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ABSTRACT 

 
The development of the Internet, the constantly growing number of network users, and their mutual 
exchange of information is becoming an important communication bridge. However, this causes a series of 
technical difficulties, one of which is the growing requirements to network and server equipment and its 
maintenance. Therefore, the purpose of this study is to develop a computer program for teaching a neural 
network based on a computer network traffic table. A set of methods was used to achieve the set goal, 
including analysis, deterministic chaos, and systematization. The study used such software packages as 
TISEAN, MatLab, NetEmul, and Excel. The study generalized the experience that was relevant to the 
problem at hand. The study calculated the Lyapunov exponent, which characterizes the presence of chaos 
in the system. Analysis of the Lyapunov exponent enables using nonlinear dynamics methods to study the 
nature of the incoming and outbound traffic. With the help of the developed program, the neural network 
router is capable of prediction short-term parameters of a computer network; this information is sent to the 
system administrator, which will allow adapting the router to the estimated changes in the computer 
network. 
Keywords: Distribution series, Self-similarity, Chaotic processes, Phase portrait, Mutual information 
 
1. INTRODUCTION  
 

The self-similarity problem was first mentioned 
by American scientists W. Leland, M. Taqqu, W. 
Willinger, and D. Wilson in 1993 [1]. The 
investigation of Ethernet traffic in the Bellcore 
network found that network traffic had the property 
of scale invariance, slowly decreasing dependencies 
(aftereffects), and could have high traffic burstiness 
(peak intensity of packet arrival for servicing to its 
mean value ratio) with a relatively low mean level. 
Studies on the structure of network traffic are 
ongoing [2]. 

Traffic is one of the most important indices in 
network monitoring [3]. The core of modern 
multiservice networks is based on a packet IP-
network; however, the calculation methods have 
remained virtually the same as they were for the 
well-studied telephone networks with line 
switching. Traffic in multiservice networks is 
bursty, which increases the odds of overloading the 
network nodes, which causes buffer overflow. This 
is a problem for real-time applications (voice, 
video), since it causes lag, packet loss, and highly 
variable servicing time in network nodes. 

This paper presents a study of network traffic 
using deterministic chaos methods, which is 
especially interesting for assessing the presence of 
chaotic dynamics in the process and its nature 
(share of deterministic chaos and random noise) 
during the processing and handling of data flows in 
a multiservice network. For instance, study [4] 
shows that nonlinear dynamics provides extensive 
methods for analyzing traffic; study [5] offers using 
nonlinear dynamics methods to determine the 
characteristic features of traffic; study [6] offers 
using said methods to identify anomalies in time 
series models; study [7] offers using said methods 
to predict time series. Study [8] shows that 
nonlinear  
 
 
dynamics methods and state models in a fractal 
phase space can be used to analyze the fractal 
properties of network processes.  

When analyzing time series via methods used to 
study nonlinear dynamic systems, processes are 
considered chaotic and  
containing deterministic chaos [9]. From the 
perspective of linear methods of analysis, these 
processes are stochastic. However, they are not 
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entirely random. In other words, a chaotic process 
is a cross between a deterministic process and a 
stochastic one. 

Random and chaotic signals are similar in the 
time, spectral, and autocorrelation domains, which 
makes their identification difficult [9, 10]. At that, 
chaotic fluctuations, unlike stochastic ones, have an 
internal order, which manifests during the analysis 
of chaotic system motion in a phase space using 
nonlinear dynamics methods. 

As was mentioned earlier, an important feature 
of a multiservice network is the uneven intensity of 
packet arrival at the communication network 
(bursty traffic), which is why studying the structure 
of network traffic is a relevant problem [6, 8]. 
These studies will enable solving problems related 
to improving the quality of servicing of real-time 
applications by network devices. These applications 
are critical to such parameters as losses, packet 
delay, and jitter. One of the numerical 
characteristics used in the dynamic chaos theory 
when studying time series – the Lyapunov exponent 
– determines the final predictability (the future is 
definitely determined by the past) [11]. Based on 
prediction, in case of an overload, respective 
processing algorithms of network devices 
(switches, routers) can prevent losses by 
redistributing the required capacity to the buffer of 
the port that is handling the frame, in the data field 
whereof the real-time application is. In addition, 
network devices that are used nowadays have port 
buffer capacities that are intended for handling the 
simplest flow, rather than a self-similar (fractal) 
one. The simplest flows are stationary, ordinary, 
and lack aftereffects (i.e., the flow can be regarded 
as a Markoff process). 

The fractal theory serves as the basis for the 
quantitative description of dissipative structures 
that form in unbalanced conditions and that such 
structures form in multiservice networks during the 
transmission of information flows [12]. This is 
related to an uneven intensity of message arrival to 
a communication network that is based on packet 
switching, the growing number of users, the 
emergence and spread of the interaction technology 
in the “client-server” model network, the growing 
number of applications, and the transfer of real-
time applications by means of packet technologies. 

This study aims to develop a program for 
teaching neural networks. 

 
2. METHOD 

 
A set of methods relevant was used to achieve 

the aim, including analysis, synthesis, systems and 

logical methods, conceptualization, deterministic 
chaos, and the mathematical method. The study 
also generalized experience on the problem at hand. 

Computation used procedures implemented in 
the TISEAN package, while routers were checked 
using the NetEmul package, as well as MatLab and 
Excel. 

This study investigates the series of ranges of 
intervals between ARP (492 points in series) and 
MPEG (25,733 points in series) packets and the 
total measured traffic (278,556 points in series) of 
the backbone network traffic, measured using the 
Wireshark sniffer software (Figures 1, 2, and 3, 
respectively). 

 

 
Figure 1: Distribution of intervals between ARP packets 

 

 
Figure 2: Distribution of intervals between MPEG 

packets 
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Figure 3: Distribution of intervals between packets 

(backbone traffic) 
 

Study [13] used the IFS (Iterative Function 
System) clumpiness test to study noise: white 
(Figure 4), pink, etc. 

 

 
Figure 4: White noise 

 
This resulted in a mapping of a one-dimensional 

set of points onto a plane. Depending on whether 
the filling of the space with points is homogenous 
or non-homogenous, the nature of the studied 
process can be assessed visually. 

The ARP and MPEG series are studied using 
the IFS clumpiness test. First, the time series range 
of values is divided into quartiles. The first quartile 
corresponds to the lower left corner and further 
clockwise. The origin is placed in the center of the 

square; half the distance in the direction of the 
corner that corresponds to the quartile to which the 
first value of the studied signal appertains is plotted 
from the origin. Then, half the distance in the 
direction of the corner that corresponds to the 
quartile to which the next value of the studied 
signal appertains is plotted from the obtained point, 
etc. [13, 14]. The assessment of determinism is 
based on the fact that white noise fills the square 
evenly, deterministic processes cause diagonal 
structures to emerge, while chaotic processes fill 
the square unevenly [15]. 

Figures 5 and 6 show the filling of a set of 
points of studied ARP and MPEG series, 
respectively. 
 

 
Figure 5: Result of processing with IFS clumpiness test 

(ARP) 
 

 
Figure 6: Result of processing with IFS clumpiness test 

(MPEG) 
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Unlike white noise, the studied ARP and MPEG 

series fill the square unevenly, which is indicative 
of either a quasiperiodic mode or chaotic dynamics 
in the studied processes, which is diagnosed based 
on the positive Lyapunov exponent. For instance, 
study [2] presents the following terminology: 

- “noisy periodic mode” if the Lyapunov 
exponent is negative; 

- “noisy quasiperiodic mode” if the Lyapunov 
exponent is close to zero; 

- “noisy chaotic mode” if the Lyapunov 
exponent is positive. 

Consider the dynamics of the studied series 
(ARP, MPEG) in the state space or phase space. 
The “delay” method was used to reconstruct the 
phase portraits of ARP and MPEG series (using the 
TISEAN software). In order to reconstruct the 
phase portrait of the time series, variable   was 
plotted along the X-axis; the same variable, but 
with   shift, was plotted along the Y-axis for the 2D 
format, and the same variable, but with a new axis 
and   shift – for the 3D format [16, 17]. 

Figures 7, 8, 9, and 10 show the phase portraits 
of ARP and MPEG series in 2D and 3D formats, 
respectively. 
 

 
Figure 7: Phase portrait of ARP traffic in 2D 

 

 
Figure 8: Phase portrait of ARP traffic in 3D 

 

 
Figure 9: Phase portrait of MPEG traffic in 2D 

 

 
Figure 10: Phase portrait of MPEG traffic in 3D 

 
Study [18] mentioned that the works of 

Grassberger, Procaccia [19], showed that a single 
time realization could be used to determine the 
correlation dimension and find out “how chaotic” 
the signal was, while the Kaplan-Yorke hypothesis 
linked the dimension-determined statistical 
structure of the attractor with the dynamics of 
motion in the attractor, connected by Lyapunov 
exponents [20]. 

The correlation dimension (D2) allows 
assessing the complexity of the system dynamics. 

The plot in Figure 11, which shows the 
dependency of changes in the correlation dimension 
on the embedding dimension for the MPEG series 
[21], shows that the studied process has a 
saturation, which, however, is not pronounced. This 
means that the generative system is not random, but 
rather managed by a large number of parameters. 
The series is noisy at that. 
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Figure 11: Dependency of changes in the correlation 

dimension on the embedding dimension (MPEG) 
 

The embedding dimension of the MPEG series 
is 12, at which the correlation dimension is 
7.79±0.35 and which is indicative of a certain 
saturation of the   dependency, with regard to 
computational error. 

Studies [22] showed that the strange attractor 
looks like a set of an infinite number of layers or 
parallel planes, the distance between which is 
infinitely small. 
One of the main characteristics of a strange 
attractor is the sensitivity of its trajectories to the 
initial conditions. This means that two trajectories 
that are close to each other in the phase space at a 
certain initial point in time will diverge 
exponentially in a small mean time. At the same 
time, since the attractor has boundary dimensions, 
two trajectories in it cannot diverge infinitely. The 
exponential divergence-convergence of phase 
trajectories can be assessed using Lyapunov 
exponents. In order to identify nonlinear dynamic 
processes, it is necessary to calculate the largest 
Lyapunov exponent –  . From the practical 
perspective, it is important that the Lyapunov 
exponents, while being invariants, can be calculated 
based on an experimentally obtained time series.  

The largest Lyapunov exponent was calculated 
according to the algorithm developed in 1994 by H. 
Kantz [23]. Procedures implemented in the 
TISEAN software package were used for 
calculations [16, 17]. 

The advantage of this computation algorithm is 
that it does not require recapturing the attractor in 
the lag plane of the smallest required dimension, 
which exceeds the dimension of the initial attractor 
of the system. A small dimension of the lag space 
will suffice (in the TISEAN software package, the 
default lag space dimension is Demb=2). The index 
is calculated as the slope of the approximating line 

on a linear segment of the family of plots, obtained 
according to the Kantz algorithm, presented in 
[24nb]. The series is projected onto the trajectory in 
the lag space. Consider two neighboring points and 
co-directional trajectory fragments. One of them is 
denoted as, while the other point – the one the 
trajectory arrives at after a certain cycle. The 
distance between them, can be considered a small 
trajectory perturbation. Then, in l steps in the time 
series, one can obtain. If then the λ value can be 
considered the largest Lyapunov exponent. It is 
possible to calculate a family of functions: 
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where m is the lag space dimension, set as a 
parameter in calculations 

(usually set in calculations by m=2);                
is the set of trajectory points; 
t is time ( ); 
is the sampling frequency. 
Other parameters set for the calculations are the 

lag value and the Theiler window value. 
The lag value is set equal to the coordinate of 

the first local minimum of the mutual information 
functions; the Theiler window is set equal to the 
first general minimum of the space-time separation 
plot [21]. 

Thus, the sequence of actions for calculating the 
Lyapunov exponent is as follows: 

- calculation of the lag using the mutual 
information function that reflects both the linear 
and nonlinear relationship between the two 
variables: in this case, two values of the same 
variable with a certain lag between them are used 
instead of two variables and the mutual information 
functions is built from the lag value; 

- calculation of the Theiler window using space-
time separation plots (the previously obtained lag 
value is used as a parameter in this procedure); 

- calculation of Lyapunov exponents using the 
previous obtained lag and Theiler window values as 
parameters. 

Procedures implemented in the TISEAN 
software package were used for calculations [16, 
17]. 

Figures 12 and 13 shows the dependencies of 
mutual information I on lag   for the ARP series and 
the general series of observation. In further 
calculations, the lag value is set equal to the 
coordinate of the first minimum of the obtained 
mutual information function. Since the solution of 
this problem requires only the location of the first 
local minimum of the functions, rather than its 
absolute values, the TISEAN package used an 
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algorithm that does not provide its real value, but 
accelerates calculations significantly. 

 

 
Figure 12: Dependency of mutual information I on lag 

(ARP) 
 

 
Figure 13:  Dependency of mutual information I on lag 

(general series) 
 

In order to avoid errors caused by an 
insufficient extent of observation series, J. Theiler 
set forth a modification of the computation 
algorithm, in which he offered to exclude the pairs 
of points, the distance between which in the initial 
time series was less than w steps, since the presence 
of correlated points causes computational errors  . 
The w value is called in Theiler window. The 
optimal size of the Theiler window is achieved 
using a space-time separation plot that is a simple 
equal-density curve of the probability that two 
points in the time series, located thereon at   
distance will find themselves in the restored 
attractor at a distance that does not exceed. At that, 
a family of curves that correspond to various values 
of probability density is built. 

Figures 14 and 15 shows the families of space-
time separation plots for probability densities of 

ARP series and the general observation series, 
respectively. 

 

 
Figure 14: Dependency plots of relative distance   on ε-

neighborhood (ARP) 
 

 
Figure 15: Dependency plots of relative distance   on ε-

neighborhood (general series) 
In the studied time series (ARP and general), 

the above dependency plots of relative distance   on 
ε-neighborhood have common first minimums that 
equal 3. 

Figures 16 and 17 show the dependency curves   
for the ARP series and the general series of 
observation, respectively. 
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Figure 16:  Dependencies for the ARP series 
 

 
Figure 17:   Dependencies for the general series of 

observation 
 

The analysis of the above plots shows that the 
linear segment is set in the interval [1, 4] for the 
ARP series. The line slope is 0.0962692 ± 0.02242, 
which corresponds to the Lyapunov exponent 
value. 
For the general series of observation, the linear plot 
is set in the interval [2, 9]. The line slope is 
0.0361674 ± 0.003652, which corresponds to the 
Lyapunov exponent value. 

Within the attractor, insignificant changes in 
initial conditions may cause significant changes in 
the evolution of the system; therefore, the 
Lyapunov exponent can be a measure of how 
significant such changes are going to be. The more 
sensitive the system is to initial conditions, the 
larger this exponent will be. 
 
3. USING THE NEURAL NETWORK 

APPROACH TO STUDY NETWORK 
TRAFFIC 

 
Mathematical models of neural networks are a 

convenient computational mechanism with the 
following important characteristics: 

- learning capability; 
- adaptability; 
- high parallelism and computation speed; 
- predictable computational robustness, i.e. the 

ability to find accurate solutions with inaccurate 
input data. 

Neural network algorithms are determined by 
the neural setting of the routing problem (its neural 
interpretation, to be more precise) and an 
appropriate model of a neural network that solves 
the problem in this setting. 

The creation of neural computers and the 
modeling of adaptive neural networks are 
considered the most promising area for the solution 

of many problems related to artificial intelligence. 
A neural network used in the routing algorithm is a 
mathematical model of parallel computations, 
which contains simple interacting processing 
elements – artificial neurons. The advantage of 
neural networks over conventional algorithms is 
their learning capability. This study uses the 
learning principle that includes a teacher and the 
Widrow-Goff algorithm. 

Developing a program for teaching neural 
networks based on a computer network traffic table 
created in Microsoft Excel 
Assume the structure of the local computer network 
is presented in the form of a graph (Figure 2). 
Marks are set along the edges of the graph 
according to the following attributes: minimum 
route edges are assigned the (1) value, while other 
edges are assigned the (-1) value. For instance, the 
route from node 1 to node 2 equals 15 and is coded 
with one. 
 

12 15 1    (2) 

 
or instance, possible routes between nodes 1 and 3 
can be coded as follows: 
 

13 12 23 1 1,       
13 14 42 23 1 1 1,            
13 14 45 53 1 1 1,          (3) 

 
where μij is the total distance between network 
nodes presented in the form of codes, ßij is the 
coded distance between network nodes (according 
to the conditions of the network administrator, this 
parameter can also express the data transfer speed, 
lag, etc.). 

 

 
Figure 18: Graph with marks 

 
The neural network chooses the route that is 

coded with a sequence of positive ones, where (1) 
is the right route, while (-1) is the wrong route. In 
order to represent the route graph, a neural network 
structure is chosen, where Xі are inputs of the 
neural network, Yj are outputs of the neural 
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network, where i=1..N; j=1..M; N=M=5, xi is the 
current value of the input signal, and yj is the 
current value of the output signal. 

 

 
Figure 19: Neural network structure 

 
Consider a coded table of optimal routes for the 

set neural network (Table 1). 
 
Table 1: Optimal graph routes (Figure 2) for the neural 

network 

 y1  y2  y3  y4  y5  
x1  -1  1  -1  -1  -1  
x2  1  -1  1  -1  1  
x3  -1  1  -1  -1  -1  
x4  -1  1  -1  -1  1  
x5  -1  1  -1  1  -1  

 
Consider a neural network with a signature 
activation function SGN [9]. 
 

1

1

1

1 при 0

1 при 0

N

ij iN
i

i ij i N
i

ij i
i

W X

Y SGN W X

W X








     

   





 (4) 

 
where Wij is the weight factor of the neural 
network. 

Assume the neural network input is receiving 
coded signals, which are routes: 
 

1 ( 11 1 1 1);Tx       

2 (1 11 11);Tx     

3 ( 11 1 1 1);Tx       

4 ( 11 1 11);Tx      

5 ( 11 11 1),Tx      (5) 
 

The weight factors of the neural network matrix 

for images ( 1, 2,3, 4,5)ix i   are found according 
to the following formula: 
 

,T
i i iW x x  (6) 

 

1 1 1

1 1 1 1 1

1 1 1 1 1

,1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

TW x x

 
     
   
 

 
  

2 2 2

1 1 1 1 1

1 1 1 1 1

,1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

TW x x

  
    
    
 
   
     

3 3 3

1 1 1 1 1

1 1 1 1 1

,1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

TW x x

 
     
   
 

 
  

4 4 4

1 1 1 1 1

1 1 1 1 1

,1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

TW x x

  
    
    
 

  
      

5 5 5

1 1 1 1 1

1 1 1 1 1

.1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

TW x x

  
    
    
 
   
     

(7) 
 

The resulting network weight matrix W is 
calculated using the following formula: 

 

5

1

5 5 5 1 3

5 5 5 1 3

.5 5 5 1 3

1 1 1 5 1

3 3 3 1 5

i
i

W W


 
     
   
 

  
   

  

(8) 
 

In order to determine the reference image, saved 
in the memory, it is necessary to calculate the 
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product of ( 1,2,3,4,5)i iWX Y i  . For instance, 

with an  3x  entry, we have 
 

3

5 5 5 1 3 1 19

5 5 5 1 3 1 19

.5 5 5 1 3 1 19

1 1 1 5 1 1 7

3 3 3 1 5 1 13

Wx

       
             
         
     

        
             

 

(9) 
 

Considering the activation function (2), we 

obtain the output signal )11111(  , i.e. the 

neural network restored the saved 3x  image 
correctly. Similar results were obtained for other 
images. 

Assume an 3x  image damaged in the second bit is 
entered into the network input and this image 
imitates the reduction of quality of the test signal 
transmitted from the nearest computer network 
node. 
 

3 ( 1 1 1 1 1).Tx      
 (10) 

The application of the W matrix to 3
Tx

 produces 
the following: 
 

3

5 5 5 1 3 1 11

5 5 5 1 3 1 1

.5 5 5 1 3 1 11

1 1 1 5 1 1 7

3 3 3 1 5 1 9

Wx

       
             
         
     

        
             

 (11) 
 

The network restored the damaged image 
correctly 

Microsoft Excel software is used to simplify the 
calculation (Figure 20 for an ordinary signal and 
Figure 21 for a distorted signal). 

 

 
Figure 20: Weight factor calculation program (set input 

values) 
 

 
Figure 21:  Weight factor calculation program (distorted 

input values) 
 

Thus, the offered approach can be successfully 
used in computer network router software. 
 
4. DISCUSSION  
 

A computer system expert plays the key role in 
the creation of neural networks. The expert makes 
corrections during the teaching and testing [7] of 
input and output parameters of the routing 
algorithm. 

Another advantage of neural networks, as 
mentioned before, is their ability to extrapolate data 
and predict them in a short term. Neural networks 
based on accumulated data determine the analytical 
dependency (linear or nonlinear) and use it for 
interpolation and extrapolation. Neural networks 
also have the ability of prediction, which enables 
predicting the estimated data delay between 
computer network nodes at a set point in time and 
choosing the optimal information transmission 
route with time lead based on prediction data. 

The following is a second emulation experiment 
to test this assumption. 

Assume the router remembers the delay 
between nodes 1 and 2 and saves these data in its 
memory. For instance, at a certain time, the delay is 
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4 seconds during the first day, 6 seconds during the 
second day, 7 seconds during the third day, etc. 
(Table 2). 

 
Table 2: Dependency of traffic on the day of observation 

Day (P)  1  2  3  4  5  7  8  9  10 

Computer 
network 
traffic 
(GB)  

4  6  7  9  10  13  14 16 17 

 
After implementing the network in MatLab 

(Neuro Toolbox) [10] and teaching the neural 
network, it is expedient to assess the adequacy of 
its operation by comparing real and estimated 
values. The set of commands for creating the neural 
network is as follows: 
>> p = [1 2 3 4 5 6 7 8 9 10]; 
>> t = [4 6 7 9 10 11 13 14 16 17]; 
>> net = newlind(p,t); 
>> y = sim(net,p) 

Network check: 
y = 4.2909   5.7152   7.1394   8.5636   9.9879   
11.4121   12.8364   14.2606   15.6848   17.1091. 

The result of teaching demonstrated an adequate 
match. The MatLab (Simulink) application [10] is 
used to enable prediction capability and additional 
modification of the neural network (Figure 6). 

 

 
Figure 22:  Simulation model of the neural network in 

MatLab (Neuro Toolbox) 
 

The results of the extrapolation of the delay 
parameter onto day 11 is 18.5 seconds. Thus, the 
neural router is capable of successfully predicting 
short-term computer network parameters based on 
accumulated data. The predicted information is 
calculated on the system administrator server. 

The assumption is that during operation, the 
routers will be sending information (tables of traffic 
and delay time between nodes) to the system 
administrator server. This also allows adapting the 
router to the estimated changes in computer 
network parameters, thus improving its 
performance. Thus, neural routers that are based on 
the algorithm of back propagation of error are 
capable of quickly determining the total delay 
between nodes in a wide range of changes in 
computer network parameters. Considering this 
capability, the router can successfully adapt to 
various changes in computer network parameters. A 
manufacturing local computer network (Figure 22) 
was designed to test the offered neural network 
approach and compare it with  
the regular adaptive routing algorithm (distance 
vector). The emulation and verification of the 
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temporal capabilities of routers was carried out 
using the NetEmul package [11]. 

 

 
 
 

 
Figure 23: Simulation modeling for the comparative analysis of the effectiveness of routing methods using the 

NEMETUL package, by the example of a manufacturing local computer network 
 
The comparative characteristics of the operation 

of two algorithms are presented in Table 3. 
 

Table 3:  Comparative analysis of the characteristics of a 
regular and neural network traffic prediction algorithm 

Criteria  
RIP 

algorithm  
Neural 

algorithm  

Ability to adapt  +  +  
Optimal route 

estimation time, s  
5  2  

Correction of 
distorted signal  

-  +  

Simple 
implementation  

+  +  

Ability to predict 
network parameters  

-  +  

150 Kbit packet 
delivery time (s)  

15  7  

 
 
 
 
5. CONCLUSION 
 

The study investigated network traffic using 
deterministic chaos methods. The IFS clumpiness 
test shows that the studied series fill the space 
unevenly, i.e. they differ from white noise and have 
localized clusters. 

The study of the correlation dimension of the 
MPEG time series and general series of observation 
showed that the studied processes were noisy and 
their generative system was not random, but rather 
managed by a large number of parameters. 

The MatLab environment was used to test a 
neural network router. Thanks to the accumulated 
data, the router was able to predict short-term 
parameters of the computer network. This 
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information will be calculated on the system 
administrator’s server. This function will enable 
adapting the router to the estimated changes in the 
computer network, thus improving its performance. 

The calculated Lyapunov exponents for the time 
series are positive, which is indicative of the 
presence of chaos in the dynamic system. Thus, 
nonlinear dynamics methods can be used to study 
the nature of incoming and outbound traffic by 
analyzing the Lyapunov exponent. 
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