
Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5587

A STUDY TO IMPROVE THE SOFTWARE ESTIMATION
USING DIFFERENTIAL EVOLUTION ALGORITHM WITH

ANALOGY

1 THAMARAI. I , 2DR. MURUGAVALLI. S
1 Research Scholar, Sathyabama University, Department of Computer Science, Chennai-119, India

2 Research Supervisor, Sathyabama University, Department of Computer Science Chennai-119, India

E-mail: 1 ilango.thamarai@gmail.com, 2murugavalli26@rediffmail.com

ABSTRACT

Software effort estimation is the process of calculating the effort required to develop a software product
based on the input parameters that are partial in nature. Estimation requires information about project
scope, resources available, process requirements and many other factors associated with a software product
development. Inaccurate estimation leads to financial loss and delay in the projects. Due to the intangible
nature of software, most of the software estimation process is not reliable. But there is a strong relationship
between effort estimation and success of project management activities. Hence the aim of the research is to
propose a new software estimation model that combines the Analogy concept with Differential Evolution
Algorithm that is more efficient than the existing methods. Several methods for software effort estimation
are discussed in this paper including the widely used and metrics used for evaluation. The use of
Differential Evolution in the estimation is dealt in detail. A new model for estimation using Differential
Evolution Algorithm called DEAPS is proposed and its advantages discussed. The proposed model is
checked with the popular data sets namely Desharnais datasets, Albrecht dataset and COCOMO dataset.
The results are compared with previous findings and the results clearly show that the proposed method is
better than the existing methods. The proposed Model can be used to minimize the errors in the software
estimation which is a crucial step in the software development process. Hence the financial loss and delay
in the completion of project may be avoided

Keywords: Software Effort Estimation Methods, Algorithmic and Non-Algorithmic Models, Evolutionary
Computational Methods, Differential Evolution Algorithm

1. INTRODUCTION

Software project planning is one of the most
important activities in a software development
process. It is a most important task but most
difficult and complicated step in the software
product development. Planning largely depends
on the effort estimation and this requires many
parameters such as size, number of persons,
schedule, etc. It is a difficult and complicated
task. Linda M. Laird (2006) enumerates the
reasons for the inaccurate effort estimation [1].
In [2], M. Jorgenson and D.I.K. Sjoberg (2001)
demonstrated how the software effort is affected
by the client’s expectations about cost. Ning Nan
and Donald E. Harter (2009) emphasize the role
of budget and schedule pressure [3]. In [4],
Magne Jorgenson and Stein Grimstad (2011)
made a detailed study on how irrelevant
information can affect the estimation of software.

According to their research, the field settings that
led to the irrelevant information have a very
small impact than the artificial settings for doing
experiments. Tim Menzies et al (2013) suggested
to create clusters and proved that the best are that
which are near the source data but not from the
same source as the test data [5]. The general
principles of software effort estimation were
explored by Ekrem Kocaguneli et al (2012) to
guide the design for estimation [6]. Many factors
are considered to estimate the software cost and
effort and the most important factors are size of
the project, number of persons and schedule.
Their research emphasizes that the estimation
can be improved by dynamic selection of nearest
neighbor with small variance.

Prediction of software effort is a very difficult
and complicated task. Software is intangible in
nature and hence the measurement of progress is

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5588

the software process is very difficult to access.
Also the requirements of software project change
continually which causes the change in
estimation. Inaccurate estimation of effort is the
main cause of software project failures. In [7],
Magne Jorgensen et al (2009) suggested that the
type of individual lesson learned processes may
have effect on the accuracy of estimates. In [8],
Magne Jorgenson and Martin Sheppard (2007)
present a systematic review of various journals
and concluded that the properties of dataset
impact the result when evaluating the estimation.
In [9], Karel Dejaegar et al (2012) present an
overview of the literature related to software
effort estimation. The paper gives detailed study
with different processing steps and addresses
many issues like quality of the data, missing
values etc. In [10], Tim Menzies et al (2013)
evaluated the lessons that are global to multiple
projects and local to particular projects in
software effort estimation. Nicolos Mittas and
Lefteris Angelis (2012) proposed a statistical
framework based on multiple comparison
algorithms to rank several cost estimation
models [11]. In [12], Mark Harman and Afshin
Mansouri (2010) proposed the application of
search based optimization methods for the
software effort estimation. The advantages of
using search based optimization are listed as
robustness, scalability and powerfulness. In [13],
Ekrem kocaguneli et al (2013) proposed a tool
called QUICK TOOL that reduces the
complexity in data interpretation. The tool is
suitable for small data sets.

To improve the uncertainties in cost
assessments, Magne Jorgensen (2005) provided
evidence based guidelines in [14]. Some of the
important guidelines include not to rely solely on
unaided, intuition based uncertainty assessment
process but to apply structured and explicit
judgment based process. Thus it can be seen that
many aspects has to be considered for Software
Effort Estimation Models. Accurate effort
estimation is critical for both developers and
customers and is crucial for the success of the
project. The effort estimation methods available
so far have both merits and demerits. There is a
strong relationship between effort estimation and
the project management activities which affect
the success of a software project. Hence
developing an efficient software effort estimation
model is an urgent problem and of great practical
importance. The weaknesses in the existing
effort estimation methods have provided the

motivation to develop a new software estimation
model that combines the Analogy concept with
Differential Evolution Algorithm that is more
efficient than the existing methods

The aim of this paper is to give a detailed
description about various software effort
estimation methods and to emphasize the use of
the Evolutionary Computation Algorithms for
software estimation. It proposes a model called
DEAPS that combines the concept of Analogy
with Differential Evolution Algorithm. The paper
is organized as follows: Section 2 consists of
brief discussion on Materials and Methods on
software estimation methods. In Section 3, we
give the results and Section 4 discuss about the
results of the model. Section 5 is the conclusion
and recommendation for future work.

2. SOFTWARE ESTIMATION METHODS

Many traditional methods are used for
Software Estimation ranging from Expert
Judgment method, Function Point method,
COCOMO, SLIM Model, Case Based Reasoning
Model to the recent methods that uses Neural
Networks, Fuzzy Logic, Genetic Algorithm,
Genetic Programming, Particle Swarm
Optimization etc. The Software Effort
Estimation models are primarily divided into
four main divisions. The foremost is the Expert
Judgment Method, where the effort is estimated
by experts in the field. Algorithmic models are
mainly based on the mathematical formulas.
Some of the Algorithmic Models are FP
(Function Point), COCOMO (Constructive Cost
Model) and SLIM (Software Life cycle
Management model). These models depends on
various parameters like LOC (Lines of code),
Complexity, Number of Interfaces etc.

 The limitation of Algorithmic models led to
the Non-algorithmic models. Case Based
Reasoning (CBR) is a popular Non-algorithmic
method. Analogy is a CBR method. Also with
the advent of soft computing techniques, new
methodology of evolutionary computation came
into existence. In this, many Machine Learning
methods are used including GA, GP and DE.
These methods are discussed in the following
sections. The research work by Mudasir
Manzoor et al (2015) evaluates the performance
of Re-UCP model and compares the results with
the UCP and e-UCP method of software effort
estimation [15]. The accuracy of results were
validated by using MRE (Magnitude of Relative

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5589

Error), MMRE (Mean Magnitude Relative
Error), MdMRE (Median of Magnitude Relative
Error) tools to check the error rate and
PRED(10%) and PRED(20%) to find out the
accuracy of Re-UCP software effort estimation
method. The observations made from the results
are based on the comparison of Re-UCP, e-UCP
and UCP models of software effort estimation.
The deviation percentage calculated using Re-
UCP justifies the improved performance of Re-
UCP method of software effort estimation in
comparison with UCP and e-UCP methods of
software effort estimation.

Subimtsha and Kowski Rajan (2014) used
different types of techniques including
techniques such as Multilayered Perceptron
Network, Radial Basis Function Neural
Network, Support Vector Machines and Particle
Swarm Optimization [16]. A simple technique
like regression is found to be well suited for
software effort estimation which is particularly
interesting. The research by Surfyan Basri et al
(2015) introduces a new change in the effort
estimation approach that is able to use different
estimation techniques for different states of
software artifacts [17]. The outcome of this
research is an effort estimation approach for
software development phase using the extended
version of the static and dynamic analysis
techniques. All the approaches have their own
merits and demerits. It should be noted that there
is not a single method which can be said to be
best for all situations.

 Tuan Khanh Lee Do et al (2010) have
proposed an approach to filter noise in the
historical projects to increase the accuracy of
Analogy based Estimation [18]. Noise refers to
the data corruptions that cause a negative impact
on the performance of an estimation model.
Desharnais dataset, Maxwell dataset and ISBSG
(International Software Benchmarking Standard
Group) dataset were used. They introduced a
metric called EID (Effort Inconsistency Degree)
that is used to measure the degree that the effort
of a project is inconsistent from similar projects.
This has led to improvement of the accuracy of
estimation by ABE. In [19], Hathaichanok
Suwanjang and Nakornthip Prompoon (2012)
proposed a framework for developing a model
for software cost estimation based on a relational
matrix of a project profile for their study. They
chose a human resource management related
company, which has many software modification

projects. The model is based on the multiple
regression analysis and analogy method. Tridas
Mukhopadyay et al (1992) proposed a analogy
based model called ESTOR (Estimator) based on
the verbal protocols of a human expert [20]. The
results were compared with Function Point and
COCOMO models and proved to be more
accurate.

 BRACE (Bootstrap based Analogy Cost
Estimation) was proposed by Stamelos et al
(2001) in [21]. It applies analogy based
techniques and re-sampling methodologies. In
[22]. Myrtveit and Stensrud (1999) have proved
that both Analogy and Regression techniques
improve the accuracy of estimation. Li. Y. F et al
(2009) also have also made a detailed study of
non-linear adjustment for Analogy based
Estimation [23]. Jianfeng Wen et al (2009)
proposed a new method of using Principal
Components Analysis (PCA) to extract the
features and use Pearson Correlation coefficients
between them [24]. Three benchmark datasets,
namely, Desharnais, COCOMO and NASA were
used in experiments whose results showed
significant improvement in prediction accuracy
and reliability. Compared with the other two
categories of the software estimation, namely,
Expert Judgment and Algorithmic models,
Analogy based effort estimation performed the
best in 60% of the cases reported in published
studies.

 Some of the research favors the combination
of more methods that has been proved
successful. In [25], Chao-Jung Hsu et al (2010),
integrated several software estimation methods
and assigned linear weights for combinations.
This model is very useful in improving
estimation accuracy. In the work of Shama
Kousar Jabeen and Arthi (2014), the results
using three function point based effort estimation
models are analyzed [26]. They have also
compared MMRE, MdMRE, MRE values by
training the dataset using neuro-fuzzy logic
based machine learning approach which
overcomes the problems present in the traditional
methods. Reviews of some popular data mining
techniques used in software effort estimation
have been presented by Mohita Sharma and
Neha Fotedar (2014) in [27]. Effort has been
calculated on the basis of MMRE value. Hence it
can be seen that the most commonly used
metrics in the estimation of software are MRE,
MMRE, MdMRE and Pred(0.25).

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5590

2.1 Evolutionary Computation Models

The use of Evolutionary Computation Model is
suggested recently to estimate the software
projects. They have the advantage of handling
large search spaces. The basic idea is the
Darwin’s theory of evolution according to which
the genetic operations between chromosomes
lead to the survival of the fittest individuals.

2.1.1 GA (Genetic Algorithm)

GA is a search based optimization algorithm to
get an optimal solution. It is an evolutionary
computation method. The main issues related
with GA are the representation of solution,
selection of genetic operators and choosing the
best fitness function. GA can efficiently search
through the solution space of complex problem.
In [28], GA is used for project selection in the
form of two models using Analogy by Y.F.Li et
al (2010). The steps involved are encoding,
population generation, fitness function
evaluation, cross over, mutation, elitism and
stopping criteria. The two real world data sets
Desharnais data set and Albrecht data set are
used for the experiments. The first model uses
GA to select appropriate projects subsets named
as PSABE (Project Selection in Analogy Based
Estimation). The second model which is based
on feature weights is called FWABE. The results
are better than the other software estimation
models.

2.1.2 GP (Genetic Programming)

GP is also an evolutionary computation method
that works on tree data structure. The Non
continuous functions are very common in
software engineering application and Genetic
Programming can be effectively used in such
situations. Using a tree based representation in
Genetic Programming requires adaptive
individuals and domain specific grammar. GP
begin with a population of randomly created
programs. Each program is evaluated based on
fitness function. Unlike Genetic Algorithm,
mutation operation is not needed in GP because
the crossover operation provides point mutation
at nodes. The process of selection and crossover
of individual continues till the termination
criteria are satisfied. Colin J.Burgess and Martin
Lefley (2000) analyzed the potential of G.P in
Software Effort Estimation in terms of accuracy
and ease of use [29]. Their research was based

on Desharnais data set of 81 software projects.
The authors prove that the use of GP offer
improvement in accuracy but this improvement
depends on the measure and interpretation of
data used in the project.

2.1.3 DE (Differential Evolution)

Differential Evolution is an important
evolutionary computation method in recent days
that can be used to improve the exploration
ability. Differential evolution (DE) is a method
that optimizes a problem, iteratively to improve
a solution .Differential Evolution is similar to
Genetic Algorithm, but it differs in the sense that
distance and direction information from the
current population is used to guide the search
process. DE performs well than any other
contemporary algorithm and it is proved that it
offers good optimization due to higher number
of local optima and higher dimensionality. There
are many types of DE such as Simple DE,
Population based DE, Compact DE, etc. In a
simple DE algorithm, an initial population is
created by random set of individuals. For each
generation, three individuals say x1, x2 and x3
are selected. An off spring x′ off is generated by
mutation as

x′off = x1+F(x2-x3)

F is a scale factor. Then crossover is performed
based on some condition.

2.2 Analogy with Differential Evolution
Algorithm

Analogy is the most accepted method for the
estimation of software. In our proposed method,
Differential Evolution Algorithm is used with
Analogy to improve the accuracy of effort
estimation.. Differential Evolution Algorithm
which is an Evolutionary Computational
Approach is based on the biological evolutions
of organisms. Swagatham Das et al (2011) made
a detailed study on Differential Evolution
Algorithm [30]. The DE technique is a
population based approach such as the genetic
algorithms making use of the identical operators
such as the crossover, mutation and selection.
The vital difference in configuring the superior
solutions relies on the fact that the genetic
algorithms are invariably dependent on the
crossover operation while DE is basically based
on the mutation function.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5591

The major task invariably depends on
the divergences of arbitrarily sampled couples of
solutions in the population. This new technique
employs the mutation function as a search
mechanism and the selection function to manage
the search toward the potential zones in the
search space. Further, it utilizes a non-uniform
crossover which is capable of taking the child
vector parameters from one parent more
frequently than in the case from others. The
following Figure 1 gives the framework for
using Differential Evolution Algorithm with
Analogy for improving software effort
estimation

Figure 1: Differential Evolution with Analogy for SEE

Here, we propose a new model called DEAPS
(Differential Evolution in Analogy for Project
Selection). The estimation is done in two stages.
In the 1st stage, there is a reduction of historical
database to a set of most similar projects using

Similarity Measure. In the 2nd stage, DE is
applied to retrieve the most relevant project from
which the effort required for a new project is
estimated. The main advantages of DE are its
ability to provide multiple solutions. It can be
easily applied to real problems despite noisy and
multidimensional space. It is simple but has
effective mutation process that ensures search
diversity.

3. RESULTS

The DEAPS Model is tested with the most
popular datasets. The input is the project
parameters from the Albrecht dataset, Desharnais
dataset and COCOMO dataset whose values are
slightly changed. It is found that by using the DE
Algorithm with the concept of Analogy method
the most relevant project is retrieved by which
the accuracy of effort needed is analyzed easily.
The metrics that are commonly used for
evaluating a software estimation model are given
below which is followed by the results.

3.1 Performance Evaluation Metrics

Metrics are used for the validation of Effort
Estimation Models. The most commonly used
metrics are given below:

3.1.1 MRE (Magnitude of Relative Error):
Relative Error is the difference between the
actual and estimated value. MRE is the absolute
value of the relative error.

A is the Actual Effort and E is the Estimated
Effort

3.1.2 MMRE (Mean Magnitude of Relative
Error):

MMRE is the percentage of the MRE over an
entire dataset

Ai is the Actual Effort and Ei is the Estimated
Effort of the ith project, n is the number of
projects.

Projects
database New project

Reduced
database
using
Analogy

Evaluation

Terminate

Mutation

Crossover

Selection

 Result

y

n

A

EA
MRE

|| 


nA

EA
MMRE

ni

i i

ii 100
*

||

1








Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5592

3.1.3 Pred(q):

The prediction level pred(q), is the percentage of
prediction that falls within a specified percentage
(q%) of the actual value.

n

p
qpred )(

p is the number of projects whose MRE value is
less than or equal to q. The commonly used
metric is pred(0.25) is the percentage of
predictions that is less than 25% of the actual
value

25.0
||1

)25(.
1







 

 


n

i i

ii

A

EA

n
pred

The results of the DEAPS model with the
various datasets are given in the following Table
1, 2 and 3.

Table1:Results of DEAPS Model on Albrecht dataset

Table2:Results of DEAPS Model on Desharnais
Dataset

Project
 Id

Estimated
Effort

Actual
Effort

MRE Pred(0.25)

1 100 102.4 0.0234 1
2 94 105.2 0.1065 1
3 25 11.1 1.2523 0
4 15 21.1 0.2891 0
5 35 28.8 0.2153 1
6 6 10 0.4000 0
7 10 8 0.2500 1
8 1 4.9 0.7959 1
9 20 12.9 0.5504 0
10 20 19 0.0526 1
11 10 10.8 0.0741 1
12 10 8 0.2500 1
13 9 7.5 0.2000 1
14 10 12 0.1667 1
15 1 0.5 1.0000 0
16 12 15.8 0.2405 1
17 15 18.3 0.1803 1
18 6 8.9 0.3258 0
19 30 38.1 0.2126 1
20 51 38.1 0.3386 0
21 5 3.6 0.3889 0
22 11 11.8 0.0678 1
23 1 0.5 1.0000 0
24 2 6.1 0.6721 0

Table 3 : Results of DEAPS Model on COCOMO
Dataset

S.
No

Project
Id

Estimated
Effort

Actual
Effort

MRE Pred
(0.25)

1 1 671.271 2040 0.6709 0

2 16 27.0555 40 0.3236 0

3 17 10.6371 9 0.1819 1

4 22 236.4989 724 0.6733 0

5 28 61.878 98 0.3686 0

6 29 5.5143 7.3 0.2446 1

7 30 4.7255 5.9 0.1991 1

8 32 586.189 702 0.1650 1

9 35 55.3676 82 0.3248 0

10 37 58.118 47 0.2366 1

11 38 9.5728 12 0.2023 1
12 40 4.1316 8 0.4836 0

13 45 54.2911 106 0.4878 0

14 46 112.7067 126 0.1055 1

15 48 777.5163 1272 0.3887 0

16 49 55.3096 156 0.6455 0
17 59 62.9629 70 0.1005 1

18 60 23.3272 57 0.5908 0

19 62 16.7788 32 0.4757 0

20 63 7.3076 15 0.5128 0

S.
No

Proj
ect
Id

Estimated
Effort

Actual
Effort

MRE Pred
(0.25)

1 1 5152 7124.3 0.2768 0

2 4 3829 3154.8 0.2137 1

3 5 2149 1915.4 0.1220 1
4 6 2821 4181.8 0.3254 0

5 7 2569 2977.1 0.1371 1

6 15 4977 3536.1 0.4075 0
7 17 3192 3360.4 0.0501 1

8 19 4494 5799 0.2250 1

9 20 840 850.1 0.0119 1
10 23 5775 5697.1 0.0137 1

11 27 3542 4326.9 0.1814 1
12 28 4277 7035 0.3920 0

13 32 710 484.9 0.4642 0

14 33 2429 3043.5 0.2019 1
15 36 9135 6357.4 0.4369 0

16 39 847 640.9 0.3216 0

17 40 8050 7477 0.0766 1
18 43 2174 2129.7 0.0208 1

19 45 6699 5479.6 0.2225 1

20 47 4004 3028.3 0.3222 0
21 52 3136 1708.1 0.8360 0

22 54 2583 2122.3 0.2171 1

23 56 8232 6743.6 0.2207 1
24 57 3276 2290.9 0.4300 0

25 58 2723 1774.8 0.5343 0

26 61 2926 3101 0.0564 1
27 64 1603 2050.5 0.2182 1

28 68 1267 930.8 0.3612 0

29 70 1155 829.8 0.3919 0
30 71 546 689.8 0.2085 1

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5593

4. DISCUSSION

The consolidated results of the DEAPS Model
using the parameters from the Albrecht dataset,
Desharnais dataset and COCOMO dataset are
given in the Table 4 below. It can be seen that
the prediction value is more than 50% while
using Albrecht and Desharnais dataset. DE has a
very effective mutation process which improves
the ability of exploration. So we got promising
results which indicate that the use of this model
could significantly improve the efficiency of
Analogy based Software Effort Estimation.

 Table 4 : Consolidated results of DEAPS Model

The comparison of results are shown in the
following Figure 2

Figure 2 : Comparison with other datasets

The success of this model can be evaluated only
by comparing with the already existing models
in the area of software estimation. Hence the test
results are also compared with the previous
research results in the research paper of Y.F. Li
et al (2009) [31]. The comparison is given in
Table 5 below:

Table 5 : Comparison of result with previous Models

S.N

o Methods MMRE

PRED

(0.25) MdMRE

1 FWABE 0.42 0.25 0.46

2 PSABE 0.39 0.38 0.45

3 ANN 0.49 0.25 0.51

4

DEAPS

(Alb) 0.37 0.54 0.25

5

DEAPS

(Desh) 0.23 0.53 0.24

6

DEAPS

(COC) 0.37 0.40 0.22

The diagrammatic representation of the
comparison of DEAPS model with other existing
models is shown in Figure 3 below:

Figure 3 : Comparison with other Models

The results show that the proposed Model
DEAPS for the estimation of software by the
selection of relevant project has the best
performance among all methods. The metrics
MMRE and MdMRE are lesser than the other
methods and also the probability of a project
having MRE<=0.25, pred(0.25) is also very high
when compared with other models

S.

No

Datasets MMRE Pred

(0.25)

MdMRE

1 Albrecht 0.37 0.54 0.25

2 Desharnais 0.23 0.53 0.24

3 COCOMO 0.37 0.40 0.22

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5594

The advantages of Analogy based effort
estimation are:

 The results from Analogy based methods are
better than from formal based methods
because it is very similar to reasoning of
human problem solving method

 Analogy based estimation can deal with
poorly understood domain that are difficult to
model

 It can be applied in the very early phases of a
software project planning and can be later
improved when more details are available

 It has the potential to mitigate the effect of
the outliers in a historical data set as it do not
rely on calibrating a single model to suit all
the projects

An exhaustive survey of Software Effort
Estimation and the various types of
methodologies used has been done. The
Algorithmic Models and Non-Algorithmic
Models have been studied in detail. Analysis of
the various datasets used in the models and the
metrics used for the performance valuation were
also done. The merits and demerits of each
model have also been analyzed. The entire
procedure has been done on well established
statistical methodologies taking multiple
comparisons into consideration. Analogy was
seen as the most efficient method for Software
Effort Estimation. The focal point of the current
study is analysis of the computational
intelligence techniques. The use of the
Evolutionary Computation Model has been
suggested recently for the estimation of the
software projects. They have the advantage of
handling large search space. The basic idea is the
Darwin’s theory of evolution according to which
the genetic operations between chromosomes
lead to the survival of the fittest among
individuals. These methods are the extension of
machine learning algorithms such as ANN.

 The use of Evolutionary Computation
Algorithms for Software Effort Estimation has
also been studied in detail. Various popular
Evolutionary computation Algorithms such as
Genetic Algorithm, Genetic Programming,
Differential Evolution Algorithm have been
studied. Optimization through Genetic
Algorithm and Genetic Programming takes a
longer time to train and hence reduces the
performance of the model. Use of Differential
Evolution Algorithm has been seen in recent

days to improve the exploration ability.
Differential Evolution Algorithm is an
Evolutionary Computation Algorithm that is
being used in recent days for many real word
problems and hence its application is extended to
software effort estimation. Differential Evolution
is similar to the Genetic Algorithm, but it differs
in the sense that distance and direction
information from the current population are used
for guiding the search process.

 Time complexity is a critical issue for
all the population based search techniques like
Genetic Algorithm, Genetic Programming,
Differential Evolution Algorithm, etc. The
average runtime of a standard DE Algorithm
depends on the stopping criteria. There are three
important parameters in DE, namely, NP (Size of
the population), Cr (Cross over Rate) and F
(Mutation Factor). There is also D vector which
consists of candidate solutions of the problem in
each generation. Let Max be the maximum
number of generations. For implementation, we
have taken 1000 as the maximum number of
generation. In each generation of DE, a loop over
D is conducted in which the fundamental
operations such as Mutation and Cross over are
performed. Hence, the runtime complexity of
this algorithm is O(NP. D. Max)

Merits: The study of the application of
Differential Algorithm with Analogy is the most
promising methodology for Software Effort
Estimation. Differential Evolution is a method
that optimizes a problem, iteratively for
improving a solution . DE performs better than
any other contemporary algorithm and its offers
of good optimization due to higher number of
local optima and higher dimensionality has been
established. The main advantages of DE are its
ability to provide multiple solutions and that it
can be easily applied to real problems despite
noisy and multidimensional space. It is simple
and has effective mutation process that ensures
search diversity. Hence, we propose a new model
called DEAP (Differential Evolution with
Analogy for Project Estimation) which uses the
Analogy concept with Differential Evolution
Algorithm.

Limitations: A primary limitation in this study
lies in the selection of the datasets used in this
study. In this approach, the real datasets Albrecht
dataset, Desharnais dataset, COCOMO 81 and

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5595

NASA dataset have been considered. This
imposes some limitations when the model is
used for other application domains. Different
dataset characteristics may favor different
prediction models with prediction performance
differing from one dataset to another. In real life,
the project consists of attributes that are not
limited to the attributes of these data sets which
need to be explored.

5. CONCLUSION

The software effort evaluation has surfaced as
one of the vital functions in software project
management. It is not always feasible to
anticipate the precise estimates in the
development of software. Hence the focus is on
the open research problem of the creation of the
best software effort estimation model. Although
the term best is subjective, a project manager
usually ranks an estimation model on the basis of
pre-defined accuracy measure. The aim is to
propose a model that has a framework that is
better than the other contemporary models. In
this regard, the vital constraints to be taken into
account for the software effort evaluation
encompass the size of the project, schedule and
number of persons concerned. The intangible
nature of the software makes the software effort
estimation process unreliable. But improving the
accuracy of the effort estimation models would
facilitate more effective control of time and
budgets during software development for the
Project Managers and others involved in the
project. Systematic illustration of techniques has
been in most of the recent methods. But the best
estimation method should be based on the
conditions and status of the project in
comparison with the previous projects.

 This paper gives a detailed study of
using Evolutionary Computation Algorithms in
the Software Effort Estimation models. Among
the existing methods, Analogy Based Estimation
(ABE) is the most flexible method for achieving
better estimates during the initial stages of effort
estimation. It inherits the formal expressions of
case based reasoning and is a very popular
method. However, it is criticized for its large
computational usage. To alleviate this drawback,
this study is devoted to improve the efficiency of
the Analogy by using it with the recently popular
Evolutionary Algorithms. The study eventually
focused on using Differential Evolution
Algorithm which is an Evolutionary computation
Algorithm. The promising results show that the

efficiency of Analogy method has improved by
using it in combination with Differential
Evolution Algorithm. This study makes
significant contribution to the knowledge of
Software Effort Estimation in the field of
Software Engineering.

 Differential Evolution Algorithm is
used to select the most relevant project from set
of historical projects that matches with the new
project. The proposed method is implemented in
JAVA platform. Based on the selection of
relevant project, it is easier to estimate the effort
required for the new project. The experimental
result indicates that this model is better than
existing methods. The metrics used are MMRE,
MdMRE and pred(25%). As the search space is
big, the Differential Evolution Algorithm is used
which has been proved to be useful. Future work
is to analyze the performance of the model with
the combination of other Evolutionary
Computation Algorithms.

REFRENCES:

[1] Linda M Laird. (2006). The Limitations of
Estimation, IT Pro , pp. 40-45.

[2] M. Jørgensen and D.I.K. Sjøberg (2001).
Impact of Effort Estimates on Software
Project Work, Information and Software
Technology, vol 43, no. 15, pp.939-948

[3] Ning Nan and Donald E.Harter (2009).
Impact of Budget and Schedule Pressure on
Software Development Cycle time and
Effort, IEEE Trans. on Software
Engineering., pp.624-637.

[4] Magne Jorgensen and Stein Grimstad
(2011). The impact of irrelevant and
misleading Info. on Software development
Effort Estimates : A Randomized Controlled
Field Experiment, IEEE Transactions On
Software Engg., pp. 695-707.

[5] Tim Menzies, Andrew Butcher, David Cok,
Lucas layman, Forrest Shull, Burak Turhan
(2013). Local vs Global lessons for defect
Prediction and Effort Estimation, IEEE
Transactions on Software Engg., Vol.39, pp.
822-834.

[6] Ekram kocaguneli , Tim Menzies, Ayse
Basar Bener and Jacky W Keung (2012).
Exploiting the essential assumptions of

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5596

Analogy based Effort Estimation, IEEE
Engg., pp. 425-437.

[7] Magne Jorgensen, Tanja M.Grusehke and R.
Gupta (2009). The Impact of Lessons-
Learned sessions on Effort Estimation and
Uncertainity Assesments, IEEE Trans. on
Software Engg., pp. 368-383.

[8] Magne Jorgensen and Martin Sheppard
(2007). A Systematic review of Software
Development Cost Estimation Studies, IEEE
Trans. on Software Engg., pp. 33-53

[9] Karel Dejaeger, Wouter Verbeke, David
Martens, Bart Baesens (2012). Data mining
techniques for Software Effort Estimation:
A Comparative study, IEEE Trans. on
Software Engg., vol. 38, pp. 375-397.

[10] Tim Menzies, Andrew Butcher, David Cok,
Lucas layman, Forrest Shull, Burak Turhan
(2013). Local vs Global lessons for defect
Prediction and Effort Estimation, IEEE
Transactions on Software Engg., Vol.39, pp.
822-834

[11] Nikolos Mittas and Lefteris Angelis (2012).
Ranking and clustering Software Cost
Estimation Model through a multiple
Comparison Algorithm, IEEE Transactions
on Software Engg., pp. 537-551.

[12] Mark Harman, Afshin Mausouri (2010).
Search based Software Engineering:
Introduction to special issue of IEEE Trans.
on Software Engg., IEEE Transactions on
Software Engg., pp. 737-741.

[13] Ekrem Kocaguneli, Tim Menzies, Jacky
Keung, David Cok, Ray Madachy (2013).
Active Learning and Effort Estimation:
finding the essential content of Software
Effort Estimation data, IEEE Transactions
on Software Engg., pp. 1039-1053.

[14] Magne Jorgensen (2005). Evidence based
guidelines for assessment of Software
development Cost Uncertainty, IEEE
Transactions on Software Engg., pp. 942-
954.

[15] Mudasir Manzoor Kirmani, Abdul Wahid
(2015). Impact of Modification Made in Re-
UCP on Software Effort Estimation, Journal
of Software Engineering and Application,
pp. 276-289.

[16] P.Subitsha, J.Kowski Rajan(2014) ,
Artificial Neural Network Models For
Software Effort Estimation, International
Journal of Technology Enhancements And
Emerging Engineering Research, Vol 2,
Issue 4, pp. 76-80.

[17] Sufyan Basri, Nazri Kama and Roslina
Ibrahim (2015). A Novel Effort Estimation
Approach for Requirement Changes during
Software Development Phase, International
Journal of Software Engineering and
Applications Vol. 9, No. 1, pp. 237-252

[18] Tuan Khanh lee -Do, Kyung-A Yoon ,
Yeong – Seok Seo and Doo-Hwan Bae
(2010), “Filtering of inconsistent Software
Project data for Analogy based Effort
Estimation”, Annual conference of IEEE on
Computer Software and Application
Conference, pp. 503-508.

[19] Hathaichanok Suwanjang and Nakornthip
Prompoon (2012), “Framework for
developing a Software Cost Estimation
Model for Software modification based on a
relational matrix of Project profile and
Software Cost using an Analogy”,
International journal of Computer and
communication engineering, pp. 129-134.

[20] Tridas Mukhopadhyay, Stephen S
Vicinanza, S. S. and Michael J Prietula
(1992), “Examining the feasibility of a case-
based reasoning model for software effort
estimation”, MIS Research Center,
University of Minnosota, Vol.16(2), pp.
155-171.

[21] Stamelos. I., Angelis. L., and Sakellaris. E.
(2001), “BRACE: Bootstrap based Analogy
Cost Estimation: Automated support for an
enhanced effort prediction method”,
Proceedings 12th European Software
Control and Metrics Conference
(ESCOM’2001), pp. 17-23.

[22] Myrtveit. I., and Stensrud. E. (1999), “A
controlled experiment to assess the benefits
of estimating with analogy and regression
models”, IEEE Transactions on Software
Engineering, Vol. 25(4), pp. 510-525

[23] Li. Y.F., Xie. M. and Goh, T.N. (2009), “A
study of the non-linear adjustment for
Analogy based Software Cost Estimation,
Springer, pp. 603-642

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5597

[24] Jianfeng Wen, Shixian Li and Linyan Tang
(2009), “Improve analogy based software
effort estimation using principal component
analysis and correlation weighting”, IEEE
Transactions of Software Engineering, pp.
179 – 186

[25] Chao Jung Hsu , Nancy Urbina Rodas, Chin
Yu Huang and Kuan- Li Peng (2010). A
Study of improving the Accuracy of
Software Effort Estimation using Linear
Weighted Combination, Proc. of Annual
IEEE Comp. Software Applications
Conference, pp. 98-103.

[26] Shama Kousar Jabeen.A, B.Arthi. (2014)
Software Effort Estimation for Size Proxy
Metric Framework Modelling using
Software Estimation Models and Neuro
Fuzzy Logic Approach , International
Journal of Soft Computing and Engineering
(IJSCE) , Volume-4, Issue-2, pp 70-73.

[27] Mohita Sharma,, Neha Fotedar (2014).
Software Effort Estimation with Data
Mining Techniques- A Review,
International journal of Engineering
Sciences and Research Technology,
pp.1646-1653,

[28] Y.F.LI, M.Xie, T.N.Goh (2010). A Study of
Genetic Algorithm for Project Selection for
Analogy based Software Cost Estimation,
Proc. of IEEE IEEM, pp. 1256-1260.

[29] Colin J.Burgess and Martin Lefley (2000).
Can Genetic Programming improve
Software Effort Estimation? A Comparative
Evaluation, Elsevier, pp. 863-873.

[30] Swagatam Das and Ponnuthurai Nagaratnam
Suganthan (2011). Differential Evolution- A
Survey of Art, IEEE Transactions on
Evolutionary Computation, pp. 4-31.

[31] Y.F. Li , M. Xie, T.N. Goh (2009). A study
of project selection and feature weighting for
analogy based software cost estimation, The
Journal of Systems and Software, pp 241-252

