
Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5765

SOURCE CODE ANALYSIS EXTRACTIVE APPROACH TO
GENERATE TEXTUAL SUMMARY

1KAREEM ABBAS DAWOOD, 2KHAIRONI YATIM SHARIF, 3KOH TIENG WEI
1,2,3Department of Software Engineering and Information System

Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia,

Selangor, Malaysia.
1Kareem.a.it@gmail.com, 2khaironi@upm.edu.my, 3twkoh@upm.edu.my

ABSTRACT

Nowadays, obtain program features becomes a hot issue in source code comprehension. A large amount of
efforts spent on source code understanding and comprehension to develop or maintain it. As a matter of
fact, developers need a solution to rapidly detect which program functional need to revise. Hence, many
studies in this field are concentrating on text mining techniques to take out the data by source code analysis
and generate a code summary. However, in this paper, we attempt to overcome this problem by propose a
new approach (Abstract Syntax Tree with predefined natural language text Template (AST-W-PDT)) to
generates human readable summaries for Java methods role. This paper describes how we developed a tool
that the java source code can be summarized from the methods role. In evaluating our approach, we found
that the automatically generated summary from a java class 1) is helpful to the developers in order to
understand the role of the methods and will be useful, and 2) the automatically generated summary is
precise.

 Keywords: Source Code Summarization, Program Comprehension, Source Code Maintenance, Abstract

Syntax Tree

1. INTRODUCTION

Software engineering can be defined as the process
of analyzing the software in order to improve the
efficiency. The outcome of the processing can be
providing explanation and recommendation for
improving certain system performance. To do so,
intensive overall analysis should be considered on
the important features of the source code. Thus,
developers spend a lot of time for reading and
exploring source code to understand it. However,
program comprehension studies show that the
developers would prefer to concentrate on specific
part of source code during maintenance of the
software, and try to keep away from comprehension
of whole system. Therefore, analyzing features
system provides worthy understanding of source
code which simplify the process of reuse and
modification that would be applied on certain code.

As a result the developers use skimming strategy on
source code, for example by reading only the
signatures or significant keywords in the methods in
order to save their time. Skimming strategy will
help programmers to grasp the source code, but the

cons are the knowledge obtained cannot simply
available to other developers. Reading a summary is
an alternative of skimming source code. Summary
including descriptive sentences that highlighting the
most important source code functionality [1]. Thus,
documentation is crucial for developers.

However, developers are lack of time to handle
documentation so becomes outdated over the time,
and it is expensive to produce and keep maintained.
Therefore, automated solutions are required [2].
One solution is to use textual descriptive source
code summary helps to grasp code semantics
accurately [3]. As a consequence, developers can
review software systems quickly and decide which
entities to analyze and modify. A few works already
proposed to generate code summaries by adapting
text summarization techniques [2]. Recent research
has been done towards automatic textual descriptive
source code summary [4][5][6][7].
 In specific, research by Sridhara (2010) that
employ natural language summary of Java methods
[6], then summaries can be aggregated to generate
documentation of the code. Although these
techniques are already enough to provide good

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5766

summaries by finding suitable keywords (lexical
information), they my present some limitation
related to support method role. This role is not

considered by adapting existing textual source code
summarization technique. In fact

 these techniques focus mainly on lexical dimension
(e.g., Latent Semantic Indexing [8], term frequency
inverse document frequency(tf-idf) model , Vector
Space Mode [4], etc.) to detect relevant terms.

In this paper, we hypothesize that the current
summary generators tools would be effectiveness if
they considered and included the information from
methods that describe the methods role like
(method name, parameters, variables, invocations,
and what the method return). We define
“effectiveness” in term of developers that find the
generated summaries to be helpful to convey the
most important aspects of its intended functions.
Then, a new approach is proposed to automatically
generate descriptive summary that consider both
lexical and methods role information. This
approach works by collecting data from methods
and then using these data with predefined natural
language template to describe the role of methods.
ASTPrser is used to identify and extract the data
that we need to include it in source code
summaries. We thought the summary will be more
readable, understandable, and accurate.

To test our hypothesis, we conduct a case study
that aims at addressing mainly two research
questions: (i) RQ1: Does the automatically
generated summary from a java class helpful to the
novice developer to understand the role of each
method and will be useful?; (ii) RQ2: How well
does the automatically generated summary in terms
of preciseness, in having unnecessary information
and in types of missing information?. This case
study aims to compares source code summary that
produced by our tool with perspective of an
experienced programmers who is expected to
perform some specific maintenance tasks.

The remainder of the paper is organized as
follows. Section 2 describes the related works.
Section 3 presents the research methodology,
Section 4 presents the experimental procedure and
setup and Section 5 conclusion and future
work.

2. RELATED WORKS

Nowadays, researchers pay more attention in
terms of applying information retrieval approaches
for identifying feature location, and extracting
identifiers from the source code. For instance,
Marcus (2010) has proposed a Latent Semantic

Indexing (LSI) method for software engineering
applications. Such method aims to classify the
portions of the source code by identifying the
similarity among such portions. The authors have
linked the concepts with each other in a matrix of
similarity [14].

However, one of the challenging task that facing
the mapping the between query typed by the
developer and the relevant portion within the source
code is the multi-word identifiers. Obviously, many
identifiers are being declared with multiple words.
Since the programming languages hinder the
developer to separate the multi-word identifiers by
a blank space therefore, developers tend to use
multiple approaches for the separation whether
using punctuation, digit or using CamelCase.
Hence, there is a vital demand to accommodate a
separation process in order to divide the multi-
words identifiers into their original form. D. Lawrie
(2011) has addressed this problem by proposing an
approach for handling the process of dividing
multi-word identifiers automatically. They have
used regular expression approach in order to exploit
the CamelCase and special characters such as
‘underscore’ [36]. Regular expression aims to
examine the morphology of the word in terms of
specific condition such as containing special
characters or capitalization [12].

Recently, McBurney (2016) work on contextual
information to generate code summary by using the
algorithm of Page Rank to compute the call graph
of the program in addition with SWUM is used to
present novel approach that use java method to
generate the summary, this approach is differ from
the other by summarizing the context surrounding a
method rather than using details from the internals
of the method, then NLG system is used to create
text of natural language [7].

In the same scene, Y. Liu (2014) focus on the
linguistic information, latent semantic indexing
(LSI) and clustering to group the source code
artifacts with similar vocabulary is used to generate
the summary based on the analyze the composition
of each package in a program. Latent semantic
indexing is a standard technique in information
retrieval to index, retrieve and analyze the textual
information; the authors locate the linguistic topics
in a software document by applying LSI, then
clustering the source artifacts based on their
similarity. They use the identifier names and

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5767

comments to generate the term by document matrix
in LSI. The splitting identifier names techniques is
used to split the different identifier convention. The
authors generate the source code summary at a
package level by helping of using Minipar and a
natural language parser [11].

While Chitti babu K (2016) proposed novel
Entity based source code summarization technique
(EBSCS) which is based on classes, methods, and
comments entities in the target code, the generated
description of entities and comment lines are used
to generate summary for the target code. The
proposed technique consist two phases, the first one
is the Extraction Phase which is all entities
including comment lines are extracted from the
target code, while Summary Generation phase is
the other one, which is rely on the semantic content
extracted from previous phase to create a text
document[13].

 P. Rodeghero (2015) mentioned that selecting a
subset of statements and keywords is the current
technique that used to generate code
summarization; therefore they focus on improving
the process of those selections. The authors present
ten professional Java programmers eye-tracking
study, in which those professional programmers
wrote English summaries based on reading Java
methods. The findings are applied to build a novel
summarization tool. To identify the keywords and
statements that the programmers focus on P.
Rodeghero et al. analyzed the programmers’ eye
movements and looks fixations [3].

Haiduc (2010) has presented a leading work for
source code summarization; they proposed an
automatic generation approach based on the
extractive summaries of the source code, they
obtain the extractive summary by selecting the most
important information from the contents of
document. The lexical and structural information
from the source code are the base of their approach
[5].

In the same sense Haiduc (2010) has been
combine several text summarization techniques,
based on text retrieval (e.g., LSI, Vector Space
Model, etc.), to generate source code summaries by
finding the suitable relevant terms. The authors
mentioned that a combination of automated text
summarization techniques is more reliable for
source code and helps in better program
comprehension. They focused on investigating the
suitability of several summarization techniques,
mostly based on text retrieval methods, to capture

source code semantics in a way similar to how
developers understand it [16].

Another similar work was proposed by Moreno
(2013) they proposed a technique to automatically
generate natural language descriptions for java
classes, presuming no documentation of the code
exists. The tool determines the class and method
stereotype and uses them in conjunction with
heuristics to select which information to be
included in the summary. The tool takes a Java
project as input, and for each class, it outputs a
natural-language summary. The authors considered
that summary is based on the stereotype of the
class; they proposed J Summarizer, which is an
Eclipse plug-in that automatically generates natural
language descriptions of Java classes [8]

Hill (2009) presented a novel approach that
automatically extracts natural language phrases
from source code identifiers and organizes them in
a hierarchy. They proposed an algorithm to
automatically extract and generate noun, verb, and
prepositional phrases from method and field
signatures, capturing word context of natural
language queries. These phrases naturally form a
hierarchy that allows the developer to quickly
identify relevant program elements by reducing the
number of relevance judgments, while the phrases
help the developer to formulate effective queries
[15].

Sridhara (2010) has been presented an automatic
technique for identifying code fragment that
implement high level abstraction of actions and
expressing them as natural language description,
their approach was the first for identifying code
fragments of statement sequences, conditionals and
loops that can be abstracted as a high level
action[9].

3. RESEARCH METHODOLOGY

This section provides the illustration of the
research methodology that has been used in this
study in order to accomplish the objectives. As
shown in Figure 1, the research methodology is
composed of four main phases. These phases will
be tackled one by one. Section 3.1 discusses the
first phase of the research methodology which is
‘Problem identification’; Whereas, Section 3.2
illustrates the second phase which is ‘Design’.
Section 3.3 concentrates on the third phase which is
‘Implementation’. Finally, Section 3.5 focuses on
the fourth phase which is ‘Evaluation’.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5768

Figure 1: Research methodology phases

3.1 Phase 1: Problem Identification

This phase is associated with identifying the
problem statement of the research in which the
literature review will be investigated in order to
identify gaps and ongoing challenging issues.
Basically, an extensive literature review has been
performed where the Feature Location task and
analyzing the functions in order to provide
summary for the source code has been illustrated in
detail. Consequentially, splitting the identifiers
which is a sub-task of a feature location has been
illustrated in detail as a task where it requires
recognizing the identifiers and then splitting such
identifiers. A review for the existing approaches
and techniques have been conducted which leads
this study to figure out that there is still room for
improvement in terms of the accuracy of source
code summary. Hence, the problem has been
formulated.

3.2 Phase 2: Design

This phase aims to identify a solution for the
problem formulated in the previous phase in order
to set it as the research objective. This can be
performed by examining the existing approaches
for code summarization in terms of the techniques
that could be used for such task. In this vein, the
techniques that have been used for summarizing
code are being reviewed in terms of accuracy,
readability, and understandability of summery that
provide. This is to facilitate selecting an appropriate
technique as an objective of this study. The reviews
of these techniques have been conducted in Chapter
II, and a conclusion has been attained. Such
conclusion implied that the Java language parser for
creating abstract syntax trees (ASTParser)
technique tend to be the most appropriate technique
for a detailed tree representation of the Java source
code in order to generate the source code summary.
However, Eclipse’s Java Development Tools (JDT)
is a powerful set of libraries. Of particular interest
is the Abstract Syntax Tree (AST) API that it has
which is extremely robust and full-featured. We can
generate an AST representation of existing code
(for modification or analysis) [17].

3.3 Phase 3: Implementation

This phase aims to carry out the research
objectives produced from the previous phase. In
order to do so, multiple sub-phases should be
applied to accomplish the objective. As shown in
Figure 2, there are three main phases: java source
code, preprocessing, and summary generator, and
those phases broken out to five sub-phases
consisting of Source code under java source code
phase, Transformation (AST maps java source code
to tree form), Obtaining Information from an AST
Node by ASTVisitor, Splitting Identifier under
preprocessing phase, and Summary generator under
summary generator phase. Source code phase
discusses the source code that used in the
experiment. Whereas, Transformation (AST maps
java source code to tree form) sub-phase discusses
the preparation tasks that have been conducted in
order to turn the source code into an appropriate
form for representation. Obtaining Information
from an AST Node by ASTVisitor sub-phase
discusses the obtaining information task is that have
been conducted in order to extract the names of
class, method , variables, method invocation, and
return value by method to enhance the process of
generating summary. While splitting identifier sub-
phase has been use CamelCase mechanism to
separate the multi-word identifiers. Finally,
Summary generator phase is associated with the
predefined natural language templet to generate
accurate summary.

Figure 2: Implementation phases for AST-W-PDT
Approach

3.3.1 Java source code

Java projects consist of a set of packages. Each
package mainly contains a set of classes. In
software design, each package is considered as a

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5769

subsystem that has related set of classes that consist
to set of methods to provide a certain functions. In a
general view, the proposed approach automatically
extracts a textual summary for the methods
provided by a java class. So, the source code of
each method is analyzed to extract a textual
summary about its role. The summary of a method
will generate from its contents. The contents
include method name, method parameters, local
variables, class variables (data field), methods’
invocations, and return value types.

This section aims to determine the steps of
acquiring the data (java source code). The java
source code file (.java file) has been selected from
the location that is saved in pc.

3.3.2 Preprocessing

This sub-phase include the following:

3.3.2.1 Transformation (AST maps java source
code to tree form)

As mentioned earlier, the source code should be
transformed into an internal and appropriate
representation in order to facilitate the feature
extraction. This can be represented by Abstract
Syntax Tree (AST) technique that is used to map a
tree model that entirely represents the source code
provided as a tree of AST nodes. This tree is more
convenient and reliable to analyses and modify
programmatically than text-based source. Each Java
source element is represented as a subclass of the
ASTNode class. Every subclass of ASTNode
contains specific information for the Java element it
represents. E.g. a Method Declaration will contain
information about the name, return type,
parameters, etc. The information of a node is
referred as structural properties. The example and
Figure 3 below shows a closer look at the
characteristics of the structural properties and the
properties of the method declaration [17].

public void start(BundleContext context) throws
Exception {

 super.start(context);}

Figure 3 Structural properties of a method declaration

As shown in Figure 3.3 the structural properties
are grouped into three different kinds: (i)
properties that hold simple values, (ii) properties
which contain a single child AST node and (iii)
properties which contain a list of child AST nodes.
Figure 4 show the Structural Property Descriptor
and subclasses[17].

Figure 4: Structural Property Descriptor and
subclasses

- Simple Property Descriptor: The value
will be a String, a primitive value wrapper for
either Integer or Boolean or a basic AST constant.

- Child Property Descriptor: The value will
be a node, an instance of an ASTNode subclass.

- Child List Property Descriptor: The value
will be List of AST nodes.

3.3.2.2 Obtaining information from an AST
node by ASTVisitor

Basically, features can be defined as the
characteristics and properties of each instance
where specific description of the instance can be

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5770

depicted [18]. Features play an essential role in
terms of the summarization where the significant
feature that has the ability to accurately describe the
instance would definitely improve the accuracy of
the summarization. For this purpose, every
ASTNode allows querying for a child node by
using a visitor(ASTVisitor). There will find for
every subclass of ASTNode two methods, one
called visit(), the other called endVisit(). Further,
the ASTVisitor declares these two methods:
preVisit(ASTNode node) and postVisit (ASTNode
node). The subclass of ASTVisitor is passed to any
node of the AST. The AST will recursively step
through the tree to provide the information that
extracted from the methods to describe the role of
each method. The information that provided by
ASTVisitor are:

- Class name.

- Method name and parameters (method
signature based).

- Method local variables.

- Class variables (data field) that used by the
method

- Invoked methods.

- Method returns type.

3.3.3 Splitting identifier

Since all the programming languages do not
allow the developer to declare an identifier with
blank space such as “Compute Area", the developer
tend to use multiple mechanisms to avoid such
limitation. Sometimes, developers use special
characters such as underscore in order to separate
multi-word identifiers for instance, turning
‘Compute Area’ into ‘Compute_Area’.
Furthermore, the developers may use CamelCase
mechanism to separate the multi-word identifiers.
This mechanism aims to capitalize the first letter of
the first word, as well as, capitalize the first letter in
the second word, and leaving the rest letters in a
lower-case for instance, turning ‘Compute Area’
into ‘ComputeArea’ [10]

3.3.4 Summary generator

In this phase, the predefined natural language
templet is used with ASTParser technique to
generate the summarization of the source code. The
process starts by reading the java source code, in
the second step, the source code will transformed to

a tree model that entirely represents the source code
provided. The result will parsed to extract names of
class, methods, data fields, local variables, and
invoked method in addition to what the method
return. Then, all identifier will be splitted. Finally a
summary will be generate for each method by
filling the predefine natural language template [9].
Finally, all methods summaries will refined and
integrated as one. The following subsections detail
the proposed approach and illustrate the idea with
examples.

As shown in the code below, the class contains
two methods. This means that it provides two
different roles. The first method named getArea is
split into “get Area” and the second method named
getperimeter is split into “get perimeter”. Both
methods, in the code, use data fields from the class
one with local variable and the other is not. The two
methods also do not invoke any other methods.

public class Circle {
 double radius = 1;
 double getArea() {
 double area=radius * radius * Math.PI;
 return area;
 }
 double getPerimeter() {
 double Perimeter= 2 * radius * Math.PI;
 return Perimeter;
 }
}

For each method, its local variables and method

invocations will included in the generated text. The
generated summaries for the two methods in code
above are:

• The role of the method is: get area for
Circle. The method uses local data: area the method
uses the attribute of Circle: radius. The method
returns area.

• The role of the method is: get perimeter
for circle. The method uses the attributes of circle:
radius. The method returns perimeter.

The bold texts are templates that included in all
generated summaries. The name of the method is
followed by the words of the class. The names of
used data fields and local variables are also
included in the summary. The data fields used in
the method are preceded with "the attributes of" in
the summary followed by the class name. The class
name is also split into words based on camel case
naming convention. On the other hand, local
variables are preceded with “local data” in the

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5771

summary and method return type types are
preceded with the word "types".

public class LeftArrowIcon implements Icon {
 public void paintIcon(Component c, Graphics g,
int x, int y){

int w=getIconWidth(),h=getIconHeight();
 g.setColor(Color.black);
 Polygon p = new Polygon();
 p.addPoint(x + 1,y + h/2+1);
 p.addPoint(x + w, y);
 p.addPoint(x + w, y + h);
 g.fillPolygon(p); } }
The above code shows another example for

method paintIcon that is defined in class
LeftArrowIconin.

The method uses local variables, returns type
and invokes some other methods. The generated
summary for the method, based on the proposed
approach, will be as follows:

•The method role is: paint Icon for Left Arrow
Icon. The method uses local data: w, h, x, y. The
method uses types: Icon, Component, Graphics,
Color, Polygon. The method get Icon Width, get
Icon Height, set Color, add Point, fill Polygon.

The summary includes the name of the method
at the beginning. It also lists both local variables
(w, h, and y) and used return types (Icon,
Component, Graphics, and Polygon). Local
variables are distinguished by the words “local
variable". Finally, the names of invoked methods
are included after the words "The method".
Including invoked methods enhance the generated
summary and make it more meaningful. Actually,
invoked methods participate in shaping the
behavior of the method.

3.4 Phase 4: Evaluation

This phase aims to evaluate the proposed
approach in which the results obtained from the
code summarization process will be assessed. To
measure the quality of the automatic summaries, we
performed an intrinsic evaluation, which is one of
the standard evaluation approaches used in the field
of text summarization[19]. This evaluation involves
the active participation of human judges, who rate
each of the automatic summaries based on their
own perception of its internal quality.

4. EXPERIMENTAL PROCEDURE AND
SETUP

In this section, we perform the evaluation of the
code summary which is generated by tool which is
implemented as described in Chapter 3, evaluation
has been highly important because it allows
researchers to assess the results of a summarization
approach, identify and understand the drawbacks
of a particular summarization process. This chapter
reports on a preliminary case study that was our
first step towards the utilization of text
summarization tool for generating summaries of
source code. We designed an experiment where we
investigated for the first time the use of a tool for
generating extractive summaries.

4.1 Study Design

The main goal of this study is to investigate to
what extent the generated code summaries meet the
perspective of a novice developer who is expected
to perform some specific maintenance tasks, and
how impactful will these summaries in real
situations. The quality focus is about the
readability, understandability, and accuracy of the
summaries that generated by code summary tool.
The effectiveness of the summary for a java class is
evaluated when it is useful to explain the class
methods role to a novice developer who is expected
to perform some specific maintenance tasks
practically.

We perform the study with a questionnaire,
where a Likert scale is used to determine the
answers. We used the Likert scale with 5 scale
rating: Strongly agree, Agree, Neither agree nor
disagree, Disagree and Strongly disagree. This
study is conducted in the form of an interview. We
designed research questions that are answered
during the empirical study.

4.2 Research Questions

This study aims at addressing mainly two
research questions: (i) RQ1: Does the automatically
generated summary from a java class helpful to the
novice developer to understand the role of each
method and will be useful? We want to assess to
what level the novice developer can understand a
part of system role from these automatically
generated summaries, it meant the usefulness of the
summary to novice developer ; (ii) RQ2: How well
does the automatically generated summary in terms
of preciseness, in having unnecessary information
and in types of missing information? We want to

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5772

assess if the automatically generated summary
contains unnecessary information, and if it is
missing any type of information when compared to
source code, which will help in improving the
understandability of the summary, it meant
closeness of the summary to the source code.

 As mentioned previously, the above questions
have a scale to measure opinion of the participants.
Since, we are interviewing the participants some
questions are open-ended, which does not have a
scale but the participants can answer the question
openly. Therefore, we prepared the below questions
to know more about the automatically generated
summary:

• Q1: What improvements can be made on these
summaries to attain better understandability about
the method role? We want to know if there is any
possibility to increase the understandability about
the role of method by adding extra information.

• Q2: Will you use this tool to automatically
generate summaries in the future and why? We
want to know if the generated summary tool is
useful for the developers.

4.3 Study Context

The context of this study contains of (i) object
i.e., a Java test class extracted from Java open-
source project and (ii) participants who will test the
specified object. The participants recruited for this
study are the postgraduate students from the
Faculty of Computer Science and Information
Technology at University Putra Malaysia (UPM)
are consulted to know their interest to participate in
the study. We request 15 participants asking their
interest to participate in our survey. The
information about their work or education was
collected during the interview. Of them, 3 were
developers from industry experience and 12 were
having different experience as developers. Out of
15 employees, 3 participants have 6 to 10 years’
experience, 3 participants have 3 to 5 years’
experience, 6 participants has less than two years of
experience, and 3 participants has less than 1 year
experience . Table 1 shows the participants with
their work experience.

Table 1: Participant Working Experience
Working Experience Number of participants

0 3

1-2 6

3-5 3

6-10 3

4.4 Experimental Procedure

The experiment was organized by conducting a
face-to-face interview with the questionnaire. An
example of the survey can be found in the
appendix. The actual survey document each
participant received has three parts: (i) introduction
about survey and instructions to perform, (ii)
questionnaire about participants work or education
and (iii) questionnaire. Before the survey, we
explained to participants what we expected them to
do during the survey: they were asked to read and
understand the code that we are going to
automatically generated summary, then read and
understand automatically generated summary to
answer the questionnaire then answer the questions
which followed it. The survey had 6 questions
about the automatically generated summary, are
described in table 2 the question 1 belong to RQ1,
questions 2 to 4 belong to RQ2 and remaining are
open-ended questions.

 Each participant was asked a pre-study
questionnaire about their work experience,
designation and programming experience. The total
duration of the interview was between 15-20
minutes on average. So the total time duration of
the entire survey depends on the participant.

Table 2: Survey Questions
Question
number

Survey Question

Q1 Does the automatically generated
summary of a single test class help
the novice developer to understand
the role of each method?

Q2 Is any kind of information missing
in the automatically generated
summary when compared to a test
class?

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5773

Q3 Is this automatically generated
summary precise when compared
to the test class?

Q4 Is this automatically generated
summary containing unnecessary
information when compared to the
test class?

Q5 What improvements can be made
on the automatically generated
summary to attain better
understandability about the method
role?

Q6 Will you use this tool to
automatically generate summaries
in the future and why?

4.5 Results And Discussions

In this section, we report the results of our
survey, and answer the research questions
formulated in section 4.2.

4.5.1 Results

RQ1: Usefulness of the summary to novice
developer

This research question is answered using sub
question Q1 described in table 2. Figure 5 depicts
the bar graph with the number of opinion counts
given by the participants. The first impression we
get when we look at the results is that the number
of participants agreeing that the summary is
explaining the role of the method, is high. There are
few participants who do not completely agree, and
no participants who disagree or strongly disagree
with the given statement. Figure 6 depicts the pie
graph with the number of opinion counts given by
the participants for RQ1, there are 6 participants
who completely agree that given summary provides
role of the method while 8 accept the statement.
Remaining 1 have a neutral opinion about the
statement. If we calculate the mean value of
participants who agree for the statement, it is 0.933
i.e., 93.3% in total, while the value for
disagreement is 0.0 i.e., 0% in total, value of
neutral opinion is 0.067 i.e., 6.7 %. We then
compared the working experience of the participant
and the choice they made. The mean value of the
participants working and agreed for Q1 is 0.80. The
mean of the participants not working and agreed for
Q1 is 0.20. This means that participants irrespective
of their work experience agree that the summary
will be useful. Therefore, we conclude that the
automatically generated summary from a test class

is helpful to the novice developer in order to
understand the role of the methods and will be
useful.

Figure 5: participants answer for Q1

Figure 6: RQ1 usefulness of the summary based on Q1

RQ2: Closeness of the summary to the source

code

To answer the question RQ2, we need the
results of Q2, Q3, and Q4 from table 2. The results
for those questions are depicted in the Figure 7
with a bar graph with the number of opinion counts
given by the participants, determined from (i)
missing information, (ii) preciseness and (iii)
unnecessary information present in the
automatically generated summary. A positive
response for question Q3 and a negative response
for questions Q2, Q4 describes that our generated
summary is closer to source code and methods role.

For question Q2, from the Figure 8, the number
of participants who agree and neither agree nor
disagree are same with 1 each, and remaining 13
disagreed. This says that, 6.7% believe that there is
some information missing from the automatically
generated summary, and 6.7% has neutral opinion,
while 86.6% believe that there is no information
missing from the automatically generated summary.

For Q3, by looking at the graph in figure 7, we
can say that more participant agree with the

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5774

statement. 8 participants agree and 6 participants
are completely agreed while rest has neutral
opinion. This means, 93.3% of the participants
accept that our automatically generated summary is
detailed, and 6.7% has neutral opinion as shown in
figure 9.

For Q4, we can find that 7 participants disagree,
6 participants completely disagree and remaining
had neutral opinion. These shows, 86.7% of the
participants say that our automatically generated
summary does not contain any unnecessary
information, and 13.3% has neutral opinion. The
mean value to agree that RQ2 is 0.867, for disagree
is 0.0 and for neutral opinion is 0.133 as shown in
figure 10. Therefore, we conclude that the
automatically generated summary is precise.

 Figure 7: participants answer for Q2, Q3, and Q4

 Figure 8: Q2: Is any kind of information missing in the
automatically generated summary when compared to a

test class?

Figure 9: Q3- Is this automatically generated summary

precise when compared to the test class?

Figure 10: Q4- Is this automatically generated summary
containing unnecessary information when compared to

the test class?

4.5.2 Discussion

In the following, we provide qualitative results

reported in Section 4.5.1. At the end of each
question in the survey, all the 15 participants were
asked the reason for the given Likert scale opinion.
The reason for each participant’s opinion is
discussed here.

4.5.2.1 Usefulness of the summary: The
participants who agree (93.3%) that the summary
provides description about the methods role can be
formulated as "the summary gives the sense of
methods role". While the response of the
participants who had a neutral opinion (6.7%) can
be said as "the summary should more elaborated ".
Hence, we can say that the summary will be useful
for novice developer in understanding the system
behaviour.

4.5.2.2 Closeness of the summary: The total
percentage of participant who agrees that the
summary was missing some information is 6.7%,
and the total percentage of participant who has
neutral opinion is 6.7%. While the 86.6% who say
that summary is not missing important information
were all outcomes are present where necessary; and
explanation is well enough for developers. The
participants who agree (93.3%) that the summary is
precise as the summary has: "brief overview of
what is happening in a system is present in an
understandable way; and presented in a simple and
compact way with necessary information". There
were 86.7% of the participants who agree that the
summary does not contain unnecessary information
as the summary is containing useful information to
understand the system. Remaining 13.3% had
neutral opinion.

From above discussed points, we can say that
most of the participants feel that summary is more
favourable in terms of accuracy and information

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5775

present in it for the novice developer. Hence we
conclude that our automatically generated summary
is closer to a source code.

4.6 OPEN QUESTIONS

As mentioned in the section 4.2, we have
prepared two open-ended questions which are
answered after the research questions.

Question Q1 from Section 4.2 is questioned as
Q5 in the survey and was about improvements that
can be done to the summary. Very few participants
were answered this question, and they suggested
the following:

- Few participants were concerned expected
more elaborate explanation for each line in the
source code.

- Participants with work experience
recommended producing summary for different
programming language rather than java
programming language only.

- Few participants recommended
considering package base as input, rather than class
base.

Question Q2 from Section 4.2 is questioned as
Q6 in the survey and was about if the participants
are willing to use our tool to generating summaries
in the future. All participants said that they will use
it in future, and it will be more useful if the
suggested improvements are added to it.

4.7 THREATS TO VALIDITY

This section describes the possible threats to
validity of our study and how we solved them.

4.7.1 Construct Validity

 Threats to construct validity mainly concern on
how we set up the study. Due to the fact that all the
participants involved in our study need to have a
prior knowledge about the code summarization.
Lack of knowledge about code summarization will
produce incorrect results. To handle this, before
starting the survey we present a brief overview on
code summarization that would be sufficient to do
our survey. Then before starting the survey, we ask
the participant if they understand the concept of
code summarization to continue the survey.

4.7.2 External Validity

Threats to external validity concern the
generalization of our results. It is important to point
that the object i.e., test class which is summarized
could influence the results of our survey. The
evaluation here is limited to the summary of a
single class only. Another threat is the size of the
participants used for this study, as larger set of
participants would increase the confidence about
the survey results. Therefore, the results should be
taken only as guides for further user studies.

5. CONCLUSION AND FUTURE WORK

This section provides the conclusion of the
study in which Section 5.1 shows the final
conclusion of the research, Section 5.2 shows the
research contribution and Section 5.3 discusses the
future work that could be proposed.

5.1 Conclusions

Current software systems must be continually
changed to meet new requirements and adapt them
to changing conditions in their operating
environment. Additionally, it is widely accepted
that effort and time spent understanding parts of a
software system are a significant proportion of the
resources needed to maintain and evolve existing
code. Developers responsible for maintenance tasks
are faced every day with software systems with
thousands lines of code. This situation is
particularly problematic when developers have to
deal with large systems developed by others and the
code is the only source of information that is
available and up to date.

Different maintenance tasks require different
levels of code comprehension. Most developers
strive to understand as much as it is needed to
perform a given task – no more and no less. The
amount of code understood at one time is often
limited by the ability to memorize, recognize, and
recall textual tokens from the source code and their
semantics, which makes tool support essential for
most software comprehension tasks. Modern IDEs,
together with searching and navigation tools,
recommendation systems and data mining tools, all
help developers minimize their effort in identifying
parts of code relevant to their task. A common
feature of these tools is that they provide a list of
source code elements (such as methods) to the user,
which he still has to read and understand in order to
make final decision on their relevancy to the task at
hand. When the code is well documented internally

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5776

(for example, a method has good leading
comments, meaningful name and parameters), it is
frequently sufficient to see such comments and the
method header to determine if it is relevant or not.
However, more often than not, comments are
missing, or out of date, and method headers contain
words that the developer is not familiar with. In
such cases, developers have little choice but to read
the implementation and sometimes more than that.

We propose to provide help to developers in
such situations. The goal is to supply them with a
description of the code (such as the abstract of an
article), which is more informative than the header
and the leading comments, yet much shorter than
the implementation, while capturing the essential
information from it. Such descriptions will not
replace reading the code when it needs to be
understood, but they can save unnecessary effort
spent reading irrelevant parts of it.

This paper explored the use of text
summarization technology for automatically
generating such descriptions of source code.
Specifically, we studied how people describe code
artifacts using term-based and sentence-based
approaches, we adapted extractive technique for
automatic code summarization, and also, we used
evaluation to assess the usefulness of automatic
summaries.

With regard to automatic generation of
summaries, the paper describes new approach for
creating short and accurate textual descriptions for
the method role. We proposed, present, and
validated an approach for summarizing methods
that uses a combination between abstract syntax
tree parser (ASTParser) and predefined natural
language text template.

We conducted the survey by interviewing the
participants and using a Likert scale to answer the
survey questions. The survey was conducted to
assess to what level the novice developer can
understand a part of system role from these
automatically generated summaries, and assess if
the automatically generated summary contains
unnecessary information, and if it is missing any
type of information when compared to source code,
which will help in improving the understandability
of the summary.

 The results of the evaluation this approach
indicate that the automatically generated summary
from a java class is helpful and precise to the
novice developer in order to understand the role of

the methods, it achieving 93.3% of participant
agreement. Thus, these summaries can be useful for
improving software comprehension processes,
which usually occur during software maintenance
tasks. In conclusion, it can be said that the
automatically generated summary is precise without
unnecessary information and is helpful to the
developers in order to understand the role of each
java method.

5.2 Future Work

This section discusses the possible works that
would be inspired for future trends. Such discussion
will be conducted by providing suggestions and
recommendations in terms of enhancing the source
code summary. Such suggestions can be described
as follows:

- Enhance the automatically generate source
code summary approach to produce summary for
different programming language rather than java
programming language only.

- Enhance the automatically generate source
code summary approach to considering a package
base input.

- Develop benchmark for evaluation is
crucial.

In the long term, we expect that the use of
source code summaries will reduce the developers’
cognitive effort during comprehension activities.
This should positively impact the time of
development, as well as the quality of the software
produced. More than that, the summaries could be
consumed not just by developers, but also by other
tools. For example, we envision using the source
code summaries to support tools for automatic
reverse engineering of legacy code, software
ontologies extraction, re-documentation, etc. We
expect the summaries to be used by existing
searching and navigation tools.

ACKNOWLEDGMENT

 This research work has been funded by the
Fundamental Research Grant Scheme (FRGS)
under the Malaysian Ministry of Education (MOE)
for the project no. 08-01-16- 1850FR (5524957).
Sincere gratitude extends to the lecturers, students
and other individuals who are either directly or
indirectly involved in this project.

Journal of Theoretical and Applied Information Technology
15th November 2017. Vol.95. No 21

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5777

REFERENCES

[1] B. Du Bois, “Towards an Ontology of
Factors Influencing Reverse Engineering,”
2005.

[2] S. W. Thomas, “Mining software
repositories using topic models,”
Proceedings of the 33rd International
Conference on Software Engineering. pp.
1138–1139, 2011.

[3] P. Rodeghero, C. Liu, P. W. McBurney,
and C. McMillan, “An Eye-Tracking Study
of Java Programmers and Application to
Source Code Summarization,” IEEE Trans.
Softw. Eng., vol. 41, no. 11, pp. 1038–1054,
2015.

[4] P. W. McBurney, “Automatic
Documentation Generation via Source
Code Summarization,” Proc. - Int. Conf.
Softw. Eng., vol. 2, pp. 903–906, 2015.

[5] S. Haiduc, J. Aponte, and A. Marcus,
“Supporting program comprehension with
source code summarization,” 2010
{ACM}/{IEEE} 32nd {International}
{Conference} {Software} {Engineering},
vol. 2, no. May 2016, pp. 223–226, 2010.

[6] C. Science and M. Studies, “J-
Summarizer,” vol. 7782, pp. 59–62, 2016.

[7] P. W. McBurney and C. McMillan,
“Automatic Source Code Summarization of
Context for Java Methods,” IEEE Trans.
Softw. Eng., vol. 42, no. 2, pp. 103–119,
2016.

[8] L. Moreno, J. Aponte, G. Sridhara, A.
Marcus, L. Pollock, and K. Vijay-Shanker,
“Automatic generation of natural language
summaries for Java classes,” IEEE Int.
Conf. Progr. Compr., pp. 23–32, 2013.

 [9] G. Sridhara, E. Hill, D. Muppaneni, L.
Pollock, and K. Vijay-Shanker, “Towards
automatically generating summary
comments for Java methods,” Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng. -
ASE ’10, p. 43, 2010.

[10] G. Sridhara, L. Pollock, and K. Vijay-
Shanker, “Generating parameter comments
and integrating with method summaries,”
IEEE Int. Conf. Progr. Compr., pp. 71–80,
2011.

[11] Y. Liu, X. Sun, X. Liu, and Y. Li,
“Supporting program comprehension with
program summarization,” 2014 IEEE/ACIS
13th Int. Conf. Comput. Inf. Sci. ICIS 2014
- Proc., pp. 363–368, 2014.

[12] E. Enslen, E. Hill, and L. Pollock, “Mining
Source Code to Automatically Split
Identifiers for Software Analysis ∗,” pp.
71–80, 2009.

 [13] Chitti babu K, Kavitha C., and SankarRam
N, “Entity based source code
summarization (EBSCS),” 2016 3rd Int.
Conf. Adv. Comput. Commun. Syst., pp. 1–
5, 2016.

 [14] A. Marcus, A. Sergeyev, V. Rajlich, and J.
I. Maletic, “An Information Retrieval
Approach to Concept Location in Source
Code,” Proc. 11th Work. Conf. Reverse
Eng. (WCRE ’04), pp. 214–223, 2004.

[15] E. Hill, L. Pollock, and K. Vijay-Shanker,
“Automatically capturing source code
context of NL-queries for software
maintenance and reuse,” Proc. - Int. Conf.
Softw. Eng., pp. 232–242, 2009.

 [16] S. Haiduc, J. Aponte, L. Moreno, and A.
Marcus, “On the use of automated text
summarization techniques for summarizing
source code,” Proc. - Work. Conf. Reverse
Eng. WCRE, pp. 35–44, 2010.

 [17] “Abstract Syntax Tree.” [Online].
Available:
http://www.eclipse.org/articles/Article-
JavaCodeManipulation_AST/. [Accessed:
09-Apr-2017].

[18] D. Freitag, “Machine Learning for
Information Extraction in Informal
Domains,” Mach. Learn., vol. 39, no. 2/3,
pp. 169–202, 2000.

[19] K. Spärck Jones, “Automatic summarising:
The state of the art,” Inf. Process. Manag.,
vol. 43, no. 6, pp. 1449–1481, 2007.

