
Journal of Theoretical and Applied Information Technology 
15th November 2017. Vol.95. No 21 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
5685 

 

 Q-LEARNING WITH ADAPTIVE KANERVA CODING ON 
PROTEIN DOCKING 

 

1ERZAM MARLISAH, 1RAZALI YAAKOB, 1MD NASIR SULAIMAN, 2MOHD BASYARUDDIN 
ABDUL RAHMAN 

1Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM 

Serdang, Selangor, Malaysia 
2Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 

E-mail:  1{erzam, razaliy, nasir}@upm.edu.my 2basya@upm.edu.my   
 
 

ABSTRACT 
 

Molecular docking is an important process in pharmaceutical research and drug design. It is used in 
screening libraries of small molecules or ligands to bind to a target protein changing its original 
biochemical properties forming new stable complex. In docking ligand to protein, the ligand’s pose, i.e. 
position, orientation and torsion angles, is translated, orientated, and the ligand’s torsion angles are rotated 
repeatedly to find an ideal site on the protein to bind. In this paper, Q-learning algorithm, a model-free 
reinforcement learning, with adaptive Kanerva Coding is used as the searching algorithm for protein-ligand 
docking problem. It evaluates the effectiveness of Q-learning algorithm and the different settings for the 
parameters of reinforcement learning. A popular docking tool called AutoDock Vina was used to find the 
ligand’s goal pose. The effectiveness of the agent is measured by the success of finding the goals. The 
proposed agent managed to match and finds better pose than AutoDock Vina in medium to large size 
ligands.  

Keywords: Reinforcement Learning, Q-learning, Protein-Ligand Docking, Machine Learning, Kanerva 
Coding 

 
1. INTRODUCTION  
 
   The chemical property of a lead compound 
(receptor) can be modified by binding it with 
smaller molecule (ligand). This process is preceded 
with computer simulation to predict the resulting 
complex structure. It involves positioning the 
ligand, orientating it and twisting its torsion angles 
relative to the receptor’s binding site. The ligand’s 
current position, orientation and torsion angle at 
any moment is called the ligand’s pose. As they are 
many possible poses, they are ranked according to 
an energy function calculated by summing up the 
interaction energy between all pairs of atoms that 
can move relative to each other. Protein docking 
problem is then an optimization problem involving 
the position, orientation and torsion angles aims in 
minimizing the energy of the complex. Docking 
ligands with high number of rotatable bonds will be 
difficult as the number of dimensions becomes 
larger resulting in poor structure with high binding 
energy. AutoDock Vina (Vina), a popular 
molecular docking software, uses  Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm in 

optimizing the ligand’s pose. Its ability to dock 
highly flexible ligands decreases as the Hessian 
matrix needed to guide its search becomes larger 
due to the high dimensions. 
   This paper proposed a reinforcement learning 
approach to protein-ligand docking problem and 
tests its effectiveness in predicting the optimal 
ligand’s pose. Reinforcement learning (RL) is a 
type of machine learning that imitates the capability 
of human mind learning through trial and error, by 
interacting with the environment to achieve a 
certain goal. The goal-directed agent affects the 
environment, learning how to map situations or 
states it faces to actions, so as to maximize reward 
it receives through the interaction. It does not 
require gradient information of the energy function 
in docking ligands and therefore has the potential in 
docking highly flexible ligands. In particular, we 
implement a very popular reinforcement learning 
algorithm called Q-learning [1]. The next section 
provides brief view on existing algorithms for 
solving protein-ligand docking problem. Next, the 
Q-learning agent is described in detail. Section 4 is 
divided into two sections: first part is to observe the 
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effect of the agent’s various parameters and the 
second part is to determine the agent’s 
effectiveness. Finally, section 5 concludes the paper 
and shows direction for future work. 
 
2. RELATED WORK 
 
   Prior work in search algorithm for protein-ligand 
docking has been, among others, is to use modified 
genetic algorithm, particle swarm optimization and 
Monte Carlo method. Genetic algorithm has been 
reported of having decreasing performance in 
docking ligands with high number of rotatable 
bonds. This is due to the genetic algorithm 
encountered premature convergence and stuck in 
local optimum. Some works combine these 
methods with local search operator such Solis and 
Wets algorithm [2] and quasi newton method such 
as Swarm Optimization for Highly Flexible 
Protein-Ligand Docking or SODOCK [3] and 
Lamarckian Genetic Algorithm (LGA) [4]. Solis 
and Wet algorithm uses distribution of past 
solutions to select next solution. Unlike the quasi-
newton method, it does not exploit any gradient 
information. More recent methods such as 
PSOVina, ALPS and VINA were reported to find 
better conformation [5][6][7]. ALPS extends 
AutoDock program by applying genetic algorithm 
with an age property associated with each 
individual in its population and generate new 
individuals to guarantee diverse population. In the 
newer version of AutoDock, the AutoDock Vina , 
BFGS algorithm is implemented as local search 
after random mutations of the ligand’s current pose. 
The mutated individual is then subjected to 
Metropolis acceptance rule. BFGS finds the next 
better pose not only by the value of the scoring 
function but also by calculating the searching 
direction using approximation of Hessian matrix 
and the gradient information of the scoring 
function. PSOVina uses particle swarm 
optimization technique to replace Vina’s global 
optimization algorithm and combine it with BFGS. 
   However, protein docking problem is a 
challenging optimization task due to the energy 
landscape of all possible conformations is non-
convex with rugged and funnel shape [8][9]. A 
misfit of 0.24A in the average contacts between 
charged groups of the ligand and the binding area 
inherently decreases the ligand efficiency by at 
least 0.1 kcal/mol-atom [10]. A potential ligand 
could be disregarded due to inaccuracy of the 
search algorithm. Therefore, the strategy of the 
existing methods such as quasi-newton method 
employed in Vina and PSOVina, aimed to 

overcome this limitation by avoiding being trapped 
in the multiple local minima. In problem with high 
dimensions such as in the case of docking highly 
flexible ligand the quasi-newton strategy would see 
decreasing performance. This is due to the fact 
saddle point is more prevalent than local minima 
making quasi newton method inappropriate as 
saddle points become attractive under Newton 
dynamics [11]. It was shown that the gradient 
method combined with another global optimizer 
such as genetic algorithm performs better [12]. 

3. METHODOLOGY 
  
      Q-learning is a reinforcement learning 
algorithm that maps every agent’s visit to states and 
the action it takes to a value called Q-value or 
Q(s,a). Q(s,a) indicates the worth of taking an 
action a at a particular state s. Since the agent does 
not know any information in the beginning of its 
exploration of the environment, it takes random 
actions from the initial state, receives reward by the 
environment and then arrives at the next state. The 
agent learns the true value of Q(s,a) if it keeps 
enough visits during its interaction with the 
environment and updates the Q-function: 

Q(s,a)  Q(s,a) + α[r + γmaxa’Q(s’,a’) – Q(s,a)] 

where α is the learning rate, r is the reward received 
and maxa’Q(s’,a’)  is the value of the best action of 
the next state. The learning rate ranges between 
[0,1]. If α is close to 0, the agent will not learn 
anything from the experience. If α is near to 1, the 
agent will consider more of the acquired learning 
experience, overriding the existing action value.   
   Q-learning agent is used to dock three ligands of 
different sizes: Ethanolamine(ETA), 
Benzamidine(BEN) and Phenylalanine(PHE) to 
thermolysin, an enzyme originates from 
thermophylic bacterium called Bacillus 
thermoproteolyticus [13]. The files describing the 
structure of thermolysin and the ligands were 
obtained from the Protein Data Bank (PDB) 
website accessible from the link 
(http://www.rcsb.org/pdb/) [14]. Their codes in 
PDB together with information on their physical 
properties are summarised in Error! Reference 
source not found..  
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Table 1: The Flexibility And The Physical Properties Of 
The Test Ligands 
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Ethanolamine ETA 1 204.31 263 Small 

Benzamidine BEN 2 296.97 436 Medium 

Phenylalanine PHE 5 349.85 530 Large 

The largest pocket on the surface of thermolysin 
identified by CASTp server as pocket 48 was 
chosen as the binding site in this experiment as 
shown in Figure 1. The molecular structures for the 
test ligands are shown in Figure 2. 
 

 
Figure 1: Visualization of thermolysin structure with 

pocket 48 colored in red. 

 

  
                  ETA                                BEN 

 
PHE 

Figure 2: Molecular structure of Ethanolamine (ETA), 
Benzamidine (BEN) and Phenylalanine(PHE) 

 
3.1 Q-learning Agent For Protein-Ligand 

Docking 
 

   The environment for the proposed reinforcement 
learning agent to work on is the protein and 
ligand’s three-dimensional positions, rotation and 
torsions angles. The agent can be viewed as a 
‘navigator’ exploring the space of these variables 
and learning to adjust the values to find optimal 
ones. 
 

3.1.1 State representation 
 
   The state of the agent is the ligand’s root position 
in three dimensional space, its rotational angle and 
torsion angles. These variables represent a ligand’s 
pose at any particular time during optimization. The 
position variable (x,y,z) is discretized by 
partitioning the space into grids or cubes of equal 
length with granularity 0.2Å such as in Figure 3. 
 

 
Figure 3: Illustration of a ligand's root atom in the center 
of a box representing the search space. The search space 
is discretized in every axis directions, four in each x, y 
and z-axis. This results in 64 possible discretized 
positions. 

 
The orientation angle of the ligand, the rotation 
vector [r1,r2,r3]T is discretized into bins of equal 
size. The rotation axis is fixed while the rotation 
angle is let to change in 5° step size. The torsion 
angle is also represented in similar way. Therefore, 
the set of all possible state, S is the combination of 
all the discretized position, orientation and torsion 
angles: S = P x O x T , where P is the set of all 
discretized ligand’s root position, O is all 
discretized ligand’s orientation and T is all the 
discretized torsion angles. 
 
3.1.2 Action representation 

 
   The actions the agent can take are: 
 
1. Moving the position of the root atom: the 
three-dimensional space is partitioned into octants 
as in (). The agent will translate the initial position 
of the root atom to another position in any of these 
of octants within 0.2 Å. The new position is 
calculated by the spherical coordinate formula: 

ݔ ൌ ݔ  ݎ ∗ sinሺߠሻ cosሺ߮ሻ 
ݕ ൌ ݕ  ݎ ∗ sinሺߠሻ sinሺ߮ሻ 
ݖ ൌ 	 ݖ  ݎ ∗  ሺ߮ሻݏܿ

 
where ߠ is the angle between the positive x-axis 

and the shadow of the line of movement, ߮ is the 
angle between the positive z-axis and the line of the 
movement,  and r is the distance increment(0.2 Å). 
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2. Rotating the orientation angle. This is done by 
incrementing or decrementing rotation angle by 5°. 
3. Rotating the torsion angle. For each torsion 
angle, the agent increment and decrement it in 
similar way with the rotational angle. 
 
3.1.3 Reward function 
 
   The reward function is based on the energy value 
calculated by Vina scoring function. As better 
conformation gives lower energy value, therefore 
positive difference between initial and current 
conformation entails higher reward value as shown 
in Error! Reference source not found. below. 

Table 2: The Reward Structure 
Reward value Conditions 

1 δ > -0.2 
5   -0.5< δ <= -0.2 

100 δ < -0.5 
-1 δ < 0.2 
-5 0.2 <= δ  < 0.5 

-100 δ > 0.5 

 
3.1.4 Q-learning with Torsion Prototypes 
 
   Even with the state and action space discretized 
as described, the size of the state-action space is 
still very large and limits the application of Q-
learning. To limit the number of state-action space, 
we apply Kanerva coding technique described by 
[15] in this work. With Kanerva coding, a subset of 
S is selected. However, in QLTP, only a subset of 
the discretized torsion angle was chosen and this 
subset will be adapted based on visit frequency. 
This subset taken from the discretized torsion angle 
is called torsion prototypes. To generate a torsion 
prototype, a bin is randomly picked from each 
discretized torsion angle. Subsequent torsion 
prototypes will be generated the same way while 
making sure there will be no duplicates. The torsion 
prototypes will then replace the discretized torsion 
angles in the state representation. For example, say 
a ligand has three torsion angles and discretized 
each torsion angles to three bins as illustrated in 
Table 3. Four torsion prototypes could be generated 
such as in Table 4. Torsion prototype 1 is generated 
by taking the first bin from the first and the second 
torsion angle and taking the second bin from the 
third torsion angle. 
 
 
 

Table 3: An Example of Prototyping a Ligand's Torsion 
Angles with Three Equal-Distance Bins 
 Bin 1 Bin 2 Bin 3 
Discretized 
torsion 1 

0.1 – 0.18 0.18 – 0.26 0.26 – 0.34 

Discretized 
torsion 2 

0.03 – 0.11 0.11 – 0.18 0.18 – 0.26 

Discretized 
torsion 3 

0.05 – 0.13 0.13 – 0.21 0.21 – 0.29 

 

Table 4: An Example of Four Unique Torsion Prototypes 
Based on Discretization shown in Table 3. 
Prototype 1 Prototype 2 Prototype 3 Prototype 4 
0.1 – 0.18 0.18 – 0.26 0.1 – 0.18 0.26 – 0.34 
0.03 – 0.11 0.11 – 0.18 0.11 – 0.18 0.18 – 0.26 
0.13 – 0.21 0.05 – 0.13 0.21 – 0.29 0.21 – 0.29 

 

   The number of visits for each prototype is kept 
and is incremented for the prototype activated for 
an update. Now every time a state transition occurs, 
the value of the Q-table, ܳሺݏ, ܽሻ is updated by the 
function: 
 
Q(s,a) = Q(s,a) + ߤ(s,a)[	ߙ(r + ݔܽ݉.ߛᇲ	ܳሺݏ

ᇱ, ܽᇱ) - Q(s,a))] 
 

where ߤሺݏ, ܽሻ is the membership function 
assigning the pair (s,a) to the prototypes. For any 
state s and torsion prototype p, ߤሺݏ, ܽሻ is 1 if p is 
adjacent to the (s,a)’s contained torsion prototype, 
and let  ߤሺݏ, ܽሻ = 0 if otherwise. Two state-action 
pair is adjacent to each other if the torsion 
prototype contained in them are different only in 1 
place. For example, a torsion prototype p1=<a,b,c> 
would be adjacent to torsion prototypes <a,b,d>, 
<a,d,c> and <d,b,c> but not to something like 
<a,d,e>. So everytime an update occurs, the 
algorithm will update multiple (s,a) in look up table 
and the number of visits for each of them is 
incremented. A maximum number of visits to any 
(s,a) is observed. Prototypes that are visited too 
frequently will be splitted and those prototypes 
visited infrequently will be deleted. Frequently 
visited prototypes are split into one or more new 
prototype by randomly choosing a bin from the 
original torsion prototype and increment or 
decrement its value. Doing so will generate new 
prototypes adjacent to the original and thus make 
the frequently visited region more refined with 
prototypes able to distinguish between different 
state-action pairs. The probability of deleting a 
prototype is based on the exponential function, ߩ ൌ
݁ି where m is the number of visits of a prototype.  
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4. EXPERIMENTS AND RESULTS 
 

4.1 Experiment I 
 
   In order to test the proposed agent effectiveness, 
AutoDock Vina program was run first and the 
resulting conformations were set as the goal 
conformations for each ligand. The agent will have 
to explore the conformational space and learn to 
find these goals. The effectiveness of QLTP was 
tested with different values for its parameters: 
discount factor, learning rate and granularity-cubes-
number of prototypes value combination (gcp), by 
observing the rate of its reward accumulation over 
time in docking three ligands: ethanolamine, 
benzamidine and phenylalanine to thermolysin. 
QLTP agent will start its search from two random 
initial conformations generated in the vicinity of 
each of the goal conformations. QLTP was run ten 
times to get the average cumulative reward over 
number of episodes. 
 
4.1.1 Effect of discount factor 
 
   Figure 4, 5 and 6 show the average cumulative 
reward for docking ETA, BEN and PHE 
respectively. QLTP managed to recoup its cost of 
learning in every instance. The difference of 
performance when using the different values of 
discount factor tested is not remarkable. In docking 
smaller ligands such as ETA and BEN, QLTP 
learns to find better conformation giving bigger 
rewards faster as evidence in the sharp upward 
curves of the graphs. In docking PHE from the first 
starting conformation, QLTP was slow in finding 
the better conformations although managed to find 
some later in the episodes. 
 

Figure 4: Effect of Discount Factor in Docking ETA from 
Two Starting Conformations 

 

Figure 5: Effect of Discount Factor in Docking BEN from 
Two Starting Conformations. 

 

Figure 6: Effect of Discount Factor in Docking PHE 
from Two Starting Conformations 

 
4.1.2 Effect of learning rate 
    
Figure 7, 8 and 9 show the average cumulative 
reward obtained when learning rate is set to 0.1, 
0.5, 0.8 and when polynomial learning rate is used. 
QLTP managed to recoup its cost of learning in 
every instance except when docking PHE from the 
first starting conformation. It can be seen that the 
difference on the effect of learning rate to ETA and 
BEN is small. QLTP accumulated greater rewards 
than other values in docking PHE from the second 
starting conformation when using learning rate of 
0.1.  
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Figure 7: Effect of Learning Rate in Docking ETA from 
Two Starting Conformations 

 

Figure 8: Effect of Learning Rate in Docking BEN from 
Two Starting Conformations 

 

Figure 9: Effect of Learning Rate in Docking PHE from 
Two Starting Conformations 

 
 

4.1.3 Effect of granularity-cube-number of 
torsion prototypes (GCP) 

 
   The results in Figure 10 show that different 
combination of granularity, discretization and 
number of prototypes give significantly different 
performance. As learning progress, QLTP 
accumulates higher rewards and regain its cost of 
exploration. In docking ETA, QLTP accumulates 
higher rewards when using g=0.3, c=2, p=3. This 
means a coarser granularity value, small number of 
discretized position variable and small number of 
torsion prototypes enables the agent to improve its 
policy. This is true for both BEN and PHE as well.  
 

Figure 10: Effect of Different Combination Values for 
Granulation Size, Discretization Size and Number of 

Torsion Prototype 

 
4.2 Experiment II 
 
   Further experiments were conducted to see the 
relation between the number of steps used and the 
effectiveness and reliability of QLTP. Effectiveness 
is now measured by the lowest energy QLTP can 
find from docking the three ligands and compared 
this value to the one found by AutoDock Vina. Ten 
random starting conformations were generated for 
each ligand. The effectiveness of QLTP in 
obtaining matching or better conformation is 



Journal of Theoretical and Applied Information Technology 
15th November 2017. Vol.95. No 21 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
5691 

 

summarized in Table 5 below. “Diff” is the average 
of the difference between the lowest energy found 
by QLTP by the end of its search from each of the 
ten starting conformation and the goal’s 
conformation energy. The number in the bracket is 
the standard deviation. In docking ETA, the value 
for Diff found are positive in every case indicating 
the inability of QLTP to find matching or better 
conformation then goal’s conformation found by 
Vina. However, with 5000 steps, QLTP found one 
close enough to the goal. In contrary, QLTP 
managed to find better conformation with energy 
lower than the goal’s conformation energy for both 
BEN and PHE in every number of steps tested.  
 

Table 5: Comparison of QLTP Effectiveness in Three 
Ligands with 500, 1000 and 5000 Time Steps. The goal 

energy found by Vina was -2.554, -5.098 and -6.085 
kcal/mol for ETA, BEN and PHE respectively. 

#Steps Ligand Lowest Diff 
500 ETA -2.521 0.107(0.09) 

 BEN -5.492 -0.28(0.08) 

 PHE -6.210 -0.047(0.06) 

1000 ETA -2.519 0.088(0.06) 

 BEN -5.513 -0.307(0.06) 

 PHE -6.227 -0.061(0.06) 

5000 ETA -2.531 0.049(0.04) 

 BEN -5.522 -0.339(0.05) 

 PHE -6.229 -0.073(0.06) 

 

   The reliability of QLTP is measured in its ability 
in consistently finding similar low energy 
conformations by running ten QLTP runs for one 
starting conformation and calculating its average. 
This is repeated to every starting conformation and 
recording the overall mean for every case of 
number of steps tested and the standard deviations. 
The standard error of the overall mean then 
recorded by dividing the overall mean’s standard 
deviations to the square root of the number of 
starting conformations used. Table 6 summarizes the 
reliability of QLTP. Generally, with larger time 
steps, the overall mean and the standard error 
decrease in docking every ligand. This proves with 
larger number of steps, QLTP improves the quality 
of the conformation it finds. This also proves it 
finds conformations with similar energy 
consistently every run. In the case of ETA, given 
even the largest time steps, a 95% confidence 
interval for the mean of energy found by QLTP 
would be in between -2.48 to -2.41 kcal/mol. 
Therefore, QLTP most probably would not match 
the goal’s conformation energy which is -
2.554kcal/mol. In docking BEN, QLTP would 

always find conformation better than the goal’s 
conformation, even when using number of steps as 
low as 500. In docking PHE, the mean of the 
energy QLTP would find in 5000 steps is between  
-6.15 to -6.07 kcal/mol at 95% confidence. This 
indicates, armed with 5000 number of steps, most 
of the time QLTP would find conformation with 
energy better or similar than the goal’s 
conformation energy. This is not the case for 500 
and 1000 number of steps. 

Table 6: The average energy found by QLTP from ten 
different starting conformations averaged over ten runs 

with 500, 1000 and 5000 number of steps. 
#Steps Ligand Mean Std. Error 

500 ETA -2.342 0.06 

 BEN -5.299 0.033 

 PHE -6.055 0.027 

1000 ETA -2.394 0.029 

 BEN -5.355 0.024 

 PHE -6.074 0.023 

5000 ETA -2.45 0.0173 

 BEN -5.402 0.021 

 PHE -6.11 0.019 

 
5. CONCLUSIONS 
 
   This paper presented a novel attempt of applying 
reinforcement learning method for protein-ligand 
docking problem. The method applied modified 
adaptive Kanerva coding in the Q-learning 
algorithm to address high dimension problem exists 
in docking highly flexible ligands. The method 
called Q-learning with torsion prototypes or QLTP 
has the task of learning to move a ligand to 
optimally bind it to its receptor. The agent’s 
effectiveness is measured by its ability to find goal 
conformations set by AutoDock Vina. From the 
results of the experiments, QLTP is effective in 
finding better pose than Vina for medium to large 
size. However, the result of docking ETA shows 
the difficulty for QLTP to find and optimal 
conformation matching the goal conformation 
found by AutoDock Vina despite the fact that ETA 
is a small ligand with low number of torsion angle. 
The reason for this must be the effectiveness of the 
gradient descent quasi-newton method used by 
AutoDock Vina in optimizing low dimension 
problems. The results also show that QLTP is 
reliable by consistently finding conformation with 
similar low energy every run if given more number 
of steps to explore. A way to improve the agent’s 
performance on smaller ligands could be by 
adapting the magnitude of its action’s components 
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such as the magnitude of the translation and angle 
of rotation for a more efficient exploration. 
Implementation of other reinforcement learning 
methods could be done and compared using the 
proposed representation. As the starting 
conformations in the experiments were generated 
by Vina, therefore a fast global optimization 
algorithm such as genetic algorithm is needed to 
provide these starting points for the QLTP agent. 
Further work can be done in combining QLTP with 
these global optimization techniques.  
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