 
22

1 2 kkLMSkk e XWW   of 

LMS algorithm, the NLMS has been introduced by 
normalizing the step-size with its power [13]. 
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Applying this approach to MZEP-CME with the 
elements of error-Gaussian-kernelled input 
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weight perturbation. 
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As discussed in the NLMS in [13], the 
denominator makes the algorithm sensitive or 
unstable when it has a very small value or wide 
fluctuations. To prevent these incidents, we employ a 
balanced power of EGKI )(kPower between the 

current power and the past one as  
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Then the proposed algorithm (22) can be rewritten 
as  
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The weight perturbation of the proposed algorithm 
can then be expressed as   
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On the other hand, the weight perturbation of 
MZEP-CME  is  
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Comparing (25) and (26) reveals that the input of 
the proposed algorithm becomes normalized by its 
power whereas the conventional algorithm does not. 
In Gaussian noise environment, this may not have a 
significant effect on the weight perturbation by 
employing a small value of the step size. In 
impulsive noise situations, the input power can 
change hugely from moment to moment and become 
important information to be exploited. In this respect, 
the proposed algorithm can be viewed as having an 
additional function for reducing further the weight 
perturbation in severe environments like impulsive 
noise afflicted ones.      

 
6. RESULTS AND DISCUSSION 
 

In this section, the learning performance, error 
distribution and weight trace are compared under 
impulsive-noise added multipath fading channel 
environment in order to verify the efficiency of the 
proposed algorithm. In the simulation, the 
transmitted symbol (one of the equally probable 4 
symbols (-3, -1, 1, 3)) is distorted by the channel 

model 21 26.093.026.0)(   zzzH and 

then contaminated with impulsive noise kn  as 

depicted in Figure 2. A 11-tap TDL equalizer was 
used and initialized with the center weight set to  
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Figure 2; Base Band Communication System 

Model. 

 
 

unity and the rest to zero. The step-size for CMA is 

00001.0CMA . The MZEP-CME and the 

proposed algorithm have common parameter values 

as 02.0MZEPCME , 20N , and 0.6 . The 

impulsive noise kn is generated according to the 

Gaussian mixture model as in (3) with 

001.022
1  GN  and 222

2 INGN    

001.50 . One sample of the impulsive noise used 
in this simulation is described in Figure 3 with 

01.0  (noise I) and Figure 4 with 03.0  
(noise II).  

Firstly we investigate the results of weight 
perturbation after convergence for the case of noise 
I. In Figure 5, the variation difference of the center 
weight (6th weight) between the two algorithms can 
be noticed. The proposed algorithm keeps its center 
weight within the width of about 0.016 
(1.262~1.278) while the MZEP-CME has weight 
fluctuations over 0.021 (1.251~1.272). For the 7th 
weight depicted in Figure 6, we have acquired 
similar results that the fluctuation of the weight of 
the proposed algorithm is kept within about 0.024 
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Figure 3: Noise Sample Used In The Simulation 

With Noise I. 
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Figure 4: Noise Sample Used In The Simulation 

With Noise II. 

 

 (-0.396~-0.372) whereas the one of the MZEP-CME 
is over 0.042 (-0.402~-0.360). Also in the case of the 
final weight (11th weight) an even bigger difference 
of weight perturbation is observed in Figure 7 as 0.03 
(-0.098~-0.128) for the proposed algorithm and 0.04 
(-0.090~-0.130) for the MZEP-CME.  
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 Figure 5: Trace Of 6th Weight Under Noise I. 
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Figure 6: Trace Of 7th Weight Under Noise I. 

 
 

Secondly, for the noise II which is even more 
severe case we investigate the results of weight 
perturbation. The variation difference of the center 
weight (6th weight) after convergence between the 
two algorithms can be noticed in Figure 8. The 
proposed algorithm keeps the width of center 
weight fluctuation within about 0.034 
(1.224~1.258) while the MZEP-CME has weight 
fluctuations over 0.045 (1.220~1.265). For the 7th 
weight depicted in Figure 9, we have acquired  
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Figure 7: Trace Of Lth Weight Under Noise I. 
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Figure 8: Trace Of 6th Weight Under Noise II. 

 
 
similar results that the fluctuation of the weight of 
the proposed algorithm is kept within about 0.037 (-
0.362~-0.325) whereas the one of the MZEP-CME is 
over 0.078 (-0.402~-0.324). As being observed in 
Figure 10, the width of weight perturbation in the 
case of the final weight (11th weight) is 0.046 
(0.052~0.098) for the proposed algorithm and 0.062 
(0.053~0.115) for the MZEP-CME. These results 
agree well with the purpose of the proposed method 
reducing the weight perturbation significantly in 
various impulsive noise environments.  
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Figure 9: Trace Of 7th Weight Under Noise II. 
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Figure 10: Trace Of Lth Weight Under Noise II. 

 
 

Figure 11 shows the MSE learning curves in the 
case of noise I for CMA, MZEP-CME and the 
proposed algorithm. As discussed in section 3, the 
CMA diverges after a short period of starting 
convergence.  On the other hand, the MZEP-CME 
type algorithms show rapid and stable convergence. 
While the two algorithms show similar 
convergence speed of convergence, they have 
different steady state MSE after convergence as the 
MZEP-CME have bigger steady state MSE than the 
proposed algorithm by about 1 dB. The 
performance enhancement of the proposed  
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Figure 11: MSE Convergence Performance Under Noise I 
For The Impulse Occurrence Rate Of 0.01. 

 

-0.4 -0.2 0.0 0.2 0.4
0

5

10

15

20

25

30

35

40

45

 

 

P
ro

b
a

b
ili

ty
 (

/2
00

0
)

Error value

  Noise I 
 CMA
 MZEP-CME
 proposed

 

Figure 12: Error Distribution Under Noise I For The 
Impulse Occurrence Rate Of 0.01. 

 
 

algorithm is more clearly verified in the comparison 
of error distribution as shown in Figure 12. The 
proposed algorithm yields much narrower error 
distribution than the conventional MZEP-CME.   

In Figure 13 and 14 we investigate the results of 
MSE learning performance and system error 
distribution for the noise II which is even more 
severe. Like in Figure 11, the CMA diverges after  
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Figure 13: MSE Convergence Performance Under Noise II 
For The Impulse Occurrence Rate Of 0.03. 
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Figure 14: Error Distribution Under Noise II For The 

Impulse Occurrence Rate Of 0.03. 

 
 

sample number 300.  On the other hand, the MZEP-
CME and the proposed algorithm show stable 
convergence in even more severe noise 
environment. Similarly the two algorithms MZEP-
CME and the proposed algorithm show similar 
convergence speed but different steady state MSE. 

The MZEP-CME has -20.6 dB of the steady state 
MSE and the proposed one shows -21.8 dB, which 
indicates that the proposed algorithm yields better 
performance by about 1.2 dB. In the comparison of 
error distribution as shown in Figure 14, the 
proposed algorithm yields 0.01215 (24.3/2000) at 
zero of error value while the MZEP-CME shows 
0.0106 (21.2/2000).  

From these results, we may identify problems of 
the previous algorithm MZEP-CME as having 
higher minimum MSE and lower system error 
concentration on zero due to no exploitation of 
input power information. Therefore the significance 
of these results can be recognized that the 
utilization of the input power information, more 
accurately, the time varying power of error-
Gaussian-kernelled input (EGKI). 

 
 

7. DIFFERENCE FROM THE PRIOR WORK 
AND IMPROVEMENT  
 
From the results of weight perturbation under the 

noise model I and II after convergence, we have 
found that the variation differences between the two 
algorithms of MZEP-CME and the proposed 
algorithm for 3 weights sampled from L=11 
weights are varied but in large part consistent. The 
width of fluctuation for the center weight is about 
0.016 for the proposed algorithm and 0.021 for the 
MZEP-CME, respectively. This indicates that the 
proposed algorithm lowers the weight perturbation 
by about 1.3 times for the center weight.  

For the other two weights the fluctuation of the 
weight of the proposed algorithm is about 0.024 
and 0.03 while the MZEP-CME gives over 0.042 
and 0.04. This shows that the proposed algorithm 
produces weight perturbation performance 1.3~1.8 
times better than that of the MZEP-CME.   

In the more severe case of noise II, weight 
perturbation. The variation width of the center 
weight is 0.034 for the proposed and 0.045 for the 
MZEP-CME. This means the proposed method 
yields 1.3 times better performance than the MZEP- 
CME. For the other two weights in the noise case II, 
we acquired similar results. The weight fluctuation of 
the proposed algorithm is about 0.034 and 0.037 
while the MZEP-CME gives over 0.045 and 0.078. 
This means that the weight perturbation performance 
of the proposed algorithm yields 1.3~2.1 times better 
than that of the MZEP-CME.  

Taking the medium value of the range from 1.3 to 
1.8 in the case of noise I and from 1.3~2.1 for the 
noise II, we may announce that the performance 
enhancement of weight perturbation that the 
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proposed algorithm yields is 1.55~1.7 times, that is 
1.63 times. These results agree with the purpose of 
the proposed method that is designed to reduce the 
weight perturbation in impulsive noise environment.  

 In the results of learning speed, the MZEP-CME 
and the proposed algorithm shows the same 
convergence speed while the well-known CMA 
diverges due to the lack of cutting outliers. This 
indicates the Gaussian kernel of the ZEP-CME 
based algorithms exerts robustness against 
impulsive noise in some degree. It is reasonable 
that the robustness obtained from its outlier-cutting 
ability produces stable convergence.    

Though the two algorithms have similar 
convergence rate, different performance of 
minimum MSE after convergence is observed. The 
performance enhancement of the proposed 
algorithm is more than 1.2 dB in the comparison of 
minimum MSE in both noise situations.  

In the comparison of error rate at zero of error 
value for both noise cases, the proposed algorithm 
yields higher error rates by 1.15 times than the 
MZEP-CME.  

All these results confirm that the performance 
enhancement of the proposed algorithm can be 
clearly achieved in various noise environments.  

 
 

8. CONCLUSION 
 

This paper presents that the role of the error-
Gaussian-kernelled input of MZEP-CME algorithm 
is to keep the algorithm undisturbed from impulsive 
noise and based on the role, a method of reducing 
the weight perturbation of the MZEP-CME under 
impulsive noise. The proposed method is to 
normalize the step size with the norm of the error-
Gaussian-kernelled input. To prevent the 
denominator from getting the algorithm sensitive, a 
balanced power of the error-Gaussian-kernelled 
input between the current power and the past one is 
employed.  

The analysis reveals that the input of the proposed 
algorithm becomes normalized by its power through 
exploiting information on the input power that may 
change hugely in impulsive noise situations. 

Simulation results show that the weight fluctuation 
after convergence of the proposed algorithm is below 
half of that of the MZEP-CME. The analysis and its 
corresponding results lead us to conclude that the 
proposed approach can improve convergence 
performance by significantly lowering the weight 
perturbation under impulsive noise.  

Therefore one of the strengths of the proposed 
algorithm compared with the conventional MZEP-
CME algorithm can be the property of step size 
normalization by the averaged power of EGKI 
containing the information of input statistics. 
Another strength that can be pointed out is the 
minimum MSE. This lowered minimum MSE 
indicates more accurate recovery of transmitted data 
in any severe impulsive noise conditions.  

However the fact that the convergence speed is 
still not faster than the original MZEP–CME 
algorithm can be one of the limitations of the 
proposed algorithm. This leaves researchers to 
investigate properties related with convergence rate 
and find effective methods.   
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