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ABSTRACT 
 
In this paper, we study the Compressed Sensing (CS) image recovery problem. The traditional method 
divides the image into blocks and treats each block as an independent sub-CS recovery task. This often 
results in losing global structure of an image. In order to improve the CS recovery result, we propose a 
nonlocal estimation step after the initial CS recovery for de-noising purpose. The nonlocal estimation is 
based on the well-known nonlocal means (NL) filtering that takes advantage of self-similarity in images. 
We formulate the nonlocal estimation as the low-rank matrix approximation problem where the low-rank 
matrix is formed by the nonlocal similarity patches. An efficient algorithm, Extended NonLocal Douglas-
Rachford (E-NDLR), based on Douglas-Rachford splitting is developed to solve this low-rank optimization 
problem constrained by the CS measurements. Experimental results demonstrate that the proposed E-
NDLR algorithm achieves significant performance improvements over the state-of-the-art in CS image 
recovery. 
Keywords: Reconstruction, Algorithm, Recovery, Image, Compressed Sensing 
 
1. INTRODUCTION 
 
 
Compressed Sensing (CS) has drawn quite some 
attention as a joint sampling and compression 
approach  It states that under certain conditions, 
signals of interest can be sampled at a rate much 
lower than the Nyquist rate while still enabling 
exact reconstruction of the original signal. CS-
based approach has an attractive advantage that 
the encoding process is made signal-independent 
and computationally inexpensive at the cost of 
high decoding/recovery complexity. Usually, the 
CS measurement is acquired through projecting 
the raw signals on to a pre-defined random 
sampling operator. Thus, CS is especially 
desirable in some image processing applications 
when the data acquisition devices must be simple 
(e.g., inexpensive resource deprived sensors), or 
when oversampling can harm the object being 
captured (e.g., X-ray imaging), among which the 
compressive sensing Magnetic Resonance 
Imaging (CS-MRI) is most promising as it 
significantly reduces the acquisition time of MRI 
scanning. When applied to 2D images, CS faces 
several challenges including a computationally 
expensive reconstruction process and huge 
memory required to store the random sampling 
operator. Several fast algorithms have been 
developed for CS reconstruction. The memory 
challenge was first addressed in Gan (2007) 

using a block based sampling operation, which 
later on became the most common method in CS 
image recovery. 
 
Block-based compressed sensing (BCS) has 
made the CS image recovery practical since it 
reduces the recovery cost, where image 
acquisition is conducted in a block-by block 
manner through the same compressed sensing 
(CS) measurement operator. However, manually 
dividing the image into blocks and treating each 
image block as an independent sub-CS recovery 
task would inevitably lose some global 
properties of the image. Thus it would often 
require some filtering technique to generate good 
visual recovery result. Nonetheless, the 
recovered image still suffers a low PSNR. Aside 
from BCS, another class of popular methods is 
based on the total variation  (TV) model, which 
exploits the prior knowledge that a natural image 
is sparse in the gradient domain. TV based 
algorithms often suffer from undesirable 
staircase artifacts and tend to over-smooth image 
details and textures. 
 
In this paper, we propose E-NDLR, a CS image 
recovery algorithm based on the BCS scheme. 
We overcome the aforementioned BCS problems 
by introducing a new nonlocal estimation step 
after the initial CS reconstruction to further 
remove noise. The nonlocal estimation process is 
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built on the well-known nonlocal means (NL) 
filtering that takes advantage of self-similarities 
in images, which preserves certain global 
structure. We formulate the nonlocal estimation 
into the low-rank approximation problem where 
the low-rank matrix is formed by the nonlocal 
similarity patches. Furthermore, by using a 
deterministic annealing (DA) approach, we 
incorporate the CS measurement constraint into 
the low-rank optimization problem. We propose 
an efficient algorithm based on Douglas-
Rachford splitting (DR) to solve the low-rank 
matrix approximation problem combined with 
the CS measurement constraints, the solution to 
which is the final CS recovery output.  
 
The proposed E-NDLR algorithm effectively 
reduces the staircase artifacts that introduced in 
BCS and TV by utilizing the nonlocal similarity 
patches while preventing over-smoothness 
by recursively incorporating the initial CS 
measurement constraint. 
 
The rest of the chapter is organized as follows. 
Section 2 provides a brief review of the CS 
image recovery problem as well as some related 
works. Section 3 discusses the nonlocal 
estimation and Douglas-Rachford Splitting 
method. We conduct experiments in Section 4 on 
both standard test images and MRI images. 
Section 6 concludes the paper. 
2. Background and Related Works 
 CS Image Recovery Problem 
Mathematically, the sparse representation model 
assumes that a signal x 2 Rn can be 
represented as x =   α  where  € Rnxn  is a 
sparsifying basis or dictionary, and most 
entries of the coding vector  α are zero or close 
to zero. This sparse decomposition of 
x can be obtained by solving a relaxed convex 
l1-minimization problem in the following 
Lagrangian form: 
Min { ||x - α||22 + λα||α||1 } , 
 ……………….  (1) 
 α  where constant λα  denotes the regularization 
parameter. 
 
In CS image recovery, we consider an image I € 
Rn x n. By representing the image 
I in vector format, denoted as x, what we observe 
is the projected measurement y via 
y = x +v , where  € Rmxn (m < n) is the 
measurement operator and v is the additive 
noise vector. To recover x from y, first y is 
sparsely coded with respect to the basis   by 

Solving the following minimization problem 
  
   = arg  min { ||y - α||22 + 
λα||1 }      …………………  (2) 
 
and then x is reconstructed by ^x = α. 
This can be easily extended to the block-based 
scenario, as stated in Elad and Aharon (2006). 
Let xi = Rix denote an image patch extracted at 
location i, where Ri is the matrix extracting patch 
xi from x at pixel location i. Given a basis , 
each patch can be sparse represented and solved 
by Eq. (1). Then the entire image x can be 
represented by the set of sparse code using 
{�i}. The patches can be overlapped to 
suppress the boundary artifacts. Similarly, in 
order to reconstruct the image x from the 
measurement y, we can adopt the same block-
based CS recovery by solving i from Eq. (2). 
The whole image x is then reconstructed as  
 
^x =  α = (iN RiT Ri)-1 iN (RiT αi)  
as proved in Elad and Aharon (2006). 
 
The Iterative soft thresholding (IST) algorithm 
Daubechies et al. (2004) can be very efficient in 
solving the problem in Eq. ( 2). In the (k + 1)-th 
iteration, the solution is given by  α(k+1) = 
Sr(α(k)+ *y - *α(k))  where Sr (.)  is the 
classic soft-thresholding operator Daubechies et 
al. (2004). In this paper, we use a slightly 
modified IST algorithm Daubechies et al. (2008), 
where the solution in each iteration is called the 
projected Landweber iteration with the adaptive 
descent parameter β(k) > 0, 
 
α(k+1) = PR[α(k) + β(k) *(y-(k))]  
………………………………………….(3) 
 
where PR is the l2 projection of   on the l1 ball 
with radius R. The adaptive descent 
Parameter β(k) can be selected using the greedy 
strategy as follows, 
 
βk = ||*( y -α(k)) ||22 /  ||*(y-α(k))||22     
……………. (4) 
This is an accelerated version of IST that 
converges faster than the original IST. Readers 
may refer to Daubechies et al. (2008) for details. 
 
2. RELATED WORKS 
 
Buades et al. introduced in Buades et al. (2005) 
the nonlocal means (NLM) filtering approach to 
image denoising, where the self-similarities 
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between rectangular patches are used as a prior 
on natural images. The idea of nonlocal means 
has recently received much attention in image 
processing Peyr´e et al. (2008); Yang and Jacob 
(2013); Zhang et al. (2012a); Shu et al. (2014); 
Dong et al. (2014b); Chierchia et al. (2014);  
 
Dong et al. (2014a). For example, Peyre et al. 
Peyr´e et al. (2008) proposed to use the Total 
Variation (TV) prior and nonlocal graph to solve 
the inverse problem with application in CS. The 
same idea was also adopted in Yang et al. Yang 
and Jacob (2013).  
 
Zhang et al. Zhang et al. (2012a) proposed 
TVNLR which improves the conventional TV 
approach by adding a nonlocal regularization to 
the CS recovery problem and solved the problem 
using the Augmented Lagrangian Method 
(ALM). 
 
 Shu et al. proposed the NLCS algorithm Shu et 
al. (2014) and tried to group similar patches 
through NLS (nonlocal sparsity) regularization. 
The authors in Chierchia et al. (2014) proposed a 
nonlocal total variation structure tensor (ST-
NLTV) regularization approach for 
multicomponent image recovery from degraded 
observations, leading to significant 
improvements in terms of convergence speed 
over state-of-the-art methods such as the 
Alternating Direction Method of Multipliers 
(ADMM).  
 
Dong et al. proposed the nonlocal low-rank 
regularization (NLR-CS) method Dong et al. 
(2014a) which explored the structured sparsity of 
the image patches for compressed sensing. In 
order to explore the low-rank structure of the 
image patches, a smooth but non-convex 
surrogate function for the rank estimation is 
adopted as objective function.  
 
Zhang et al. proposed nonlocal TV regularization 
(NLVT) Zhang et al. (2010) for CS image 
recovery. NLTV is based on the   Operator 
splitting (BOS). 
 
In this work, we adopt the nonlocal means 
filtering idea and introduce a new nonlocal 
estimation step after the initial CS reconstruction 
to further remove noise. It differs from Peyr´e et 
al. (2008) as we use the `1-norm based sparsity 
of the image and result in solving a convex 
optimization problem using the projection 

method. In   the nonlocal graph is similar to the 
nonlocal weights between patches as used in our 
paper.  
 
The main difference is that the author further 
imposed that these weights correspond to a 
probability distribution and that the graph only 
connects pixels that are not too far away. While 
in Yang and Jacob (2013), the nonlocal weights 
may be improved using a different distance 
metric (i.e., robust distance metric) to promote 
the averaging of similar patches while 
minimizing the averaging of dissimilar patches. 
In this paper, we only aim to find similar patches 
to form low-rank matrix and thus differ from 
these methods. In Dong et al. (2014a) instead of 
using the nuclear norm for low-rank 
approximation, the authors proposed to use non-
convex surrogate function and subsequently 
solved the optimization problem via ADMM. 
In Shu et al. (2014), two non-local sparsity 
measures, i.e., non-local wavelet sparsity and 
non-local joint sparsity, were proposed to exploit 
the patch correlation in NLCS. It then combines 
with the conventional TV measure to form the 
optimization objective function and use the 
ADM
M 
metho
d to 
solve 
the CS 
recove
ry 
proble
m. It 
differs 
from 
our 
algorithm in that their search for similar patches 
is incorporated in the objective function while E-
NDLR directly adopts the nonlocal means 
filtering approach to find the similar patches and 
then conducts low-rank approximation. After 
getting the non-local low-rank estimation, we 
further incorporate the initial CS measurement 
constraint into the low-rank optimization 
problem, using a deterministic annealing (DA) 
approach to further improve the recovery result. 
Additionally, compared to the traditional 
ADMM method, we propose to use Douglas-
Rachford splitting method to effectively solve 
the combined optimization problem. 
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In Cand`es and Tao (2010), Cand`es and Tao 
proposed to solve the matrix completion problem 
using low-rank regularization through convex 
optimization. Later in Dong et al. (2013) Dong et 
al. first combined the nonlocal image 
representation and low-rank approach for image 
restoration and achived state-of-the-art 
performance in image denosing. Ji et al. (2010) 
also incorporated the low-rank matrix 
completion in video denoising. To summarize, 
the main contribution of this chapter is three-
fold: First, we propose to incorporate the 
nonlocal similarity patches searching step after 
the initial CS image recovery task. By searching 
and incorporating the nonlocal similarity patches 
the traditional block based CS recovery artifacts 
could be resolved. Second, we propose to 
estimate the grouped similarity patches matrix as 
a low-rank matrix completion problem, referred 
as nonlocal low-rank estimation. The idea is that, 
by searching the nonlocal similarity patches we 
could resolve the block and staircase artifacts, 
while using low-rank estimation we can further 
denoise the grouped similarity patches. Third, we 
incorporate the initial CS measurement 
constraint into the low-rank estimation 
optimization problem. By using a deterministic 
annealing (DA) approach, the Douglas-Rachford 
splitting effectively solves the reformulated 
optimization problem.  
 
Figure  1: An illustration of nonlocal estimation 
and similar patches denoising using low rank 
matrix approximation. 
 
3. NONLOCAL LOW-RANK 

REGULARIZATION AND DOUGLAS-
RACHFORD SPLITTING 

 
In this section, we present the idea of nonlocal 
low-rank regularization, followed by the 
proposed Douglas-Rachford splitting method. 
We refer to the algorithm as the Extended 
NonlocalDouglas-Rachford splitting (E-NDLR) 
algorithm. 
 
Nonlocal Low-rank Regularization for CS 
Image 
 
An example to illustrate the nonlocal estimation 
step is shown in Fig.  1. The Lena image in the 
first row is obtained from the IST CS recovery 
algorithm. Then the nonlocal similar patches are 
searched across the entire image. We denote the 
nonlocal similar patches of xi as xi;1; xi;2; xi;3; 

_ _ _ xi;q . These extracted patches then form the 
matrix Bi where the low rank approximation is 
conducted to yield the resulting denoised patch 
matrix, as shown in the second row. We apply 
patch reweight to obtain the estimated patch xe 
to update the original patch xi. After iterating 
over the entire image, the much cleaner Lena 
image is shown leftmost in the second row. 
Nonlocal Similarity Patches 
 
The basic idea of nonlocal (NL) means filtering 
is simple. For a given pixel ui in an image x, its 
NL filtered new intensity value, denoted by 
NL(ui), is obtained as a weighted average of its 
neighborhood pixels within a search window of 
size w. 
 
In our work, we extend the pixel-wise nonlocal 
filtering to the patch-based filtering. 
Specifically, we search for the nonlocal similar 
“patches” xi;j ; j = 1; 2; _ _ _ ; q, to the given 
patch xi in a large window of size w centered at 
pixel ui. Here, q is the total number of similar 
patches to be selected. The weight of patch xi;j to 
xi, denoted as ij , is then computed by 
 

ij =  exp ( -||xi-xij ||22) / h2 ) ,  j = 1, ….  , q   

………….                  (5)  
 
where h is a pre-determined scalar and ci is the 
normalization factor. Accordingly, for each 
patch xi, we have a set of its similar patches, 
denoted by i. Then the nonlocal estimates 
of each patch ^xi can be computed as ^xi = j€i 
ij xij . Further, this can be written in a 
matrix form as  
 
 
^xnl = W ∑i=1

p  W(i,j ) = { ij
  if  x

j € i 

            o      otherwise 
   …………………(6)
  

 

 
where p denotes the number of all patches in the 
entire image and ^xnl is the nonlocal 
estimated image output. 
 
Patch Denoising by Low-rank Approximation 
 
Although we can use Eq. ( 6) to remove noise in 
the IST recovered image ^x to a certain 
degree, this is based on a weighted average of 
patches in ^x, which are inherently noisy. 
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Thus, it is imperative to apply some denoising 
techniques before the nonlocal similarity 
patch reweight using Eq. ( 6) to prevent the noise 
from accumulating. By rewriting the 
nonlocal similarity patches into the matrix 
format, we have Bi = [xi;1; xi;2; ; _ _ _ ; xi;q], 
 
where each column of Bi is a vector 
representation of xi;j ; j = 1; 2; _ _ _ ; q for patch 
xi. 
Since all columns of Bi share similarity with 
patch xi, the columns of Bi should bear a high 
degree of similarity between each other. In other 
words, we can safely treat Bi as a low-rank 
matrix. We thus formulate the nonlocal patch 
denoising problem into the lowrank 
matrix approximation problem Cand`es and Tao 
(2010) as follows, 
 

              minB1  || Bi - B^i||22 + ƛBi|| B^i||*   

…………………………….(7) 
 
where ||B^i||  is the nuclear norm of the low-rank 
approximated patch matrix B^i, defined by 
 
||B^i||= sqrt(||B^i||T) = ∑r=1

q r  and r ‘s  are in 
singular values of B^i 
  
In addition, since the columns of Bi (or the 
patches) are also a subset of the reconstructed 
image from IST recovery algorithm, it should be 
subject to the CS measurement constraint 
 y =x. Therefore, multiplying Eq. ( 7) with W, 
we reformulate the denoising problem of Eq. ( 7) 
into 
 

min || x – WBi ||22   +  ƛx||x||* s.t.y  = x      

…………………..8 
 
In what follows, we discuss in sec.  3.2 how to 
solve Eq. ( 8) with the CS measurement 
constraint using the method referred to as the 
Douglas-Rachford splitting method. 
 
 Douglas-Rachford Splitting 
 
The Douglas-Rachford splitting method was 
originally proposed in Douglas and Rachford 
(1956) for solving matrix equations. Later on it 
was advanced as an iterative scheme to minimize 
the functions of the form, 

 
min(x) =F(x) + G(x) ………………(9) 

where both F and G are convex functions for 
which one is able to compute the proximal 
mappings proxF and proxG which are defined as 

proxF (x) = arg min(y)  ||x-y||22+ ϓF(y) 

………………………………(10) 
 
The E-NDLR Algorithm 
Algorithm 2 provides a pseudo-code for the 
proposed Nonlocal Douglas-Rachford splitting 
(E-NDLR) algorithm. Given the observation y 
(i.e., compressed measurements), the E-NDLR 
algorithm first outputs an intermediate 
reconstruction result ^xIST through the IST 
algorithm. This soft-thresholding output is then 
used to calculate the nonlocal estimated image 
^xnl, which is used to initialize the low-rank 
optimization problem in Eq. ( 7) where the 
Douglas-Rachford splitting method will be 
carried out iteratively based on Eqs Algorithm 2: 
Extended  Nonlocal  
 
Douglas-Rachford Splitting (E-NDLR) 
Algorithm  
Algorithm 1: 
I Measurement matrix   € Rmxn 
I Basis matrix   €  Rnxn 
I Observation vector y € Rm. 
I Number of IST iterations iter, number of 
nonl
ocal 
estim
ation 
iterat
ions 
J, 
DR 
splitt
ing 
iterat
ions 
K 
 
 
Algorithm 2: 
I An estimate ^x € Rn of the original image x. 
1: Initialize α0   0 
2: for k = 1; …; iter do 
3: (a) Select  β(k) based on Eq. ( 4) 
4: (b) Update α(k+1) using Eq. ( 3) 
5: end for 
6: for j = 1; 2; _ _ _ ; J do 
7: Step 1: Nonlocal Estimate 
8: (a) Calculate nonlocal weights Wij via Eq. ( 5) 
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9: (b) Obtain low-rank patch matrix Bi via Eq. ( 
7) 
10: Step 2: Douglas-Rachford Splitting to solve 
Eq. ( 8) 
11: for k = 1; 2; _ _ _ ;K do 
12: (a) Calculate proxF (x) via Eq. ( 11) 
13: (b) Calculate proxG(x) via Eq. ( 12) 
14: (c) Calculate ~xk+1 via Eq. ( 14) 
15: end for 
16: end for 
17: return ^x   ~xk+1 
As for calculating the nonlocal estimates of the 
image, the E-NDLR algorithm obtains 
the averaged result based on J nonlocal 
estimation iterations.  

 
Figure  2: CS Recovery Results On Lena Image With 

10% Measurements At Iteration J. 
 
 Experiments 
In this section, we evaluate the E-NDLR 
algorithm for CS image reconstruction where 
both standard test images and MRI images are 
used. The reason for choosing MRI images for 
evaluation purpose is due to the significant 
impact of CS on the clinical practice of MRI, 
where long acquisition time has been one of the 
primary obstacles. We implement the algorithm 
using Matlab 2013b on a 2:20GHz laptop 
computer. BCS-SPL Mun and Fowler (2009) is a 
block-based CS image recovery method solved 
using a smoothed version of projected 
Landweber (SPL) algorithm. The smoothing 
process is done by the Wiener filter. We further 
compare our result with one of the state-of-the-
art algorithms for image CS recovery, known as 
TVAL3 Li et al. (2009a). TVAL3 tries to 
minimize the image total variation norm using 
augmented lagrangian and alternating direction 
algorithms. Several TV-based methods are also 
compared. The TV benchmark method denoted 
as TV which is implemented based on l1magic 
(2006), TVNLR Zhang et al. (2013) and NLTV 
Zhang et al. (2010). We also compare E-NDLR 
performance with other nonlocal based 
approaches, e.g., NLCS Shu et al. (2014) and 
NLR-CS Dong et al. (2014a). Finally, to evaluate 
the potential of E-NDLR as a standalone 
denoising method, we compare its performance 
with the state-of-the-art BM3D Dabov et al. 
(2007) method for noise removal purpose. 

 
CS Recovery on Standard Image Dataset 
 
We present the experimental results for noiseless 
CS measurements and then report the 
results using noisy CS measurements. 
 
Noiseless Recovery 
 
We first test the E-NDLR algorithm in noiseless 
settings using standard test images of size 512*  
512. The block-based image patch is of size 6 * 
6. We set the number of similar patches q in the 
nonlocal estimation step as 4  We use the 
scrambled Fourier matrix as the CS measurement 
operator _ and DCT matrix as the basis  to 
represent the original image in the initial IST 
recovery. The parameters are selected as   we 
find that the recovery result gradually converges 
when J reaches 12 for all the image datasets. 
Figure.  2 show one example on Lena image 
using 10% of measurements. Note that at 
iteration 0, we use the initial IST recovery result. 
 
Table 1 compares PSNR with different 
measurement ratios (i.e., m x n ). We see that the 
E-NDLR algorithm considerably outperforms the 
other methods in all the cases, with PSNR 
improvements of up to 11:38dB and 13:68dB, as 
compared with BCS-SPL and TVAL3, 
respectively. Furthermore, the average PSNR 
gain by E-NDLR over BCS-SPL is 6:18dB and 
5:17dB over TVAL3. For the other nonlocal 
based methods, we see that E-NDLR also 
outperforms them, with average PSNR gain over 
NLCS by 2:19dB, 5:41dB over TVNLR, 2:79Db 
over NLR-CS and 4:28dB over NLTV. Since 
originally E-NDLR is calculated on top of the 
IST recovery algorithm with an extra nonlocal 
estimation step, in order to perform a fair 
comparison among the BCS-SPL and TVAL3 
algorithms, we use the result image from BCS-
SPL and TVAL3 algorithm as the input to the E-
NDLR algorithm. 
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Figure  3: CS Reconstructed image Barbara with 30% 

measurement ratio. (a) Original 
image; (b) proposed E-NDLR recovery, 

PSNR=37:30dB; (c) BCS-SPL recovery Mun and 
Fowler (2009), PSNR=25:92dB; (d) TVAL3 recovery 

Li et al. (2009a), PSNR=24:79dB; 
(e) TVNLR recovery Zhang et al. (2013), 

PSNR=25:35dB. (f) NLCS recovery Shu et al. 
(2014), PSNR=31:65dB; (g) NLR-CS recovery Dong 

et al. (2014a), PSNR=34:26dB; (h) 
NLTV recovery Zhang et al. (2010), PSNR=31:79dB. 

 
Figure  4: Boat image with cropped character patch 

using 20% measurements. (a) proposed E-NDLR 
recovery, PSNR=32:48dB; (b) NLCS recovery Shu et 

al. (2014),PSNR=30:66dB; (c) TVNLR recovery 
Zhang et al. (2013), PSNR=28:02dB; (d) NLR-CS 
recovery Dong et al. (2014a), PSNR=29:07dB; (e) 

NLTV recovery Zhang et al. (2010),PSNR=27:97dB. 

 By doing this, we would be able to quantify how 
much improvement E-NDLR has gained. Also, 
since the initial image from IST output is noisy, 
we further apply the state-of-the-art denoising 
algorithm - BM3D on top of the IST recovery 
result to denoise the result image in order to 
compare with the E-NDLR result. 
 
In Table  1, the column TVAL3+E-NDLR 
denotes applying E-NDLR on the TVAL3 
resulting image, the column BCS-SPL+E-NDLR 
denotes E-NDLR applied on top of the BCSSPL 
output, and IST+BM3D denotes BM3D applied 
on top of the IST output. Note, we also generate 
the sole IST algorithm output in the first column. 
From the table, we can see that the columns 
correspond to TVAL3+E-NDLR, BCS-SPL+E-
NDLR and E-NDLR yield similar PSNR. This 
result indicates the generalization capability of 
E-NDLR, that it actually gives the best available 
denoised recovery result no matter what the 
initial input is. That is, E-NDLR has the great 

potential of serving as a stand-alone denoising 
algorithm.  
Some visual results of CS reconstructed image 
Barbara with 30% measurement ratio are 
presented in Fig.  3. Obviously, E-NDLR 
generates much better visual quality than those 
from 
 
BCS-SPL and TVAL3, where both BCS-SPL 
and TVAL3 have blurred artifacts. When 
compared using Table  1, we see E-NDLR 
outperforms the other two algorithms largely in 
PSNR. The reason is that the image Barbara 
itself has a lot of texture patterns (i.e., nonlocal 
similar patches), which had been successfully 
exploited in the E-NDLR algorithm. Fig.  4 
demonstrates the Boat image with cropped 
character patch using 20%  

 
Figure  5: Part of Lena image with 200% 

magnification using 20% measurements. (a) Original 
image; (b) reconstruction using proposed E-NDLR 
with IST, PSNR=36:33dB; (c) TVAL3 + E-NDLR, 

PSNR=36:35dB (d) BCS-SPL + E-NDLR, 
PSNR=36:35dB. measurements. Also, we show in Fig.  
5 the result of original E-NDLR using IST as well as 
TVAL3+E-NDLR and BCS-SPL+E-NDLR. They all 

have similar visual results as compared to the original 
image. This is consistent to the observation made 

based on Table  1 that their recovery PSNRs are very 
close. 

Noisy Recovery 
 
In this experiment, the robustness of the E-
NDLR algorithm to noise is demonstrated. In 
practice, CS measurements consist mostly of 
linear operations, thus the Gaussian noise 
corrupting the signal during the signal 
acquisition is approximated as the Gaussian 
noise corrupting the compressed measurement 
vector. In our experiments, we simply corrupt the 
compressed measurement vector by different 
levels of Gaussian noise measured by Signalto 
Noise Ratios (SNRs). We use all seven standard 
test images and add different SNRs (5; 10; 15; 
25; 35) to their 20% CS measurements and 
report the PSNR values of the final CS recovered 
image in Table  2. 
From Table  2, we see that by adding 5dB of 
Gaussian noise on the CS measurements, all the 
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TV-based algorithms’ (i.e., TV, NLTV, TVAL3 
and TVNLR) recovery performance suffer in 
terms of PSNR as compared with their original 
noiseless recovery settings. When the noise SNR 
reaches 35, the recovery result is close to its 
noiseless case. It also demonstrates that the 
recovery performance degrades on both BCS-
SPL and NLCS when noise is added while E-
NDLR is affected much less by the noise in all 
SNR cases. We see that the NLR-CS algorithm 
is also robust on noise with only less than 1dB 
PSNR decrease as compared with its noiseless 
settings for all the testing images. For BM3D, as 
a denoising algorithm, we see that the recovery 
result is not affected much with different noise 
dB levels. However, E-NDLR still outperforms 

NLR-CS and BM3D in the noisy CS recovery 
case. 

Figure  6: Axial T2 Weighted Brain image CS 
recovery       using 4 fold downsampling (25% 

measurements). (a) Original image; (b) reconstruction 
using Sparse MRI, PSNR=31:84dB; 

(c) DLMRI, PSNR=34:75dB; (d) E-NDLR (IST), 
PSNR=34:86dB. 

 

 
Table 1  .  PSNR  Performance 

  
 

 Recovery Performance on MRI Data 
 
In this experiment, the performance of the 
proposed E-NDLR algorithm is demonstrated on 
the real MRI Brain image data with a variety of 
undersampling factors. The image used is in vivo 
MR scans of size 512 * 512 from ARS (2009). 
The CS data acquisition is simulated by 

downsampling the 2D discrete Fourier transform 
of the Brain image. 
 
Our result is compared with a leading CS MRI 
method by Lustig et al. Lustig et al. (2007) 
(denoted as SparseMRI) and the dictionary 
learning based recovery algorithm called DLMRI 
Ravishankar and Bresler (2011). The SparseMRI 

Algorithms IST TV TVAL3 BCS-SPL IST+BM3D NLCS 
 

TVNLR NLRCS NLTV NLDR 
TVAL3+NLDR 

BCS+ 
SPL+ 
NLDR 

 Lena image 

m/n 

Q1 25.41 22.75 29.02 28.31 25.93 31.74  28.62 29.58 25.94 33.67 33.81 33.8 

Q2 29.51 24.44 31.56 31.33 30.42 34.78  30.98 32.95 29.73 36.33 36.36 36.3 

Q3 32.08 25.47 32.99 33.5 32.91 36.67  33.52 34.73 31.73 37.82 37.83 37.83 

Q4 34.07 27.88 35.03 33.2 34.72 38.22  35.48 36.56 35.39 39.02 39.03 39.02 

Q5 35.89 30.73 36.26 36.79 36.34 39.66  36.94 38.77 37.9 40.16 40.17 40.16 

 
Barbara Image 

m/n 

Q1 21.18 20.1 21.31 22.85 21.34 24.34  22.33 26.9 23.13 29.48 31.14 31.01 

Q2 24.35 21.66 21.6 24.33 24.8 28.17  24.3 30.87 28.29 30.28 33.21 35.22 

Q3 26.96 23.61 24.79 23.92 27.73 31.65  23.35 34.26 31.79 37.3 37.3 37.32 

Q4 29.38 23.32 28.33 27.68 30.29 34.32  26.85 36.14 34.44 38.08 38.98 38.98 

Q5 31.73 26.62 31.08 30.15 32.82 36.63  28.02 32.36 36.23 40.3 40.01 40.01 

 
Boat image 

m/n 

Q1 23.77 21.48 25.76 24.65 24.16 27.74  24.73 26.41 23.94 28.69 29.02 29.24 

Q2 27.01 23.18 28.94 27.09 27.38 30.66  28.02 29.09 27.97 34.48 32.68 32.63 

Q3 29.1 24.84 31.09 28.94 29.61 32.64  30.8 31.65 30.89 34.41 34.47 34.43 

Q4 30.91 27.93 32.68 31.39 31.24 34.26  33.06 32.48 33.45 35.77 35.81 38.86 

Q5 32.62 29.19 33.33 32.19 32.76 33.73  34.66 33.87 36.04 37.24 37.24 37.28 
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method is to minimize both the l1 norm and the 
TV norm of the image in the wavelet domain. 
The DLMRI uses K-SVD dictionary learning 
methods and tries to find the best sparse 
representation of the image for CS recovery. We 
adopt the same 2D random sampling scheme as 
in Ravishankar and Bresler (2011) with 2:5; 4; 6; 
8; 10; 20 fold downsampling. Here, for the k fold 
downsampling, it is equivalent to the 
measurement ratio (i.e., m n ) of 1 k . In Fig.  6, 
we present the CS recovery result on the Brain 
image with 4 fold downsampling. We observe 

that E-NDLR (based on IST) gives the best 
recovery result in PSNR which is 34:86dB. The 
DLMRI method also has a close PSNR of 
34:75dB. We also demonstrate in Fig.  7 the 
comparison with various downsampling factors. 
When the downsampling factor is within 10 fold, 
the E-NDLR performance is comparable to that 
of 72  
Figure 7: CS recovery results comparison with 
various down sampling factors. 
 
the DLMRI method, while the Sparse MRI 
generates much lower recovery PSNRs. When 
the down sampling factor reaches 20, the 
reconstructed image PSNR drops drastically for 
Sparse MRI, and the E-NDLR is 1:15dB less 
than DLMRI PSNR. The reason that DLMRI 
performs better than E-NDLR is that, DLMRI 
uses dictionary learning to find the best sparse 
representation basis for each single test image. 
E-NDLR naturally utilizes a general DCT basis 
to represent the original test image. As a 
universal basis, it is not chosen to be optimal for 
one image. The DLMRI also has its 
disadvantages-the recovery time usually lasts for 
hours for a large image as the dictionary learning 
takes a lot of computations. The computation 
time needed for E-NDLR is at the same level as 
those of TVAL3 and BCS-SPL. For all our test 
images of size 512 _ 512, E-NDLR takes, on 
average, about 10 minutes to finish on a Laptop 
PC. 
 
 

4. CONCLUSION 
 
This paper presented a CS image recovery 
algorithm based on Douglas-Rachford Splitting 
with nonlocal estimation. The proposed E-NDLR 
algorithm first used the iterative thesholding 
algorithm to obtain the intermediate image 
reconstruction result. Then a nonlocal estimation 
step was applied to the reconstructed image to 
improve the recovery performance. In the 
nonlocal estimation step, we reformulated the 
patches estimation as patch denoising problem 
using low-rank matrix approximation. We 
proposed a Douglas- Rachford splitting method 
to solve the CS recovery problem with the 
nonlocal estimation. Experimental results 
validated the performance of the proposed E-
NDLR algorithm in both PSNR and visual 
perception on standard test images with both 
noiseless and noisy settings. E-NDLR 
outperformed the state-of-the-art CS recovery 
algorithms and showed it can be applied on top 
of existing recovery algorithms to further 
improve the recovery performance. Experiments 
on MRI data also demonstrated it is practical for 
real applications with competing results. 
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TABLE 2: Showing The Noisy CS Recovery Results And Is Tested For 20% Measurement With E-NLDR 
 

SNR IST TV 
TVAL
3 

BCS-
SPL 

IST+BM3
D  

NLC
S 

TVNL
R 

NLRC
S 

NLT
V 

Lena Image 

5 
36.2

4 
21.2

7 25.94 30.5 28.82 28.14 32.45 32.55 30.32 

10 
36.2

9 
21.6

3 27.66 30.51 28.93 28.43 33.13 32.65 30.31 

15 
36.2

9 
22.1

9 28.34 30.52 30.94 29.23 33.44 32.76 30.31 

25 
36.2

9 
23.6

3 29.01 30.52 31.18 30.96 34.01 32.9 30.34 

35 
36.2

9 
24.3

4 29.5 30.52 31.18 30.98 34.57 32.95 30.34 
Noiseles

s 
36.3

3 
24.4

4 29.73 31.37 31.56 30.98 34.78 32.95 30.42 

Barbara Image 

5 
35.1

5 
19.0

3 25.11 24.4 19.45 23.22 27.73 30.39 24.74 

10 
35.1

6 
19.3

4 25.94 24.44 19.8 23.56 27.86 30.5 24.75 

15 
35.1

6 
19.8

7 26.37 24.45 19.94 24.17 28.02 30.76 24.77 

25 
35.2

1 
21.0

5 27.35 24.45 20.03 24.04 27.94 30.87 24.77 

35 
35.2

7 
21.3

2 28.02 24.46 20.87 24.28 28.01 30.87 24.8 
Noiseles

s 
35.2

8 
21.6

6 28.29 24.33 21.6 24.3 28.17 30.87 24.8 

Boat Image 

5 
32.3

9 
20.1

5 25.46 27 27.65 27.14 28.33 28.67 27.29 

10 
32.4

4 
20.4

4 25.63 27.01 27.78 27.45 28.97 28.75 27.32 

15 
32.4

4 
21.2

1 26.29 27.02 28.08 27.93 29.25 28.97 27.32 

25 
32.4

4 
21.9

9 26.99 27.02 28.21 28.02 29.76 29.05 27.32 

35 
32.4

4 
22.7

8 27.68 27.02 28.57 28 30.49 29.05 27.34 
Noiseles

s 
32.4

8 
23.1

8 27.97 27.02 28.94 28.02 30.66 29.07 27.38 
 
 
 
 
 
 
 


