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ABSTRACT 
 

Software effort estimation is the process of calculating the effort required to develop a software product 
based on the input parameters that are partial in nature. Estimation requires information about project 
scope, resources available, process requirements and many other factors associated with a software product 
development. Inaccurate estimation leads to financial loss and delay in the projects. Due to the intangible 
nature of software, most of the software estimation process is not reliable. But there is a strong relationship 
between effort estimation and success of project management activities. Hence the aim of the research is to 
propose a new software estimation model that combines the Analogy concept with Differential Evolution 
Algorithm that is more efficient than the existing methods. Several methods for software effort estimation 
are discussed in this paper including the widely used and metrics used for evaluation. The use of 
Differential Evolution in the estimation is dealt in detail. A new model for estimation using Differential 
Evolution Algorithm called DEAPS is proposed and its advantages discussed. The proposed model is 
checked with the popular data sets namely Desharnais datasets, Albrecht dataset and COCOMO dataset. 
The results are compared with previous findings and the results clearly show that the proposed method is 
better than the existing methods. The proposed Model can be used to minimize the errors in the software 
estimation which is a crucial step in the software development process. Hence the financial loss and delay 
in the completion of project may be avoided 

Keywords: Software Effort Estimation Methods, Algorithmic and Non-Algorithmic Models, Evolutionary 
Computational Methods, Differential Evolution Algorithm  

 
1. INTRODUCTION  
 
Software project planning is one of the most 
important activities in a software development 
process. It is a most important task but most 
difficult and complicated step in the software 
product development. Planning largely depends 
on the effort estimation and this requires many 
parameters such as size, number of persons, 
schedule, etc. It is a difficult and complicated 
task. Linda M. Laird (2006) enumerates the 
reasons for the inaccurate effort estimation [1]. 
In [2], M. Jorgenson and D.I.K. Sjoberg (2001) 
demonstrated how the software effort is affected 
by the client’s expectations about cost. Ning Nan 
and Donald E. Harter (2009) emphasize the role 
of budget and schedule pressure [3]. In [4], 
Magne Jorgenson and Stein Grimstad (2011) 
made a detailed study on how irrelevant 
information can affect the estimation of software. 

According to their research, the field settings that 
led to the irrelevant information have a very 
small impact than the artificial settings for doing 
experiments. Tim Menzies et al (2013) suggested 
to create clusters and proved that the best are that 
which are near the source data but not from the 
same source as the test data [5]. The general 
principles of software effort estimation were 
explored by Ekrem Kocaguneli et al (2012) to 
guide the design for estimation [6]. Many factors 
are considered to estimate the software cost and 
effort and the most important factors are size of 
the project, number of persons and schedule. 
Their research emphasizes that the estimation 
can be improved by dynamic selection of nearest 
neighbor with small variance.  

Prediction of software effort is a very difficult 
and complicated task. Software is intangible in 
nature and hence the measurement of progress is 
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the software process is very difficult to access. 
Also the requirements of software project change 
continually which causes the change in 
estimation. Inaccurate estimation of effort is the 
main cause of software project failures. In [7], 
Magne Jorgensen et al (2009) suggested that the 
type of individual lesson learned processes may 
have effect on the accuracy of estimates. In [8], 
Magne Jorgenson and Martin Sheppard (2007) 
present a systematic review of various journals 
and concluded that the properties of dataset 
impact the result when evaluating the estimation. 
In [9], Karel Dejaegar et al (2012) present an 
overview of the literature related to software 
effort estimation. The paper gives detailed study 
with different processing steps and addresses 
many issues like quality of the data, missing 
values etc. In [10], Tim Menzies et al (2013) 
evaluated the lessons that are global to multiple 
projects and local to particular projects in 
software effort estimation.  Nicolos Mittas and 
Lefteris Angelis (2012) proposed a statistical 
framework based on multiple comparison 
algorithms to rank several cost estimation 
models [11]. In [12], Mark Harman and Afshin 
Mansouri (2010) proposed the application of 
search based optimization methods for the 
software effort estimation. The advantages of 
using search based optimization are listed as 
robustness, scalability and powerfulness. In [13], 
Ekrem kocaguneli et al (2013) proposed a tool 
called QUICK TOOL that reduces the 
complexity in data interpretation. The tool is 
suitable for small data sets.  

To improve the uncertainties in cost 
assessments, Magne Jorgensen (2005) provided 
evidence based guidelines in [14]. Some of the 
important guidelines include not to rely solely on 
unaided, intuition based uncertainty assessment 
process but to apply structured and explicit 
judgment based process. Thus it can be seen that 
many aspects has to be considered for Software 
Effort Estimation Models. Accurate effort 
estimation is critical for both developers and 
customers and is crucial for the success of the 
project. The effort estimation methods available 
so far have both merits and demerits. There is a 
strong relationship between effort estimation and 
the project management activities which affect 
the success of a software project. Hence 
developing an efficient software effort estimation 
model is an urgent problem and of great practical 
importance. The weaknesses in the existing 
effort estimation methods have provided the 

motivation to develop a new software estimation 
model that combines the Analogy concept with 
Differential Evolution Algorithm that is more 
efficient than the existing methods 

The aim of this paper is to give a detailed 
description about various software effort 
estimation methods and to emphasize the use of 
the Evolutionary Computation Algorithms for 
software estimation. It proposes a model called 
DEAPS that combines the concept of Analogy 
with Differential Evolution Algorithm. The paper 
is organized as follows: Section 2 consists of 
brief discussion on Materials and Methods on 
software estimation methods. In Section 3, we 
give the results and Section 4 discuss about the 
results of the model. Section 5 is the conclusion 
and recommendation for future work. 

2. SOFTWARE ESTIMATION METHODS 

Many traditional methods are used for 
Software Estimation ranging from Expert 
Judgment method, Function Point method, 
COCOMO, SLIM Model, Case Based Reasoning 
Model to the recent methods that uses Neural 
Networks, Fuzzy Logic, Genetic Algorithm, 
Genetic Programming, Particle Swarm 
Optimization etc. The Software Effort 
Estimation models are primarily divided into 
four main divisions. The foremost is the Expert 
Judgment Method, where the effort is estimated 
by experts in the field. Algorithmic models are 
mainly based on the mathematical formulas. 
Some of the Algorithmic Models are FP 
(Function Point), COCOMO (Constructive Cost 
Model) and SLIM (Software Life cycle 
Management model).  These models depends on 
various parameters like LOC (Lines of code), 
Complexity, Number of Interfaces etc. 

 The limitation of Algorithmic models led to 
the Non-algorithmic models. Case Based 
Reasoning (CBR) is a popular Non-algorithmic 
method. Analogy is a CBR method. Also with 
the advent of soft computing techniques, new 
methodology of evolutionary computation came 
into existence. In this, many Machine Learning 
methods are used including GA, GP and DE. 
These methods are discussed in the following 
sections. The research work by Mudasir 
Manzoor et al (2015) evaluates the performance 
of Re-UCP model and compares the results with 
the UCP and e-UCP method of software effort 
estimation [15]. The accuracy of results were 
validated by using MRE (Magnitude of Relative 
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Error), MMRE (Mean Magnitude Relative 
Error), MdMRE (Median of Magnitude Relative 
Error) tools to check the error rate and 
PRED(10%) and PRED(20%) to find out the 
accuracy of Re-UCP software effort estimation 
method. The observations made from the results 
are based on the comparison of Re-UCP, e-UCP 
and UCP models of software effort estimation. 
The deviation percentage calculated using Re-
UCP justifies the improved performance of Re-
UCP method of software effort estimation in 
comparison with UCP and e-UCP methods of 
software effort estimation.  

Subimtsha and Kowski Rajan (2014) used 
different types of techniques including 
techniques such as Multilayered Perceptron 
Network, Radial Basis Function Neural 
Network, Support Vector Machines and Particle 
Swarm Optimization [16]. A simple technique 
like regression is found to be well suited for 
software effort estimation which is particularly 
interesting.  The research by Surfyan Basri et al 
(2015) introduces a new change in the effort 
estimation approach that is able to use different 
estimation techniques for different states of 
software artifacts [17]. The outcome of this 
research is an effort estimation approach for 
software development phase using the extended 
version of the static and dynamic analysis 
techniques. All the approaches have their own 
merits and demerits. It should be noted that there 
is not a single method which can be said to be 
best for all situations. 

 Tuan Khanh Lee Do et al (2010) have 
proposed an approach to filter noise in the 
historical projects to increase the accuracy of 
Analogy based Estimation [18]. Noise refers to 
the data corruptions that cause a negative impact 
on the performance of an estimation model. 
Desharnais dataset, Maxwell dataset and ISBSG 
(International Software Benchmarking Standard 
Group) dataset were used. They introduced a 
metric called EID (Effort Inconsistency Degree) 
that is used to measure the degree that the effort 
of a project is inconsistent from similar projects. 
This has led to improvement of the accuracy of 
estimation by ABE. In [19], Hathaichanok 
Suwanjang and Nakornthip Prompoon (2012) 
proposed a framework for developing a model 
for software cost estimation based on a relational 
matrix of a project profile for their study. They 
chose a human resource management related 
company, which has many software modification 

projects. The model is based on the multiple 
regression analysis and analogy method. Tridas 
Mukhopadyay et al (1992) proposed a analogy 
based model called ESTOR (Estimator) based on 
the verbal protocols of a human expert [20]. The 
results were compared with Function Point and 
COCOMO models and proved to be more 
accurate.  

 BRACE (Bootstrap based Analogy Cost 
Estimation) was proposed by Stamelos et al 
(2001) in [21]. It applies analogy based 
techniques and re-sampling methodologies. In 
[22]. Myrtveit and Stensrud (1999) have proved 
that both Analogy and Regression techniques 
improve the accuracy of estimation. Li. Y. F et al 
(2009) also have also made a detailed study of 
non-linear adjustment for Analogy based 
Estimation [23]. Jianfeng Wen et al (2009) 
proposed a new method of using Principal 
Components Analysis (PCA) to extract the 
features and use Pearson Correlation coefficients 
between them [24]. Three benchmark datasets, 
namely, Desharnais, COCOMO and NASA were 
used in experiments whose results showed 
significant improvement in prediction accuracy 
and reliability. Compared with the other two 
categories of the software estimation, namely, 
Expert Judgment and Algorithmic models, 
Analogy based effort estimation performed the 
best in 60% of the cases reported in published 
studies.  

 Some of the research favors the combination 
of more methods that has been proved 
successful. In [25], Chao-Jung Hsu et al (2010), 
integrated several software estimation methods 
and assigned linear weights for combinations. 
This model is very useful in improving 
estimation accuracy. In the work of Shama 
Kousar Jabeen and Arthi (2014), the results 
using three function point based effort estimation 
models are analyzed [26].   They have also 
compared MMRE, MdMRE, MRE values by 
training the dataset using neuro-fuzzy logic 
based machine learning approach which 
overcomes the problems present in the traditional 
methods. Reviews of some popular data mining 
techniques used in software effort estimation 
have been presented by Mohita Sharma and 
Neha Fotedar (2014) in [27]. Effort has been 
calculated on the basis of MMRE value. Hence it 
can be seen that the most commonly used 
metrics in the estimation of software are MRE, 
MMRE, MdMRE and Pred(0.25).  
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2.1 Evolutionary Computation Models 

The use of Evolutionary Computation Model is 
suggested recently to estimate the software 
projects.  They have the advantage of handling 
large search spaces. The basic idea is the 
Darwin’s theory of evolution according to which 
the genetic operations between chromosomes 
lead to the survival of the fittest individuals.  

2.1.1 GA ( Genetic Algorithm) 

GA is a search based optimization algorithm to 
get an optimal solution. It is an evolutionary 
computation method. The main issues related 
with GA are the representation of solution, 
selection of genetic operators and choosing the 
best fitness function. GA can efficiently search 
through the solution space of complex problem. 
In [28], GA is used for project selection in the 
form of two models using Analogy by Y.F.Li et 
al (2010). The steps involved are encoding, 
population generation, fitness function 
evaluation, cross over, mutation, elitism and 
stopping criteria. The two real world data sets 
Desharnais data set and Albrecht data set are 
used for the experiments. The first model uses 
GA to select appropriate projects subsets named 
as PSABE (Project Selection in Analogy Based 
Estimation). The second model which is based 
on feature weights is called FWABE. The results 
are better than the other software estimation 
models.      

2.1.2 GP (Genetic Programming) 

GP is also an evolutionary computation method 
that works on tree data structure. The Non 
continuous functions are very common in 
software engineering application and Genetic 
Programming can be effectively used in such 
situations. Using a tree based representation in 
Genetic Programming requires adaptive 
individuals and domain specific grammar. GP 
begin with a population of randomly created 
programs. Each program is evaluated based on 
fitness function. Unlike Genetic Algorithm, 
mutation operation is not needed in GP because 
the crossover operation provides point mutation 
at nodes. The process of selection and crossover 
of individual continues till the termination 
criteria are satisfied. Colin J.Burgess and Martin 
Lefley (2000) analyzed the potential of G.P in 
Software Effort Estimation in terms of accuracy 
and ease of use [29].  Their research was based 

on Desharnais data set of 81 software projects.  
The authors prove that the use of GP offer 
improvement in accuracy but this improvement 
depends on the measure and interpretation of 
data used in the project. 

2.1.3 DE (Differential Evolution)  

Differential Evolution is an important 
evolutionary computation method in recent days 
that can be used to improve the exploration 
ability. Differential evolution (DE) is a method 
that optimizes a problem, iteratively  to improve 
a solution .Differential Evolution is similar to 
Genetic Algorithm, but it differs in the sense that 
distance and direction information from the 
current population is used to guide the search 
process. DE performs well than any other 
contemporary algorithm and it is proved that it 
offers good optimization due to higher number 
of local optima and higher dimensionality. There 
are many types of DE such as Simple DE, 
Population based DE, Compact DE, etc. In a 
simple DE algorithm, an initial population is 
created by random set of individuals. For each 
generation, three individuals say x1, x2 and x3 
are selected. An off spring x′ off is generated by 
mutation as  

x′off = x1+F(x2-x3)      

F is a scale factor. Then crossover is performed 
based on some condition.  

2.2 Analogy with Differential Evolution 
Algorithm 

Analogy is the most accepted method for the 
estimation of software. In our proposed method, 
Differential Evolution Algorithm is used with 
Analogy to improve the accuracy of effort 
estimation.. Differential Evolution Algorithm 
which is an Evolutionary Computational 
Approach is based on the biological evolutions 
of organisms. Swagatham Das et al (2011) made 
a detailed study on Differential Evolution 
Algorithm [30]. The DE technique is a 
population based approach such as the genetic 
algorithms making use of the identical operators 
such as the crossover, mutation and selection. 
The vital difference in configuring the superior 
solutions relies on the fact that the genetic 
algorithms are invariably dependent on the 
crossover operation while DE is basically based 
on the mutation function.  
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The major task invariably depends on 
the divergences of arbitrarily sampled couples of 
solutions in the population. This new technique 
employs the mutation function as a search 
mechanism and the selection function to manage 
the search toward the potential zones in the 
search space. Further, it utilizes a non-uniform 
crossover which is capable of taking the child 
vector parameters from one parent more 
frequently than in the case from others. The 
following Figure 1 gives the framework for 
using Differential Evolution Algorithm with 
Analogy for improving software effort 
estimation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Differential Evolution with Analogy for SEE 
 
Here, we propose a new model called DEAPS 
(Differential Evolution in Analogy for Project 
Selection). The estimation is done in two stages.  
In the 1st stage, there is a reduction of historical 
database to a set of most similar projects using 

Similarity Measure. In the 2nd stage, DE is 
applied to retrieve the most relevant project from 
which the effort required for a new project is 
estimated. The main advantages of DE are its 
ability to provide multiple solutions. It can be 
easily applied to real problems despite noisy and 
multidimensional space. It is simple but has 
effective mutation process that ensures search 
diversity. 

3. RESULTS 
 
The DEAPS Model is tested with the most 
popular datasets. The input is the project 
parameters from the Albrecht dataset, Desharnais 
dataset and COCOMO dataset whose values are 
slightly changed. It is found that by using the DE 
Algorithm with the concept of Analogy method 
the most relevant project is retrieved by which 
the accuracy of effort needed is analyzed easily. 
The metrics that are commonly used for 
evaluating a software estimation model are given 
below which is followed by the results.  

3.1 Performance Evaluation Metrics 

Metrics are used for the validation of Effort 
Estimation Models. The most commonly used 
metrics are given below: 

3.1.1 MRE (Magnitude of Relative Error):  
Relative Error is the difference between the 
actual and estimated value. MRE is the absolute 
value of the relative error.  

 
  
  

    
  

A is the Actual Effort and E is the Estimated 
Effort 

3.1.2 MMRE (Mean Magnitude of Relative 
Error): 

MMRE is the percentage of the MRE over an 
entire dataset 
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3.1.3 Pred(q):  

The prediction level pred(q),  is the percentage of 
prediction that falls within a specified percentage 
(q%)  of the actual value.  

  
n

p
qpred )(                         

p is the number of projects whose MRE value is 
less than or equal to q. The commonly used 
metric is pred(0.25) is the percentage of 
predictions that is less than 25% of the actual 
value 
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The results of the DEAPS model with the 
various datasets are given in the following Table 
1, 2 and 3. 

Table1:Results of DEAPS Model on Albrecht dataset 

Table2:Results of DEAPS Model on Desharnais 
Dataset 

Project 
 Id 

Estimated 
Effort 

Actual 
Effort 

MRE Pred(0.25) 

1 100 102.4 0.0234 1 
2 94 105.2 0.1065 1 
3 25 11.1 1.2523 0 
4 15 21.1 0.2891 0 
5 35 28.8 0.2153 1 
6 6 10 0.4000 0 
7 10 8 0.2500 1 
8 1 4.9 0.7959 1 
9 20 12.9 0.5504 0 
10 20 19 0.0526 1 
11 10 10.8 0.0741 1 
12 10 8 0.2500 1 
13 9 7.5 0.2000 1 
14 10 12 0.1667 1 
15 1 0.5 1.0000 0 
16 12 15.8 0.2405 1 
17 15 18.3 0.1803 1 
18 6 8.9 0.3258 0 
19 30 38.1 0.2126 1 
20 51 38.1 0.3386 0 
21 5 3.6 0.3889 0 
22 11 11.8 0.0678 1 
23 1 0.5 1.0000 0 
24 2 6.1 0.6721 0 

Table 3 : Results of DEAPS Model on COCOMO 
Dataset 

S. 
No 

Project 
Id 

Estimated 
Effort 

Actual 
Effort 

MRE Pred 
(0.25) 

1 1 671.271 2040 0.6709 0 

2 16 27.0555 40 0.3236 0 

3 17 10.6371 9 0.1819 1 

4 22 236.4989 724 0.6733 0 

5 28 61.878 98 0.3686 0 

6 29 5.5143 7.3 0.2446 1 

7 30 4.7255 5.9 0.1991 1 

8 32 586.189 702 0.1650 1 

9 35 55.3676 82 0.3248 0 

10 37 58.118 47 0.2366 1 

11 38 9.5728 12 0.2023 1 
12 40 4.1316 8 0.4836 0 

13 45 54.2911 106 0.4878 0 

14 46 112.7067 126 0.1055 1 

15 48 777.5163 1272 0.3887 0 

16 49 55.3096 156 0.6455 0 
17 59 62.9629 70 0.1005 1 

18 60 23.3272 57 0.5908 0 

19 62 16.7788 32 0.4757 0 

20 63 7.3076 15 0.5128 0 

S.
No 

Proj
ect 
Id 

Estimated 
Effort 

Actual 
Effort 

MRE Pred 
(0.25) 

1 1 5152 7124.3 0.2768 0 

2 4 3829 3154.8 0.2137 1 

3 5 2149 1915.4 0.1220 1 
4 6 2821 4181.8 0.3254 0 

5 7 2569 2977.1 0.1371 1 

6 15 4977 3536.1 0.4075 0 
7 17 3192 3360.4 0.0501 1 

8 19 4494 5799 0.2250 1 

9 20 840 850.1 0.0119 1 
10 23 5775 5697.1 0.0137 1 

11 27 3542 4326.9 0.1814 1 
12 28 4277 7035 0.3920 0 

13 32 710 484.9 0.4642 0 

14 33 2429 3043.5 0.2019 1 
15 36 9135 6357.4 0.4369 0 

16 39 847 640.9 0.3216 0 

17 40 8050 7477 0.0766 1 
18 43 2174 2129.7 0.0208 1 

19 45 6699 5479.6 0.2225 1 

20 47 4004 3028.3 0.3222 0 
21 52 3136 1708.1 0.8360 0 

22 54 2583 2122.3 0.2171 1 

23 56 8232 6743.6 0.2207 1 
24 57 3276 2290.9 0.4300 0 

25 58 2723 1774.8 0.5343 0 

26 61 2926 3101 0.0564 1 
27 64 1603 2050.5 0.2182 1 

28 68 1267 930.8 0.3612 0 

29 70 1155 829.8 0.3919 0 
30 71 546 689.8 0.2085 1 
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4. DISCUSSION 

The consolidated results of the DEAPS Model 
using the parameters from the Albrecht dataset, 
Desharnais dataset and COCOMO dataset are 
given in the Table 4 below. It can be seen that 
the prediction value is more than 50% while 
using Albrecht and Desharnais dataset. DE has a 
very effective mutation process which improves 
the ability of exploration. So we got promising 
results which indicate that the use of this model 
could significantly improve the efficiency of 
Analogy based Software Effort Estimation. 

 
 Table 4 : Consolidated results of DEAPS Model 

 

The comparison of results are shown in the 
following Figure 2 

 

Figure 2 : Comparison with other datasets 

The success of this model can be evaluated only 
by comparing with the already existing models 
in the area of software estimation. Hence the test 
results are also compared with the previous 
research results in the research paper of Y.F. Li 
et al (2009) [31].  The comparison is given in 
Table 5 below: 

 
 

Table 5 : Comparison of result with previous Models 

 
S.N

o Methods MMRE 

PRED 

(0.25) MdMRE 

1 FWABE 0.42 0.25 0.46 

2 PSABE 0.39 0.38 0.45 

3 ANN 0.49 0.25 0.51 

4 

DEAPS 

(Alb) 0.37 0.54 0.25 

5 

DEAPS 

(Desh) 0.23 0.53 0.24 

6 

DEAPS 

(COC) 0.37 0.40 0.22 

The diagrammatic representation of the 
comparison of DEAPS model with other existing 
models is shown in Figure 3 below: 
 

 

Figure 3 : Comparison with other Models 

The results show that the proposed Model 
DEAPS for the estimation of software by the 
selection of relevant project has the best 
performance among all methods. The metrics 
MMRE and MdMRE are lesser than the other 
methods and also the probability of a project 
having MRE<=0.25, pred(0.25) is also very high 
when compared with other models 
 

 

S.

No 

Datasets MMRE Pred 

(0.25) 

MdMRE 

1 Albrecht 0.37 0.54 0.25 

2 Desharnais 0.23 0.53 0.24 

3 COCOMO 0.37 0.40 0.22 
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The advantages of Analogy based effort 
estimation are: 

 The results from Analogy based methods are 
better than from formal based methods 
because it is very similar to reasoning of 
human problem solving method 

 Analogy based estimation can deal with 
poorly understood domain that are difficult to 
model 

 It can be applied in the very early phases of a 
software project planning and can be later 
improved when more details are available 

 It has the potential to mitigate the effect of 
the outliers in a historical data set as it do not 
rely on calibrating a single model to suit all 
the projects 

An exhaustive survey of Software Effort 
Estimation and the various types of 
methodologies used has been done. The 
Algorithmic Models and Non-Algorithmic 
Models have been studied in detail. Analysis of 
the various datasets used in the models and the 
metrics used for the performance valuation were 
also done.  The merits and demerits of each 
model have also been analyzed. The entire 
procedure has been done on well established 
statistical methodologies taking multiple 
comparisons into consideration. Analogy was 
seen as the most efficient method for Software 
Effort Estimation. The focal point of the current 
study is analysis of the computational 
intelligence techniques. The use of the 
Evolutionary Computation Model has been 
suggested recently for the estimation of the 
software projects.  They have the advantage of 
handling large search space. The basic idea is the 
Darwin’s theory of evolution according to which 
the genetic operations between chromosomes 
lead to the survival of the fittest among 
individuals. These methods are the extension of 
machine learning algorithms such as ANN.  

 The use of Evolutionary Computation 
Algorithms for Software Effort Estimation has 
also been studied in detail. Various popular 
Evolutionary computation Algorithms such as 
Genetic Algorithm, Genetic Programming, 
Differential Evolution Algorithm have been 
studied.  Optimization through Genetic 
Algorithm and Genetic Programming takes a 
longer time to train and hence reduces the 
performance of the model. Use of Differential 
Evolution Algorithm has been seen in recent 

days to improve the exploration ability. 
Differential Evolution Algorithm is an 
Evolutionary Computation Algorithm that is 
being used in recent days for many real word 
problems and hence its application is extended to 
software effort estimation. Differential Evolution 
is similar to the Genetic Algorithm, but it differs 
in the sense that distance and direction 
information from the current population are used 
for guiding the search process. 

 Time complexity is a critical issue for 
all the population based search techniques like 
Genetic Algorithm, Genetic Programming, 
Differential Evolution Algorithm, etc. The 
average runtime of a standard DE Algorithm 
depends on the stopping criteria. There are three 
important parameters in DE, namely, NP (Size of 
the population), Cr (Cross over Rate) and F 
(Mutation Factor). There is also D vector which 
consists of candidate solutions of the problem in 
each generation. Let Max be the maximum 
number of generations. For implementation, we 
have taken 1000 as the maximum number of 
generation. In each generation of DE, a loop over 
D is conducted in which the fundamental 
operations such as Mutation and Cross over are 
performed. Hence, the runtime complexity of 
this algorithm is O(NP. D. Max) 

Merits: The study of the application of 
Differential Algorithm with Analogy is the most 
promising methodology for Software Effort 
Estimation. Differential Evolution is a method 
that optimizes a problem, iteratively  for 
improving a solution . DE performs better than 
any other contemporary algorithm and its offers 
of good optimization due to higher number of 
local optima and higher dimensionality has been 
established. The main advantages of DE are its 
ability to provide multiple solutions and that it 
can be easily applied to real problems despite 
noisy and multidimensional space. It is simple 
and has effective mutation process that ensures 
search diversity. Hence, we propose a new model 
called DEAP (Differential Evolution with 
Analogy for Project Estimation) which uses the 
Analogy concept with Differential Evolution 
Algorithm.  

Limitations: A primary limitation in this study 
lies in the selection of the datasets used in this 
study. In this approach, the real datasets Albrecht 
dataset, Desharnais dataset, COCOMO 81 and 
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NASA dataset have been considered. This 
imposes some limitations when the model is 
used for other application domains. Different 
dataset characteristics may favor different 
prediction models with prediction performance 
differing from one dataset to another. In real life, 
the project consists of attributes that are not 
limited to the attributes of these data sets which 
need to be explored. 
 
5. CONCLUSION 

The software effort evaluation has surfaced as 
one of the vital functions in software project 
management. It is not always feasible to 
anticipate the precise estimates in the 
development of software. Hence the focus is on 
the open research problem of the creation of the 
best software effort estimation model. Although 
the term best is subjective, a project manager 
usually ranks an estimation model on the basis of 
pre-defined accuracy measure. The aim is to 
propose a model that has a framework that is 
better than the other contemporary models. In 
this regard, the vital constraints to be taken into 
account for the software effort evaluation 
encompass the size of the project, schedule and 
number of persons concerned. The intangible 
nature of the software makes the software effort 
estimation process unreliable. But improving the 
accuracy of the effort estimation models would 
facilitate more effective control of time and 
budgets during software development for the 
Project Managers and others involved in the 
project. Systematic illustration of techniques has 
been in most of the recent methods. But the best 
estimation method should be based on the 
conditions and status of the project in 
comparison with the previous projects. 

 This paper gives a detailed study of 
using Evolutionary Computation Algorithms in 
the Software Effort Estimation models. Among 
the existing methods, Analogy Based Estimation 
(ABE) is the most flexible method for achieving 
better estimates during the initial stages of effort 
estimation. It inherits the formal expressions of 
case based reasoning and is a very popular 
method. However, it is criticized for its large 
computational usage. To alleviate this drawback, 
this study is devoted to improve the efficiency of 
the Analogy by using it with the recently popular 
Evolutionary Algorithms. The study eventually 
focused on using Differential Evolution 
Algorithm which is an Evolutionary computation 
Algorithm. The promising results show that the 

efficiency of Analogy method has improved by 
using it in combination with Differential 
Evolution Algorithm. This study makes 
significant contribution to the knowledge of 
Software Effort Estimation in the field of 
Software Engineering.  

 Differential Evolution Algorithm is 
used to select the most relevant project from set 
of historical projects that matches with the new 
project. The proposed method is implemented in 
JAVA platform. Based on the selection of 
relevant project, it is easier to estimate the effort 
required for the new project. The experimental 
result indicates that this model is better than 
existing methods. The metrics used are MMRE, 
MdMRE and pred(25%). As the search space is 
big, the Differential Evolution Algorithm is used 
which has been proved to be useful. Future work 
is to analyze the performance of the model with 
the combination of other Evolutionary 
Computation Algorithms.   
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