
Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5815

VERIFICATION OF VHDL DESCRIPTIONS OF PARALLEL
ARRAYS OF FINITE STATE MACHINES

NIKOLAY ALEKSANDROVICH AVDEEV1, PETR NIKOLAEVICH BIBILO1, VLADIMIR

VLADIMIROVICH KOROBKIN2, AND ANNA EVGENIEVNA KOLODENKOVA3

1 United Institute of Informatics Problems, National Academy of Sciences of Belarus, ul. Surganova 6,
Minsk, 220012 Belarus

2 Acad. Kalyaev Scientific Research Institute of Multiprocessor Computer Systems, ul. Chekhova 2,
Taganrog, 347928 Russia

3 Ufa State Aviation Technical University (USATU), ul. K. Marksa 12, Ufa, 450008 Russia

ABSTRACT

Finite state machines are widely applied in the development of digital systems for description of control
logic nodes, microprocessors, interface circuits and so on. This work proposes verification procedure of
VHDL description of parallel arrays of finite state machines in Questa Sim simulation system. The main
advantage of Questa Sim is that the model of finite state machine (FSM) can be verified if its written
according to certain template. Verification is comprised of validating for compliance of VHDL description
of finites state machine array with design specifications. The method utilizes the capabilities of the Questa
Sim system, which makes it possible to identify the oriented graphs of the transitions of the component
machines and to calculate the number of the arc passings in the graphs based on the results of simulation.
However, the Questa Sim system does not recognize the FSM network and does not have the means to
construct the tests based on the simulation results. Therefore, to solve these problems, it is suggested to
store the simulation results – the sequence of input sets (stimuli) and the state tuples of the component
machines, and to check the execution of transitions in the state graph of the machine network based on the
sequences obtained, and, thus, to conduct the verification. In addition, this article discusses an example of
description of FSM and FSM arrays using VHDL.
Key words: Digital Systems, VHDL Descriptions, Verification, Simulation, Finite State Machines.

1. INTRODUCTION

Automata-based style is widely used in
programming since it allows to solve verification
issues of software more successfully, including
methods of formal verification [1-3]. While
developing digital systems, which are implemented
in hardware as logic systems, the FSM models are
also widely applied, especially for description of
control logic nodes, microprocessors, interface
circuits and so on. Two languages occupy leading
position for description of digital systems: Verilog
[4-9] and VHDL [10-14]. We will discuss
description examples of FSM and FSM arrays using
VHDL, however, the proposed practical procedure
of verification of FSM arrays can be applied also
for projects written in the Verilog language.

The VHDL descriptions of FSM arrays are
used for synthesis of synchronous logical circuits in
this or that basis of logical elements known as
engineering (target0 basis or target library of
logical elements. At present the synthesis is
automated, and the most important issue during
development of VLSI circuits and systems-on-chips
is verification [15] of initial VHDL models used for

algorithmic description of designed digital devices
and systems.

Contrary to formal verification, when
behavior equivalence is verified by two VHDL
descriptions of digital system, this article considers
verification as verification of validity of initial
VHDL description, that is, validating of compliance
of synthesized VHDL description of designed
digital system with design specifications [15].

The great advantage of the Finite State
Machine (FSM) model is the possibility of its
verification. The Questa Sim system [10] for
simulation of the HDL-descriptions of the digital
devices includes the aids for functional verification
of the FSM. These aids (options) enable to perform
the recognition of the FSM, included in the digital
device design, in the course of simulation, to
determine all the states passed by the FSM and to
calculate the number of arc passings in the
transition graph of the machine. Such options are
very useful, but the FSMs, as a rule, often form the
networks and are the part of more complex designs.
To verify the whole design [11], it is required to
construct the compact functional tests for the FSM

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5816

networks. However, the Questa Sim system can not
recognize the network of automatic machines and
has no options to construct the functional tests
based on the simulation results.

The objective of this article is the
automated construction of such tests based on the
results of the simulation of the VHDL-descriptions
of the FSM networks. To conduct the simulation, it
is required to write the test VHDL programs
utilizing the options for pseudorandom test sets
generation and the options for functional coverage.

2. FORMULATION OF THE PROBLEM

Initial design specifications of separate

(component) FSM and arrays of interacting FSM
are generally predefined in the form of spreadsheets
or oriented graphs of transitions between states of
component FSM, the nodes of which corresponds
to states and oriented branches to transitions
between the states. Then, the state of component
FSM is always considered as its internal state, and
the state of array of synchronous FSM is considered
as a tuple of internal states of component FSM. On
the basis of non-formal specifications VHDL
descriptions are arranged, which are formal and
simulated, and which require verification. The main
approach to such verification is simulation which
requires for:

- development of testing programs;
- arrangement of appropriate tests or

VHDL programs generating tests;
- simulation and comparison of obtained

responses of VHDL model with expected
responses.

Development of testing programs and
simulation using Questa Sim system is described in
details in [15, 16]. Subsequently, VHDL
descriptions will be simulated in Questa Sim, some
peculiar features of this system will be discussed.

Verification of VHDL description of
separate component FSM is discussed in [17], it is
comprised of verification of feasibility of all states
of FSM and execution of all required transitions
between the FSM states. For FSM array the
problem is much more complicated, since it is
required to verify that component FSM are
synchronously in the required state. In addition, it is
important to verify that the component FSM in the
array are not simultaneously in prohibited state.

Let us introduce notations and formulate
the problem. Let A0, A1,…, Ap–1 are the component
FSM with common input signals of the set X and
common synchronous signal clk;

}q,...,q{Q k
00

0
0

0
 , }q,...,q{Q k

11
0

1
1

,…, }q,...,q{Q p
k

pp
p

11
0

1
1

 are the

internal FSM states; G0, G1,…, Gp–1 are the graphs
of transitions between states of component FSM; p

– is the number of the component machines.
Mathematical models of FSM are widely known in
literature [18], VHDL descriptions of synchronous
FSM are available in [4, 10, 15].

Component FSM generates parallel array
H (Fig. 1), that is, the transitions between the states
of all component FSM are performed
synchronously, for instance, positive edge of
synchronous signal clk.

Fig. 1. General view of FSM parallel array.

 Let us call generalized graph of
transitions the graph GH, the nodes of which are
ordered vectors (tuples). In each tuple the i-th
component is the element of the set Qi, i = 0, 1, …,
p–1. It can be seen that the set Q of nodes of the
graph GH forms the Cartesian product of the sets

iQ :
110 pQ...QQQ . Now let us

denote as Z the subset of nodes of the graph GH,
which is prohibited state. The FSM array H should
never be in a state included into Z. Let us call the

subset Z\QR of array H states the set of

allowed states of the array. It should be mentioned
that the allowed array states can include
inaccessible states, that is, the states which FSM
never reaches. Most commonly a designer does not
summarize them in explicit form in initial
specifications.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5817

A transition (a branch of graph GH) is
considered as prohibited, if it leads to a prohibited
state. The model of component FSM and its VHDL
description are considered as correct, if from any
internal FSM state there is a transition to FSM
initial state. The combination of initial states of
component FSM will generate initial state of the
array H.

Problem. VHDL description of parallel
array H of FSM and subset Z of prohibited states
are predefined. It is required to verify VHDL
description, that is, to verify whether in the graph
GH the transitions to allowed states R are executed
and the transitions to prohibited states Z are not
executed.

The problem of verification of the initial
high-level VHDL-descriptions (or the Verilog-
descriptions) and the design specifications have
been considered in a great number of scientific
papers. The point at issue is about the conformity of
the HDL-model of the digital device to the design
specifications. Two basic approaches can be
utilized for such verification. The first approach
[14, 15] is formal and includes the construction of
the corresponding High-Level Decision Diagram
(HLLDD) model, which is compared with the
conditions of the operation of the Extended Finite
State Machines (EFSM) built based on the original
HDL-description, as the specifications. The
generation of the functional test is reduced to the
construction of the counterexample in the form of a
sequence of the input test sets, the use of which in
the simulation results in a behavior that contradicts
the specification. The above-mentioned is a
concretization of the approach known in the
literature as the model checking [16]. This
approach is limited to the HDL-description styles,
from which the corresponding models are extracted.

Another approach is implemented on the
basis of the simulation and complex testing, aimed
at the appropriate checks for verify the correct
functionality of the HDL-description [11]. This
approach is not limited to the styles of the source
descriptions, the main problems are the generation
of the directed functional tests and the arrangement
of the testing. In the framework of this approach, it
is proposed to solve the task of verification of
parallel array of the FSMs.

Since it is assumed that the verification
problem will be solved on the basis of simulation in
Questa Sim, then the question is not the strict
solution of the problem, that is, strict (formal)
verification of VHDL model. If it is found that
there are transitions to prohibited states, then it will
evidence incorrect VHDL description of FSM

array; if after all kinds of simulations (the set of
tests is always limited) it is found that all allowed
transitions are executed (covered) upon simulation
and there is no transition to prohibited state, then it
is conditionally considered that the VHDL
description of the array H is correct.

3. VERIFICATION PROCEDURE OF VHDL

DESCRIPTIONS OF ARRAYS OF FINITE
STATE MACHINES

In verification of the network of H

machines it is required to verify each of
0A ,

1A ,

…,
1pA machines of the network and the

network of H machines as a whole. A great
advantage of Questa Sim is that the FSM model can
be verified if it written according to predefined
template. The FSM model should have finite
number of internal states, variables of current and
next states should exist, state transition should be
executed according to synchronous signal, next
state should depend on current state. VHDL code
coverage tools on the basis of compilation and
simulation make it possible to recognize FSM in the
model of digital system, to follow (to consider for)
all covered (in actual simulation run) states of FSM,
to consider for number of transitions of oriented
branches in transition graph of FSM and to

visualize the graph. This procedure is described in
[17]. However, FSM can be written in another
form, which also requires verification. Extraction of

FSM
iA from VHDL description and plotting of

transition graph Gi is a non-trivial problem, since it
is reduced to analysis of VHDL code, the syntax of
which is complex, and FSM can be defined in
another form (style), differing from the required
form of description, and in such case Questa Sim
will not be able to recognize it. In fact, the
development of mathematical model of transition
graph should be automated according to VHDL
program defining FSM, for instance, to develop
vertex incidence matrix of oriented transition graph.
The problem becomes more complicated for FSM

array, since it is required to plot graph
HG on the

basis of preset VHDL description of array H.
In order to avoid analysis of VHDL code,

it is proposed to solve the problem on the basis of
simulation of VHDL description of FSM array. In
order to implement this approach, it is required to
perform correct simulation, namely, for each test
set (each simulation run) to provide FSM internal
state into which the FSM transits upon sending of
test set to input of VHDL model of the FSM, and in

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5818

which the FSM will be at the next simulation run.
For component FSM such approach is described in
[17]. This approach [17] is easily generalized for
the case of parallel array of FSM: during simulation
it is required at each run to provide the state of each
component FSM, then the vertex set of graph GH
will be formed by all various tuples of internal
states of component FSM. Covering all transitions
in such graph will be reduced to searching of
adjacent pairs in the state sequence of the array H.
This approach can be readily implemented,
however, its disadvantages are also obvious
regarding supply of pseudo-random input impacts
and absence of guaranteed covering of each
transition in the graph GH. Pseudorandom tests
should be long and even in this case it is difficult to
cover all transitions, especially this relates to
covering of all transitions to initial state caused by
reset. Therefore, the important role is played by
correct development of testing programs which
provide generation of input impacts and verify
achievement of certain purposes of verification. It
is proposed to use the options of VHDL-packages
implementing OS-VVM (Open Source VHDL
Verification Methodology) to write the test VHDL-
programs [10].

The proposed verification procedure of
VHDL-descriptions of FSM arrays using Questa
Sim
is comprised of the following stages.

Stage 1. Informal verification of the
required style for the description of the component
machines, namely, the style enabling the Questa
Sim system to select each component machine. A
formal verification of the correctness of the style
used is carried out in Stage 3.

Stage 2. Simulation of the VHDL-
description of the network of machines using
specially written testing programs allowing to
generate pseudorandom input effects, to submit
them to the input of the VHDL model and to obtain
the states of the network of the machines at each
stroke. Thus, the results of the stroke simulation are
the input effects for a network of machines and the
corresponding tuples of states of the component
machines.

Stage 3. Visualization of the component
machines transition graphs and the verification of
the execution of all required transitions of the
component machines according to the original
specifications. If the FSM model is not extracted
from the VHDL-description, i.e. if the graph of the
component automaton is not visualized, then it is
required to return to the Stage 1, and to bring the

VHDL description of the component machine to the
required form.

Stage 4. Plotting of the graph GH
according to simulation results.

Stage 5. Analysis of the graph GH, that is,
- obtaining of list of accessible and

inaccessible array states;
- verification of occurrence of prohibited

states by the array.
Stage 6. Development of compact test for

the functional verification of the array, that is, the
verification of the execution of all transitions in the
graph GH.

Stage 7. Correction of VHDL
descriptions, when the design specifications are not
met.

The general mathematical (combinatorial)
problem is the problem of construction of the test in
Stage 6. This problem is associated with the
problem of circumvention of the oriented graph

HG to cover all the arcs. This problem can be
worded as follows: for a given oriented graph, to
find the shortest cycle, containing all the arcs of the

graph HG . This problem is a well-known case of
the Chinese postman problem for the oriented
graphs [17, 18]. At stage 2, this problem arises for

the graphs
0G ,

1G ,…,
1pG , transitions of

the component machines, but the number of

vertices of the graph HG is much larger than the
number of vertices of each of the component
machines and it can reach the product of the
number of vertices of the graphs of the component
machines.

4. RESULTS

Component FSM (node) can exist in one
of the three states: I (Invalid), S (Shared), M
(Modified). All component FSM parallel array H
comprised of p receives input signals, such as: <op,
j>, where op {R (read), W (write), E (evict)} is
the operation code, j{0, 1, …, p–1} is the
number of component FSM (node). If upon input
impact <R, j> the node j is in the state I, then its
state changes to S; the nodes, different from j and
existing in the state M, also transit to the state S.
Upon input impact <W, j> the node j transits to the
state M, and all other nodes to the state I. Upon
input impact <E, j> the node j transits to the state I,
and the state of other nodes remains the same. It is
required to verify that two nodes cannot be
simultaneously in the state M [19].

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5819

As mentioned in [15], the considered
model of the FSM array H is the generalized
description of MSI protocol [20], which provides
coherence of distributed memory, and the
verification that two nodes cannot be
simultaneously in the state M is the task of

verification of this protocol. In order to write
VHDL code describing node behavior, let us
present it in Table 1. In fact, these are initial
specifications for design and hardware of the FSM
array.

Table 1. Description of behavior of FSM array

Node i
(i=0,1,2,…,p-

1)

Input impacts

<R, j> <W, j> <E, j>

i=j I → S
S → S

M → M

M, S, I → M M, S, I → I

i ≠ j M → S
S → S
I → I

M, S, I → I S → S
M → M

I → I

Let us consider VHDL description (listing
1) of parallel array (Fig. 2) of two (p = 2)
component FSM, then the set Z of prohibited states

will include the only vertex of the graph
HG ,

marked as <M, M>.

Fig. 2. Parallel Array Of Two Nodes NODES(0), NODES(1).

Stage 1. The VHDL description of the

msi_gate component machine meets the
requirements of the Questa Sim system, which can
extract the final state machine, find its internal
states, and analyze the performed transitions on the
internal state graph, as will be shown in Stage 3.

Stage 2. Let us simulate the network of
machines with 10 000 pseudorandom input sets of
the form <op, j> using the testing program

The testing program generates
pseudorandom test sets such as <op, 0> , <op, 1>
and functional covering, it is written using the
VHDL packages RandomPkg, CoveragePkg,
located in the VHDL library (Library OS-VVM).

Random values of input signals op and
node are generated by variables RndOp, RndNode

such as RandomPType. The RandInt(min, max)
method returns random value (type integer) from
[min, max] range. In order to transform the values
of integer type into operation_type the following
expression is applied :

op <=
operation_type'val(integer(RndOp.R

andInt(0, 2)));
Testing program collects covering of states

of separate nodes 0 and 1 as well as cross states of
the two nodes. This is based on variables
CovStateNode0, CovStateNode1 and
CovStateAllNodes , respectively. The model
covering is preset by AddBins and AddCross
methods. Covering is collected by icover method.
In each simulation run using write function, the

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5820

input impacts (signals op, node) and FSM states
(signals state(0), state(1)) are stored in the text file
all_vectors.tst.

The text file all_vectors.tst for the initial
22 strokes has the following form:

e 1 i i
e 0 i i
r 0 s i
e 0 i i
e 1 i i
w 1 i m
e 0 i m
w 0 m i
e 1 m i
e 1 m i
w 0 m i
e 1 m i
w 0 m i
w 1 i m
r 1 i m
e 1 i i
w 1 i m
r 0 s s
e 0 i s
e 1 i i

Before termination of the testing program

the results of covering are printed into console by
WriteBin method, where all states of separate nodes
were covered several times (the values Count are
above zero). For cross covering of the two nodes
the states can be seen which have not been covered
(Count=0). These are the states 1-2 (<S, M>), 2-1
(<M, S>) and 2-2 (<M, M>), which are inaccessible
in this test.

Stage 3. Having completed the simulation
of the network of machines using the testing
program (Listing 2), one can verify that the VHDL
models of the component machines are written in
accordance with the requirements of the Questa
Sim simulation system, based on these graphs the
transition graphs are extracted, visualized to be
compared with the source graphs, which are the
design specifications for the VHDL code. The
results of verification of the node 0 and the node 1
in the Questa Sim simulation system are shown in
Fig. 3 and 4, respectively.

Fig. 3. The Result Of Arc Coverage In The Graph
0G

Of The Component Machine
0A (Node 0)

Fig. 4. The Result Of Arc Coverage In The Graph
1G

Of The Component Machine
1A (Node 1)

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5821

Stage 4. The results of the simulation on
the initial strokes are given in Table. 2, where the
input influences are given in the second column,
while the tuples of the states of component
machines are given in the third column. Most often
the network was in a state <M, I>. In the right part
of the Table. 2 the passable cycles on the subgraph

of the oriented graph
HG are shown. Let us

consider the runs 7 and 8 in Table 2: in the array
state <I, M> the input receives <W, 0>, then the
array transits to the state <M, I>. From the data of
two lines of respective test files obtained by
simulation the branch of the graph GH is "extracted"
originating from the vertex <I, M> and entering into
the vertex <M, I> .

The subgraph of the oriented graph
HG

obtained at the initial 22 strokes is shown in the

Fig. 5.
Table 2. Simulation Results Of FSM Array

Ru
n

Input
impact

s
(test))

The states
of the

componen
t

machines

Cycles in graph
HG

1 2 3 4 5 6

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

E 1
E 0
R 0
E 0
E 1
W 1
E 0
W 0
E 1
E 1
W 0
E 1
W 0
W 1
R 1
E 1
W 1
R 0
E 0
E 1
W 0

I I
I I
I I
S I
I I
I I
I M
I M
M I
M I
M I
M I
M I
M I
I M
I M
I I
I M
S S
I S
I I
M I

I

I
I

I

I

I
I

I

I

I
S

I
I

I

I

I
I

I

I

I
I

M
I

M
M

I
M

I
M

I
M

I
M

I
M

I

I
I

M
S

S
I

S
I

I
I

M
I

M
I

I

I

Fig. 5. The Subgraph Of The Graph

HG ,
Obtained Based On The Results Of The Simulation Of

The Machine Network At 21 Input Impact From Table 2

It is premature to draw conclusions about

the correctness or incorrectness of the VHDL-
description based on the results of simulation at two
dozen strokes, therefore the network simulation for
10 000 pseudorandom input impacts was
performed; Fig. 6 shows the graph obtained from
the results of this simulation.

Fig. 6.
HG Graph For The Two-Node
Network

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5822

Stage 5. The analysis of the
HG graph.

A list of completed transitions and the lists of
achievable and unattainable states can easily be

obtained from the graph HG . The list of
achievable network states: <I, I>, <S, I>, <I, M>,
<M, I>, <S, S>, <I, S> includes the non-isolated

vertices of
HG . The list of unattainable states of

the network: <M, S>, <S, M>, <M, M> includes the
tuples of states of component machines excluded
from the third column of the Table. 2. The basic
requirement for the states of the network of
machines is fulfilled – the network has never
entered the forbidden state <M, M> in this
simulation session.

The lines in bold in the Listing 3, in fact,
inform the designer of the vertices <M, S>, <S,

M>, <M, M> that do not fall into the graph HG .
Stage 6. Construction of the compact tests

for the verification of the network of machines. The
result of processing of the input impact files and the
corresponding tuples of states of the component
machines enables the construction of the graph

HG . To automate the construction of the graph
HG and to obtain a compact functional test that

provides the coverage of all the arcs of this graph,
the CoverGraph software was modified [12]. The
input test sets corresponding to the arcs included in
the graph coverage will form a test for the
functional verification of the network of machines.

In the example under consideration, the
CoverGraph software based on the simulation of
the network of machines constructs a compact test
of 50 input impacts to cover 28 arcs of the graph
shown in Fig. 6. Note that in this case we are
talking about coverage of six vertices of a given
graph (interconnected by the arcs). As a result of
the simulation, none of the three isolated vertices
<S, M>, <M, S>, <M, M> was obtained. This graph
(Figure 6) corresponds to the case
NUMBER_OF_NODES = 2 of the two-node
network of machines.

The results of experiments for the network
of machines with a larger number (3, 4) of
component machines are given in Table. 3. The
simulation of all networks was carried out for 10
000 or 100 000 pseudorandom input sets of the
form <op, j>.

Table 3 Construction Of Tests For A Parallel
Array Of Machines

T
he

 n
um

be
r

of
 p

 n

od
es

T
he

 n
um

be
r

of

ps
eu

do
ra

nd
om

 te
st

se

ts

Graph
HG

T
he

 n
um

be
r

of

co
m

pa
ct

 te
st

 s
et

s

T
he

 n
um

be
r

of
 v

er
ti

ce
s

T
he

 n
um

be
r

of
 a

rc
s

T
he

 n
um

be
r

of
 c

yc
le

s
fr

om

th
e

in
it

ia
l

ve
rt

ex

2 10 000 6 28 151 50
3 100 000 11 74 835 199
4 100 000 20 176 7913 550

The application of CoverGraph software
makes it possible to reduce significantly the
verification tests, for example, instead of the one
hundred thousand input sets for the case p = 3, 199
sets of the constructed compact test can be utilized.

Stage 7. In this example, the proposed
verification method for VHDL-descriptions of the
FSM network has revealed no errors, the correction
of the initial description is not required.

Other computational experiments were
carried out based on the examples of VHDL
descriptions of the FSM networks using
CoverGraph software. The experiments have
shown that in order to maximize the coverage of the

HG graph arcs, one should perform the simulation
on as many random input impacts as possible.

Having constructed the compact tests to
verify the transitions among the states, it is possible
to simulate the correspondence of the output signals
of the FSM network to the required values, and
thereby to perform another aspect of the functional
verification on the basis of modeling – not merely
the check of the required transitions but also the
required responds of the component machines.

The significant computational problem is
the construction of the compact tests, the finding of
which is associated with the circumvention of the
high-dimensioned oriented graphs.

5. CONCLUSION

Compliance with simple rules of

description of FSM makes it possible to perform
functional covering and visualization of transition
graphs of component FSM in Questa Sim.
Simulation can be applied for rapid verification of
FSM array, to reveal assumed prohibited and
inaccessible parallel states and non-covered
transitions between FSM array states. CoverGraph

software makes it possible to plot the graph
HG

and to determine compact functional tests for

passing all branches of the graph
HG . These tests

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5823

are directional and can be used for the functional
verification and testing of the entire projected
digital system, according to the methodology
presented in [11]. The proposed verification
procedure of VHDL descriptions of parallel array
of FSM can be easily generalized for the case of
interacting FSM, upon each simulation run it is
required to retain input impacts, states, and output
responses of both overall array and of component
FSM. Formal verification of VHDL descriptions of
FSM array and validation of project properties (for
instance, validation of statement that system is in
prohibited state) require for other simulation
systems, for instance, Questa PropCheck, making it
possible to perform formal verification of
properties of project written in VHDL.

ACKNOWLEDGMENTS

This work was supported by the Russian
Foundation for Basic Research, grants No. 16-58-
00191 Bel_а, No. 17-08-00402

REFERENCES

[1] Shalyto A.A. Paradigma avtomatnogo

programmirovaniya [Automata-based
programming paradigm]. Scientific and
technical bulletin of St. Petersburg state
university of IT, mechanics and optics. Issue
53. Automata-based programmingб 2008, pp.
137-144.

[2] Kuz`min E.V. and Sokolov V.A.
Modelirovanie, spetsifikatsiya i verifikatsiya
“avtomatnykh” programm [Simulation,
specification and verification of automata-
based programs]. Programmirovanie, 2008,
No. 1, pp. 38-60.

[3] Vel`der S. E., Lukin M. A., Shalyto A. A., and
Yaminov B. R. Verifikatsiya avtomatnykh
programm [Verification of automata-based
programs]. Nauka, St. Petersburg, 2011.

[4] Polyakov A. K. Yazyki VHDL i VERILOG v
proektirovanii tsifrovoi apparatury [The VHDL
and VERILOG languages in designing of
digital hardware]. SOLON-Press, Moscow,
2003.

[5] Khakhanov V.I., Khakhanova I.V., Litvinova
E.I., and Guz` O.A. Proektirovanie i
verifikatsiya tsifrovykh sistem na kristallakh
[Designing and verification of digital systems-
on-chip] . Verilog & SystemVerilog.
KhNURE, Kharkov, 2010.

[6] Spear C., Tumbush G. System Verilog for
Verification. A Guide to Learning the
Testbench Language Features, Springer, 2012.

[7] Ashenden P. J., Lewis J. VHDL-2008. Just the
New Stuff. – Burlington, MA, USA. Morgan
Kaufman Publishers, 2008. Solov`ev V. V.

[8] E. A. Suvorova and Yu. E. Sheinin.
Proektirovanie tsifrovykh sistem na VHDL
[Designing of digital systems using VHDL] -
BHV-Peterburg, St. Petersburg, 2003.

[9] Perel`roizen E.Z. Proektiruem na VHDL
[VHDL programming] – SOLON-Press,
Moscow, 2004

[10] Bibilo P.N. and Avdeev N.A. Modelirovanie i
verifikatsiya tsifrovykh sistem na yazyke
VHDL [Simulation and verification of digital
systems using VHDL]. LENAND, Moscow,
2017.

[11] Chen M., Qin K., Ku H.-M., Mishra P.
Validation at the system level. High-level
simulation and testing management. M.:
Tekhnosfera, 2014. 296 p.

[12] Bibilo P.N. and Romanov V.I. Postroenie
kompaktnykh testov dlya funktsional`noi
verifikatsii VHDL-opisanii konechnykh
avtomatov [Development of compact tests for
functional verification of VHDL descriptions
of final state machines]. Upravlyayushchie
sistemy i mashiny. – 2017, No. 1, pp. 35-45.

[13] Zakrevskii A.D., Pottosin Yu.V., and
Cheremisinova L.D. Logicheskie osnovy
proektirovaniya diskretnykh ustroistv [Logical
foundations of designing of discrete hardware].
Fizmatlit, Moscow, 2007.

[14] 14.Smolov S.A. Obzor metodov izvlecheniya
modeley iz HDL-opisaniy [Overview of
methods for extracting models from HDL-
descriptions] Trudy ISP RAN, 2015, Vol. 27,
No. 1. P. 97-123.

[15] 15.Lebedev M.S., Smolov S.A. Metod
generatsii funktsional'nykh testov dlya HDL-
opisaniy na osnove proverki HLDD-modeley
[Method for generating functional tests for
HDL-descriptions based on testing of HLDD
models] // Problemy razrabotki perspektivnykh
mikro- i nanoelektronnykh sistem: sb. trudov
pod obshch. red. akad. RAN A.L.
Stempkovskogo. – M.: IPPM RAN, 2016. Part
2. P. 24-31.

[16] 16.Karpov Yu.G. MODEL CHECKING.
Verifikatsiya parallel'nykh i raspredelennykh
programmnykh system [Verification of parallel
and distributed software systems] SPb.:
BKHV-Peterburg, 2010. - 560 p.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5824

[17] 17. Thimbleby H. The directed Chinese
Postman Problem / Software Practice and
Experience. 2003. V. 33 (11). P. 1081-1096.

[18] 18. Burdonov I.B., Kosachev A.S., Kulyamin
V.V. Neizbytochnyye algoritmy obkhoda
oriyentirovannykh grafov. Determinirovannyy
sluchay [Inexhaustible algorithms for
traversing oriented graphs. Deterministic
case]// Programmirovaniye. 2003. No. 5. P. 11-
30.

[19] 19. Kamkin A.S. Proetsirovanie sistem
perehodov: preodolenie kombinatornogo
vzryva pri verifikatsii parallel`nykh sistem
[Designing of transition systems: overcoming
of combinatorial explosion upon verification of
parallel arrays]. Programmirovanie. 2015, No.
6, pp. 53-71.

[20] 20. Sorin D.J., Hill M.D., Wood D.A. A Primer
on Memory Consistency and Cache Coherence.
Morgan and Claypool, 2011, pp. 195.

