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ABSTRACT 
 

 Lightweight cryptography is not a new branch in cryptography. It is a subject specifically addressing the 
implementation of security mechanism in pervasive computing that are characterized by smart but resource 
constrained devices. There are at least two main lightweight symmetric cryptographic primitives namely 
lightweight block cipher and lightweight hash algorithm. Most of the previous surveys were focusing on 
implementation of specific cryptographic primitives.  In this paper we present a comprehensive survey of all 
lightweight symmetric cryptographic primitives, from hardware and software perspectives. The survey covers 
analysis of these algorithms and a comparison between these primitives in terms of throughput, number of 
cycle, comprehensive area, power, and energy. We also provide a classification of the structure of lightweight 
block cipher and lightweight hash function. These classifications are very useful because the primitives have 
different and sometimes contrary characteristics. Finally this comprehensive survey highlights some of the 
issues related to security aspect of small key length in lightweight cryptographic primitives. 
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1- INTRODUCTION 

Nowadays, Personal digital assistants (PADs), 
cellular phones, radio-frequency identification 
(RFID) tags, low-end smart cards, wireless sensors, 
custom controllers, smart cards, healthcare devices, 
and a plethora of small devices have ushered in a 
new explosion of technology. These devices meet 
numerous application and consumer demands. 
However, these devices typically have several 
limitations in terms of energy/power, computation, 
memory, storage, and/or resources. These 
limitations result in challenges to the 
implementation of cryptographic primitives in these 
devices. Lightweight cryptography was thus 
introduced. 
Lightweight cryptography is a modern branch of 
cryptography that resulted from the significant 
expansion in ubiquitous emerging technologies. In 
terms of performance, the implementation of 
traditional cryptography in these devices is 
impractical because of the complex and heavy 
mathematical operations of the traditional 
cryptographic primitives. These operations require 
high processing power and large memory space. In 
other words, the implementation of traditional 
cryptography in constrained environments is 
expensive. Many researchers have attempted to 
decrease the execution time of traditional 

cryptographic primitives [1, 2, 3, 4, 5]. However, 
the overall implementation costs of these attempts 
has increased because of the hardware requirements 
of recommended integrated components. 
 Lightweight cryptography aims at minimizing the 
overall implementation costs of cryptographic 
primitives relative to several aspects, such as key 
size, cycle rate, throughput rate, power 
consumption, and areas, which are measured in 
Gate Equivalence (GE) [66]. 
Lightweight cryptographic primitives are generally 
divided into two categories, viz: lightweight 
symmetric cipher and lightweight asymmetric 
cipher. The first design of the lightweight 
symmetric cipher was DESL algorithm [6]. This 
algorithm was based on the general structure of the 
Data Encryption Standard (DES) [7], in which 
different S-boxes were used. The key size is 56 bits, 
with 1848 GE. Two recent lightweight 
cryptographic primitives are PRESENT block 
cipher [8] and PHOTON hash function [9]. 
Panasenko et al. [10] proposed approach to the 
design of lightweight cryptographic primitives. 
They also highlighted some constraints and 
recommendations for implementing lightweight 
cryptographic primitives. John [11] conducted a 
survey of lightweight cryptographic primitives with 
only two block ciphers and stream ciphers. He 
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analyzed the security features and performances of 
the hardware implementations of some primitives. 
Katagi et al. [12] provided an overview of the 
technology and standardization status of 
lightweight cryptography primitives. Batina et al. 
[13] analyzed the requirements of some lightweight 
block ciphers and compared these requirements 
with those of the AES algorithm. Juels reported a 
survey examining the approaches for privacy 
protection and integrity assurance in RFID systems 
and then discussed the social and technical contexts 
of his work [14]. Lata et al. [15] provided an 
overview of some lightweight primitives and their 
attributes with a comparison of the possibilities of 
the applications of such primitives. Arora et al. [16] 
discussed the lightweight stream cipher and 
lightweight block cipher primitives and compared 
the hybrid model of Hummingbird [17] with other 
lightweight cryptography primitives. Mohd et.al.  
Provided a taxonomy of lightweight block cipher 
implementation and showed that the most important 
metric in low constrained devices is energy metrics 
[18]. This paper gives a more comprehensive survey 
of lightweight symmetric cryptographic primitives 
which include lightweight block ciphers and 
lightweight hash algorithm. These classifications 
are very useful because the primitives have different 
and sometimes contrary characteristics. Also, this 
survey highlights some of the issues related to 
security aspect of small key length in lightweight 
cryptographic primitives. 
The remainder of this paper is organized as follows. 
Section 2 presents the structures of lightweight 
block ciphers and lightweight hash functions. In 
Section 3, we provide a classification for both 
lightweight block cipher and lightweight hash 
function, and discuss the performance according to 
their structures. Section 4 discusses the security 
aspect of small key in lightweight primitives. The 
conclusion is given in Section 5. 
  
2- LIGHTWEIGHT CRYPTOGRAPHIC 

PRIMITIVE  
We present a holistic view of lightweight 
cryptographic primitives as shown in Figure 1. 
As crucial applications go pervasive, the need for 
security in RFID and sensor networks is 
dramatically increasing, which requires secure yet 
efficiently implementable cryptographic primitives 
including symmetric and asymmetric cryptography 
as we shown in Figure 1. 
At this time, no promising asymmetric 
cryptographic primitive has met the desired 
security and lightweight properties as compared 
with conventional primitives. Asymmetric 

cryptography provides more security functionality 
than the symmetric cipher, but requires more 
computational power and is slower than symmetric 
cryptography [59]. 
Elliptic curve cryptography (ECC) [22], Rivest–
Shamir–Adleman (RSA) [23], discrete logarithms 
[24], LPKI [68] and LEPA [67] are examples of 
asymmetric cryptographic family. ECC is 
considered the most effective method for resource-
constrained devices because of its small operand 
lengths and relatively low computational 
requirements [25]. This interest is normally 
dictated by the need for good hardware and 
software requirements. At this time, no promising 
asymmetric cryptographic primitive has met the 
desired security and lightweight properties as 
compared with conventional primitives, such as 
RSA and ECC. Using Public-key in lightweight 
cryptography, Public-key constructions need a lot 
of mathematical operation and computational, such 
as factoring which require huge resources to 
complete. Approaches based on public key 
cryptography are too expensive for the most 
resource constrained devices. 
RSA is the most popular algorithm for asymmetric 
cryptography and supports key sizes from 1024 to 
4096 bits. But require a large hardware footprint 
and the resource demanding implementations that 
led researchers to looking for other algorithms for 
applications in constrained devices. ECC is more 
attractive for low constrained devices. Its offer the 
same level of security with shorter keys compared 
to RSA and lower computational requirements 
[56].  
Asymmetric cryptography provides more security 
functionality than the symmetric cipher, but 
requires more computational power and is slower 
than symmetric cryptography. Batina et al. [26] 
showed that ECC, which was implemented on a 
constrained device, requires between 8500 and 
14000 gates while in case of symmetric primitives 
like PRESENT as an example it require only 1570 
GE. Obviously, the implementation of asymmetric 
cryptographic primitives is more costly than 
symmetric ones. Therefore, it is not the focus of this 
paper. 

We classify the Lightweight Cryptographic Block 
Cipher according into the structure that build based 
on it into Feistel structure and SP-network structure.  
Feistel structure such as DESL [6], 
KATAN/KTANTAN [35], MIBS [60], CLEFIA 
[34], HIGHT [29], CURUPIRA [31], LBlock [38], 
SIMON and SPECK [42], TWINE [40], QTL [39]. 
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SP-network such as AES [2], PRESENT [8], 
Humming bird-2 [49, 50], LED [41], PRINCE [51], 
PRINTcipher [52], KLEIN [53]. 
From this classification, we note that the Feistel 
structure-based primitives performs faster than SP-
network-based primitives. However, in terms of 

hardware implementation while the SP-network is 
more hardware friendly where it require less GE. 
Also, there was a few attempts to build a 
Lightweight stream ciphers such as Grain [51], 
Trivium [36], MICKEY [61], BEAN [62], Wg-8 
[63], Fruit [64], and Lizard [65].

 
Figure 1. Lightweight Cryptographic Primitives. 

2-1 Lightweight Block Ciphers 
In this section, we review existing lightweight block 
ciphers:-  
A. AES: - Feldhofer et al. [27] introduced an 
authentication protocol for RFID tags using AES 
[28]. The proposed low-power implementation of 
the AES operates on a fixed input size. The 
flexibility of AES enables its implementation on 
different platforms. Efficient implementations are 
possible on 8-, 32-, 64-, and 128-bit platforms. The 
hardware implementation of AES to encrypt a 128-
bit block of data requires 3595 GE within 996 clock 
cycles and has a power consumption of 8.15 µA on 
a 0.35 µm (CMOS) process. 
B. HIGHT: - Hong et al. [29] design HIGHT (high 
security and light weight) was standardized by the 
Telecommunications Technology Association of 
Korea. The structure of HIGHT is a generalized 
Feistel structure GFS, and the round function is light 
when compared with the SP-like structure. Every 
operation in HIGHT is 8-bit processor-oriented, 
making it suitable for low-resource hardware 
implementation. Therefore, HIGHT is hardware-
oriented rather than software-oriented. Hardware 
implementation of HIGHT requires 3048 GE. The 
encryption and decryption processes in HIGHT are 
the same. 
 

C. DESL & DESXL (DES Lightweight) proposed 
by Poschmann et al. [6]. The design is based on 
DES. The main idea of DESL and DESXL is to 
minimize gate complexity by using serial hardware. 
Furthermore, a single S-box repeated eight times is 
used in the round function instead of the eight S-
boxes employed in the original DES. The single S-
box is more resistant to differential and linear 
cryptanalysis than the original DES S-boxes. The 
original initial permutation and its inverse are 
removed because they do not provide additional 
cryptographic strength, as well as to decrease wiring 
costs. DESL implementation requires 1848 GE. The 
small 56-bit key size provides limited protection. 
Thus, DESL is suitable for applications that require 
short-term security. 
D. Curupira: - Barreto [30] suggested the use of 
“Curupira-1” for the original key schedule. Marcos 
[31] proposed the use of “Curupira-2” for the new 
specification. We simply write “Curupira” when 
discussing both. The round function structure is 
used for Curupira [31], with nonlinear layer γ, 
permutation layer π, linear diffusion layer θ, and key 
addition layer σ (Kr). 
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Figure2. Structure of the Curupira-1 S-Box [30]. 
With a highly nonlinear S-box, the Curupira S-box 
is the same as that used in Anubis [32] and Khazad 
[33], in which the implemented 8 × 8-bit Curupira 
S-box is composed of two 4 × 4-bit S-boxes, 
namely, P and Q, to ensure high diffusion speed. 
The Curupira S-box has the advantage of being 
cyclical, which indicates that the original key is 
recovered after a certain number of rounds, thus 
eliminating the need for storing any intermediary 
subkey during encryption and decryption. However, 
the use of the Curupira S-box results in many 
memory/performance trade-offs. 
E. PRESENT: - [8] is an SP network block cipher 
with 31 rounds. The block size is 64 bits, and the 
cipher supports two keys sizes, which are 80 and 
128 bits. Each round consists of an XOR operation 
to introduce a secret round subkey, a bitwise 
permutation, and a nonlinear substitution, which 
consists of 16 identical S-boxes with 4-bit input and 
4-bit output (4 × 4). Hardware implementation 
of PRESENT-80 requires an area of 1570 GE. 
F. CLEFIA: - [34] is a block cipher uses the 
generalized Feistel structure (GFS). CLEFIA has 
two different 32-bit F functions per round, with each 
function containing two distinct 8 × 8 S-boxes and 
a maximum distance separable (MDS) matrix. This 
construction is used to maximize cipher resistance 
against differential and linear cryptanalysis. 
CLEFIA requires 5979 GE. 
G. KATAN and KTANTAN: - De Cannière et al. 
[35] proposed a new family of block ciphers 
composed of two variants, namely, KATAN and 
KTANTAN. The design is based on the Trivium 
stream cipher [36], which is similar to a nonlinear 
feedback shift register (NLFSR), with a Feistel 
structure. KTANTAN is more compact than 
KATAN and is used in devices in which the key is 
fixed and can never be changed. The only difference 
between KATAN and KTANTAN is the key 
schedule. KATAN and KTANTAN are hardware-
efficient block ciphers that require less than 1000 

GE. The use of shift registers makes KATAN and 
KATANTAN suitable for low-resource devices 
[35]. The KTANTAN32 can be implemented in 462 
GE at 100 KHz, whereas KTANTAN48 requires 
588 GE and KATAN64, the largest cipher, requires 
1054 GE at 100 KHz. 
H. Hummingbird: - Engels et al. design 
Hummingbird [17], and Hummingbird-2 [58], 
Hummingbird is not classified under the block 
cipher or stream cipher category, but has the 
properties of both. The 16-bit block cipher is a 
typical SP-network consisting of four rounds and a 
final round that only includes the key mixing and 
the S-box substitution steps. The round comprises 
three stages, namely, a key mixing step, a 
substitution layer, and a permutation layer. The 
block size is 16 bits, which is suitable for low 
constrained devices because it deals only with small 
messages. The implementation of Hummingbird 
requires 3220 GE. Authenticated Encryption with 
Associated Data is a method in Hummingbird that 
authenticates any associated data that travels with 
cipher text. Processing of associated data occurs 
only after an entire encrypted payload has been 
processed. 
L. PRINTcipher: - Knudsen et al. [37] proposed 
the PRINTcipher block cipher for integrated circuit 
printing or IC-printing as one of the low constrained 
devices. The structure of PRINTcipher is an SP 
network. The cipher state is combined with a round 
key using bitwise XOR. Then, the cipher state is 
shuffled using a fixed linear diffusion layer. 
Thereafter, the cipher state is combined with a 
round constant by using bitwise XOR. The 3-bit 
entry to each S-box is permuted in a key-dependent 
permutation layer. Finally, the cipher state is mixed 
using a layer of b3 nonlinear S-box substitutions. 
J. LBlock: - Wu and Zhang [38] proposed the 
LBlock lightweight block cipher with Feistel 
structure. The LBlock consists of eight 4 × 4 S-
boxes in parallel and requires 1320 GE. The LBlock 
consists of three parts, namely, encryption 
algorithm, decryption algorithm, and key 
scheduling. Each round consists of round function, 
confusion function, and diffusion function 
(permutation of eight 4-bit words). The number of 
S-boxes is decreased, and the size of each S-box is 
minimized. More rounds are needed to achieve 
adequate security margins. In each round of LBlock, 
only half of the data is selected to undergo round 
function, whereas the other half undergoes a simple 
rotation operation. 
K- LED: - Guo et al. [39] presented an LED block 
cipher with SP-network structure. The cipher state 
is conceptually arranged in a 4-bit matrix, with each 
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nibble representing an element from GF (24) with a 
polynomial expressed as X4 + X + 1. The S-box in 
the LED cipher is the same as the PRESENT S-box, 
and its implementation requires 1265 GE.  
L. TWINE: - Suzaki et al. [40] proposed TWINE. 
The structure of TWINE depends on Type-2 
generalized Feistel network structure (GFS), with 
16 4-bit sub blocks. TWINE uses only one 4-bit S-
box and 4-bit XOR. A round function of TWINE 
consists of a nonlinear layer using 4-bit S-boxes and 
a diffusion layer, which permutes the 16 blocks. The 
diffusion layer is not a circular shift and is designed 
to provide better diffusion than the circular shift. 
The decryption of TWINE is the same as the 
encryption in that it uses the same S-box and key 
schedule with the inverse block shuffle. TWINE 
requires 2285 GE. 
M. PRINCE: - Borghoff et al. [41] proposed the 
PRINCE. A ciphertext is computed within a single 
clock cycle and requires 8679 GE. The cipher uses 
a 4-bit S-box. The same S-box is used 16 times.  
PRINCE is the first lightweight block cipher that 
takes latency as the main priority. The cipher is 
optimized with respect to latency when 
implemented in the hardware. The internal block 
cipher is based on the SP-network structure. The 
cipher has an interesting feature in that one can 
perform decryption by reusing the encryption 
process with a slightly different key. This feature 
provides an advantage in implementations requiring 
encryption and decryption, but at the same time 
induces some structure. 
N. SIMON and SPECK: - are two families of 
block ciphers publicly released by the National 
Security Agency in 2013 and proposed by Beaulieu 
et al. [42]. SPECK is tuned for optimal performance 
in software implementations, whereas SIMON is 
tuned for optimal performance in hardware 
implementations. The structure for SIMON and 
SPECK is the Feistel network. SIMON requires 
1234 GE, whereas SPECK requires 1280 GE.  
O.KLEIN 
Gong [43] proposed the KLEIN cipher. The 
structure of KLEIN is a typical SP-network, the 
same as AES, and has a 4 bit S-box. KLEIN requires 
2,213 GE. 
P. QTL: - [44] Propose a Feistel network structures 
block cipher, QTL. Supports 64 bits block with 64 
or 128 bits keys.  In traditional Feistel structure 
process only half the block message, but in QTL it 
changed the whole message. They don’t use the key 
schedule to reduce the energy consumption.   

Q. LiCi:- Patil, et.al. [69] proposed LiCi: a 
lightweight block cipher. Its Feistel based network 

the input is 64 bits and the key size is 128 to 
generate 64 bits cipher text. It requires 1153 GE 
and consumes 30mW.  
R. Oppel-1: presented by Ali, Arshad. [70]. non-
Fiestel, substitution-permutation network. input 
lengths 128 bits and 128 bit key length. The key 
divides into subkeys by using specially designed 
subkey generation mechanism.  
 
2-2 Lightweight Cryptographic Hash Functions 
Hash function takes an arbitrary input size of 
messages and produces output messages with a 
fixed size. Although no secret is involved in the 
computation, one would like to preserve collisions 
(two distinct messages hashing to the same value) 
or (second) preimage (a message input that hashes 
to a given challenge output value) to be 
computationally difficult for the attacker. For an n-
bit ideal hash function, an attacker performs 2n/2 and 
2n computations to obtain a collision and a (second) 
preimage, respectively [9].  
Some significant work on lightweight hash 
functions was recently reported. Bogdanov et al. 
[45] describes ways of using PRESENT block 
cipher in hashing modes of operation, whereas 
Spongent [20], PHOTON [9], and GLUON [46] 
took the approach of designing a dedicated 
lightweight hash function based on sponge 
construction. In the following section, the three 
different types of construction will be discussed. 
2-2-1 permutation-based Sponge Construction 
The challenge with the design of lightweight hash 
functions is dealing with the balance between the 
security requirement and memory requirements. 
Most designers of lightweight hash functions focus 
on the security requirement by producing an output 
size of at least 256 bits to prevent any collision. This 
requirement caused the computation of hash 
function to consume more memory registers. 
Therefore, most of the proposed hash functions are 
software-oriented. Sponge construction was 
recommended to solve this issue. This process can 
save on memory registers, which reduces (second) 
preimage security for the same internal state size 
[20]. 
Sponge construction is based on b-bit permutation 
P, with capacity c bits and bit rate r. mi is the r-bit 
message block and Zi is part of the hash value and 
has an output length n. The width of a sponge 
construction corresponds to the size of its internal 
state b = r + c ≥ n. In the first step, the bits of the 
state are all initialized to zero. Then, the input 
message is padded and divided into blocks of r-bit. 
The construction consists of two phases: the 
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absorbing and squeezing phases. In the absorbing 
phase, the r-bit input message blocks are XORed 
with the first r-bit of the state before interleaving 
with the function P. After processing all of the 
message blocks, the squeezing phase begins. The 
first r-bit of the state is returned as an output block, 
which then interleaves with the function P as shown 
in Figure3. The number of output blocks is chosen 
by the user [19], [47]. 
The sponge construction [27] seems to be the only 
alternative to the classical Merkle–Damgård 
construction in terms of lightweight design. This 
process relies on a single permutation, and message 
blocks are integrated with a simple XOR with the 
internal state. Sponge functions do not require 
storage of message blocks nor “feed forward” 
intermediate values, as in Davies–Meyer 
constructions. However, sponge functions require a 
larger state to achieve traditional security levels, 
which compensates those memory savings [9]. 

 
Figure 3. Sponge Construction [19] 

 
2-2-2 Merkle- Damgård construction 
The Merkle–Damgård construction is used in many 
hash algorithms, such as MD5, SHA1 and SHA2, as 
well as lightweight Hash function algorithm 
ARMADILLO [48]. The Merkle–Damgård 
construction is a method used to build collision-
resistant cryptographic hash functions from 
collision-resistant one-way compression functions. 
The Merkle–Damgård [49] hash function first 
applies an MD-compliant padding function to create 
an output with size that is double that of a fixed 
number because compression functions cannot 
handle inputs of arbitrary size. The hash function 
then breaks the output into blocks of fixed size and 
processes them one at a time with the compression 
function. At each time, a block of the input is 
combined with the output of the previous round. We 
consider a compression function h mapping {0,1}n 
× {0,1}k to {0,1}n, a fixed and public IV of {0,1}n, 
and a message (m1, m2, …, mt), where each mi is a 
block of k bits. Then, we can build a hash function 
H, as shown in Figure 4.  

 
Figure 4. Merkle-Damgård construction [49]. 
2-2-3 Davies Meyer construction 
Hash functions in use today are built around the use 
of a compression function and appeal to the 
theoretical foundations laid down by Merkle and 
Damgård [49]. The compression function H has a 
fixed-length input that consists of a chaining 
variable and a message extract and yields a fixed-
length output [21]. 
The Davies–Meyer compression function feeds 
each block of the message (mi) as the key to a block 
cipher. This function also feeds the previous hash 
value (Hi − 1) as the plaintext to be encrypted. The 
output ciphertext is then also XORed with the 
previous hash value (Hi − 1) to produce the next 
hash value (Hi). In the first round, the lack of a 
previous hash value requires the use of a constant 
pre specified initial value (H0) [21], as shown in 
Figure 5 and is based on the following computation: 
Hi= Emi (Hi-1) ⊕ Hi-1 
 

 
Figure 5. Davies Meyer Compression Function [8] 

 

2-2-4 lightweight cryptographic hash function 
The lightweight cryptographic hash functions are 
given below: 
A. DM-PRESENT and H-PRESENT 
DM-PRESENT80, DM-PRESE128 and H-DM-
PRESENT80, DM-PRESE128, and H-
PRESENT128 [21] are lightweight designs of the 
hash function based on the block cipher PRESENT 
[8]. The reversible components that can be used as 
a block cipher are discarded, and the feed forward 
from the compression function was removed. 
The DM-PRESENT [21] hash functions use a 
compression function that takes input from some 
words of the chaining variable, represented by Hi, 
and some words of the (formatted) message extract, 
represented by Mi. A single 64-bit chaining variable 
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Hi is updated in a Davies–Meyer mode of operation 
by using a message extract Mi based on the 
following computation: 

ܪ   
ᇱ = E (Hi, M) ⊕Hi 

In this case, E denotes encryption with either 
PRESENT-80 or PRESENT-128, which can 
provide 64-bit security level. At each iteration of the 
compression function, 64 bits of chaining variable 
and 80 bits of message-related input are 
compressed. Therefore, DM-PRESENT-80 and 
DM-PRESENT-128 provide a simple trade-off 
between space and throughput. Replacing 
PRESENT with a different block cipher will almost 
certainly cause an increase in the space required for 
an implementation. 
The scheme of the H-PRESENT-128 compression 
function takes as input two 64-bit chaining variables 
and a 64-bit message extract, denoted by the triple 
(H1,H2, M), and outputs the pair of updated 
chaining variables (ܪଵᇱ ଶܪ ,

ᇱ ) based on the following 
computation: 
ଵᇱܪ  = E (H1, H2, ∥M) ⊕H1 and  
ଶܪ
ᇱ  = E (H1 ⊕ c, H2, ∥M) ⊕H1 

Where E denotes PRESENT-128, and c is a nonzero 
constant that should be fixed. Thus, the chaining 
variable H1∥H2 is 128 bits long, and 64 bits of 
message-related input are hashed per iteration. 
Hirose showed that in the ideal cipher model, an 
adversary has to make at least 2n queries to the 
cipher to obtain a collision with non-negligible 
advantage, where n is the block size of the cipher. 
The same kind of analysis can be made for preimage 
resistance to show that any adversary has to make at 
least 22n queries to the cipher to identify a preimage.  
B. Keccak 
Kavun and Yalcin [47] presented a lightweight 
implementation of the Keccak-f [200] and Keccak-
f [400] permutations. Keccak-f [200] and Keccak-f 
[400] are variants of a SHA-3 hash function, Keccak 
[50] Keccak is a family of hash functions based on 
the sponge construction. The basic component is the 
Keccak-f permutation, which consists of a number 
of simple rounds with logical operations and bit 
permutations. The fundamental function of Keccak 
is a permutation chosen from a set of seven 
permutations denoted by Keccak-f[b], where b 
denotes the width of the permutation 
{25,50,100,200,400,800,1600} and the width of the 
state in the sponge construction. 
C. Quark 
Quark was designed by Aumasson in 2010 [19]. 
Quark is the first lightweight hash function based on 
a single security level using sponge construction to 

minimize memory requirements. Quark uses a 
permutation P based on the stream ciphers Grain 
[51] and block cipher KATAN [35]. The hash 
function family Quark is composed of three 
different flavors: U-Quark (64-bit security), D-
Quark (80-bit security), and T-Quark (112-bit 
security). 
The lightest instance of U-Quark provides at least 
64-bit security against collision attacks and all other 
types of attacks [19]. U-Quark fits in 1379 GE and 
consumes an average of 2.44 µW at 100 kHz in 0.18 
µm [19]. T-Quark in [19] was implemented with 
2296 GE. The internal permutation P contains three 
nonlinear Boolean functions f, g (similar to that in 
Grain), and h, one linear Boolean function p, and the 
P processes. All the nonlinear Boolean functions are 
distinctive in each flavor of Quark. The P processes 
rely on three phases: initialization, state update, and 
computation of the output, as shown in Figure 6. 

 
Figure 6. Diagram of the Permutation of Quark [19].  

D. ARMADILLO 
Badel et al. [48] proposed the ARMADILLO, a 
multi-application primitive used as a MAC and 
digital signatures used as a PRNG and PRF. The 
structure of ARMADILLO depends on the Merkle–
Damgård construction. ARMADILLO requires 
2,923 GE. One computation could be performed 
within 176 clock cycles, consuming 44 µW power. 
A better trade-off would use 4,030 GE, 77 µW 
power, and 44 cycles.  
ARMADILLO2 was developed based on the design 
of ARMADILLO. However, ARMADILLO2 is 
more robust than ARMADILLO. ARMADILLO2 
uses the new compression function, which is more 
compact in hardware than the one used in 
ARMADILLO and more secure [48]. 
E. PHOTON  
The PHOTON lightweight hash function family 
was designed by Guo, Peyrin, and Poschmann [9]. 
PHOTON uses a sponge-like construction and an 
AES-like primitive as internal unkeyed 
permutation, which enables it to be a compact hash 
function with 1120 GE for 64-bit collision 
resistance security [9]. The PHOTON family of 
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hash functions varies the output size n to be between 
64 ≤ n ≤ 256, and the input and output bit rates are 
r and r′, respectively. Thus, each of the PHOTON 
family hash functions is denoted as PHOTON-
n/r/r′. The internal state size depends on the hash 
output size and takes five different values: 100, 144, 
196, 256, and 288 bits. The internal permutation P 
applied to an internal state of d2 elements of b bits. 
The PHOTON hash functions also use two types of 
S-boxes: the 4-bit PRESENT S-box SBOXPRE and 
the 8-bit AES S-box SBOXAES.  
F. GLUON  
Berger et al. proposed the GLUON family hash 
function [46] based on a sponge construction model 
[52], where the f function calls a filtered feedback 
with carry shift register (FCSR). The filtered FCSR 
is directly based on the F-FCSR-v3 hardware stream 
cipher [53] and the X-FCSR-v2 software stream 
cipher [54].The hardware size of such a primitive is 
slightly heavier than the basic building blocks used 
in Quark and PHOTON. From the generic definition 
of lightweight hash function, three different 
instances were derived on the basis of the desired 
security level that must be achieved. The lightest 
instance, GLUON-64, provides a 64-bit security 
level and fits in 2071 GE [46], GLUON-80 provides 
an 80-bit security level, GLUON-112 provides a 
112-bit security level and 4724 GE [46]. The design 
choice of f comes from this simple idea: From a 
stream cipher with an internal state size of n, one 
can construct a function from {0, 1} b as follows: 
1. The b-bit input is filled into an initial state size of 
n bits. 
2. The stream cipher is initialized as usual, where 
the first b output bits compose the output of the f 
function. 
Under the assumption that the stream cipher is 
“perfect,” the function will look like a random 
function and will be used to identify siding in the 
function and the equivalent of twice the stream 
cipher. 
G. SPONGENT 
Bogdanov [20] designed Spongent lightweight hash 
functions based on the sponge construction 
instantiated with PRESENT-type permutations. The 
4-bit S-box is the major block of functional logic in 
a serial low-area implementation of Spongent. The 
4-bit S-box fulfills the PRESENT design criteria in 
terms of differential and linear properties [8]. 
Spongent has 13 variants for different levels of 
collision and (second) preimage resistance, as well 
as for various implementation constraints. Spongent 
keeps the round function simple, which reduces the 

logic size close to the smallest theoretically possible 
size.  
In Spongent, the b-bit 0 is taken as the initial value 
before the absorbing phase. In all Spongent variants, 
the hash size n is equal to either capacity c or 2c. 
The message chunks are XORed into the r rightmost 
bit positions of the state. The same r bit positions 
form parts of the hash output. Any linear 
approximation over the S-box involving only single 
bits in the input and output masks is unbiased. This 
linear approximation aims to restrict the linear hull 
effect discovered in round-reduced PRESENT [20].  
H. Neeva 
[55] Proposed a lightweight hash function based on 
sponge construction and PRESENT block cipher. 
The state b is of 256-bit. The rate and capacity is 32-
bit and 224-bit respectively, and 32 rounds. The 
process of Neeva is as follow, first the Message M 
is padded and then divided into the 32-bit blocks 
after that the first message block M1 is XORed to 
the state. After applying the PRESENT S-box in 
parallel, the updated register is divided in 16-bit 
words and apply Feistel structure on every 64-bit. 
After an 8-bit left rotation, it is added to a round 
constant. The updated register after modular 
addition is the output of first round. It keeps feeding 
to the next round till 32 rounds. In squeezing phase, 
take the most significant 32-bit of last register of 
absorbed phase. Then apply f seven times on the 
updated register and every time take out the most 
significant 32-bit. In order to get the 224 bit output, 
the seven 32 bit will be concatenated.   

I. Tav-128 
Peris-Lopez, et.al. [71] propose the Tav-128 
lightweight hash function based on Merkle-
Damgård construction. The output is 128 bit and the 
input message is split into 32-bit blocks. The 
internal state is composed of five 32-bit words and 
the final output consists of the four 32-bit state 
registers. The finalization function g truncates the 
state and outputs its 128 least significant bits. The 
authors analyzed the statistical properties of its 
output and provided an estimation of the hardware 
footprint required, stating that around 2.6K GEs 
would be needed. 
 

3. RESULT AND DISCUSSION: 
CLASSIFICATION AND 
PERFORMANCE ANALYSIS OF 
LIGHTWEIGHT SYMMETRIC 
PRIMITIVES 

A fair comparison between different designs of 
lightweight cryptographic primitives is difficult 
because many characteristics should be considered. 
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In addition, these primitives depend on the 
technology being used in the design. Generally, a 
fair comparison is only achieved if the same tools 
and the same library are used. 
To assess the efficiency of the implementation of 
lightweight cryptographic primitives, the following 
metrics should be considered: 

 Area: Measured in gate equivalent (GE) stands for 
a unit of measure which allows to specify 
manufacturing technology independence 
complexity of digital electronic circuits. It’s the 
silicon area of a two NAND gate usually 
constitutes the technology-dependent unit area. 

 Cycles: The number of clock cycles used to 
compute and read out the ciphertext. It is one 
aspect of a processor’s performance, and measured 
in Hz, megahertz MHz or gigahertz GHz. 

 Time: The ratio of the number of cycles to the 
operating frequency in seconds, and also it’s the 
time during which a program is executing, in 
contrast to other program life cycle phases such as 
compile time, link time and load time. 

 Throughput: In general terms, throughput is the 
maximum rate of production or the maximum rate 
at which something can be processed. We define it 
as the rate at which new output is produced with 
respect to time, measured in bits per second (bps), 
megabits per second (Mbps) or gigabits per second 
(Gbps) 

 Power: The estimated power consumption on the 
gate level by using the Power Compiler.it performs 
simultaneous optimization for timing, power and 
area, and measured by Watt W. 

 Efficiency: It is the ability to minimize resource 
usage. Optimizing the speed and memory 
requirements of a computer program. Hardware 
efficiency is measured by dividing the throughput 
to area ratio. 

A basic RFID tag may have a total gate count of 
between 1000 and 10000 gates [9]. No more than 
2,000 GE are available for security in low-cost RFID 
tags [12], [45], [9]. A common metric to measure the 
efficiency of the proposed algorithm is the number 
of GE. Basically, the GE can be calculated by 
dividing the silicon area that is used for a cipher with 
a given standard cell library by the area of a two-
input NAND gate [13]. In addition, the power 
required for 100 KHz RFIDs must be less than 27 
µW power [56]. Therefore, we can conclude that the 
area metric is more important than the power, 
especially when we want to measure the efficiency 
of the primitives. 
That makes the traditional cryptographic are not 
suitable to work on such devices. The traditional 

cryptographic algorisms focuses only on providing 
high level of security which requiring a complicated 
mathematical without focusing on the hardware 
requirement. The evaluation of the strength and 
effectiveness of existing primitives raises a serious 
challenge to researchers. Overcoming this 
challenges, it is necessary for realizing these 
limitations.  
Tables 1 and 2 show a classification of different 
block cipher primitives and a comparison between 
them in terms of comprehensive area, power, and 
energy. In Table 1, we observe that KTANTAN 
family block cipher, SIMON and SPECK require 
much less GE as compared to other lightweight 
block ciphers. The similarity between these block 
ciphers is they use hardware-friendly operations 
such as shift registers in KTANTAN and AND, 
XOR and rotation in SIMON and SPECK. To 
increase diffusion property, all of these primitives 
spend many rounds. In the other hand, TWINE 
block cipher requires the highest GE. Looking at its 
structure, TWINE does not use circular shift but 
using 4-bit S-box and 4-bit permutation. The cost 
probably lies on its permutation layer which is not a 
simple circular shift although good diffusion is 
achieved through fewer round than that in 
KTANTAN, SIMON and SPECK. However, 
TWINE is superior than KTANTAN, SIMON and 
SPECK in terms of the number of cycle per block. 
Again, this is due to fewer number of rounds 
implemented in TWINE where only half as much 
rounds as a circular shift for one sub-block 
difference is needed to diffuse all the other sub-
blocks. Among all, PRINCE requires only 1 cycle 
per block and this is due to its involutive structure 
that allows the encryption and decryption to be 
implemented in the same circuit. 
From the classification, we can easily see that the 
Feistel structure-based primitives such as HIGHT, 
DESL, DESXL, KATAN and CLEFIA performs 
faster than SP-network-based primitives. However, 
in terms of hardware implementation we can see 
that SP-network is more hardware friendly where it 
require less GE. 
Table 2 shows the comparison of the performances 
of lightweight hash functions of different hash 
functions based on the direct application of sponge-
based construction. In principle, comparing the 
performances of designs implemented in different 
platforms is not easy. Nevertheless, the results 
shown in the table are calculated based on 
measurements –as reported in the references. 
First, the DM-PRESENT-80 consumes 6.28µW at a 
clock frequency of 100 KHz in the round-based 
implementation with a total area of 2213 GE, 
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whereas the serialized implementation consumes 
1.83µW and requires 1600 GE. We observed that 
the parallel design needs more area than the 
serialized design. However, the parallel design is 
faster because it needs fewer clock cycles and 
consumes less power than the serialized design. A 
similar finding can also be observed when the 
Parallel Keccak-f and the Serial Keccak-f were 
compared.  
In terms of power consumption of the serialized 
implementation of PHOTON-80/20/16, PHOTON-
128/16/16, PHOTON-160/36/36, PHOTON-
224/32/32, and PHOTON-256/32/32, each of these 
variants of PHOTON consumes 1.59µW, 2.29µW, 
2.74µW, 4.01µW, and 4.55µW of power, 
respectively. By contrast, the parallel 
implementations of the same hash functions require 
2.7µW, 3.45µW, 4.35µW, 6.5µW, and 8.38µW of 
power, respectively. These values are higher than 
the serialized implementation. We also observed 
that parallel implementation of PHOTON generally 
requires a higher number of GE than serialized 
implementations. A similar observation was also 
observed when Spongent and Quark were 
compared.  
The most recently published hash families like 
Keccak, SPONGENT, PHOTON and Quark is 
based on a sponge construction. The sponge 
construction can be seen as an alternative to the 
classical Merkle-Damg°ard construction. It rather 
relies on a single permutation, and message blocks 
are integrated with a simple XOR with the internal 
state. There is No feed-forward necessary for the 
sponge construction as in Davies-Meyer 
constructions, however they need a larger state to 
achieve traditional security levels that compromises 
memory savings. Using sponge functions as 
operating mode is another step towards 
compactness. Avoiding any feed-forward such as 
that in sponge construction saves a lot of memory 
registers at the cost of an invertible iterative process 
that induces a lower (second)-preimage security for 
the same internal state size. The sponge 
construction keeps the internal memory size as low 
as possible. This can be seen when we compare the 
result of all sponge construction functions with 
Merkle-Damg°ard construction (ARMADELO) 
and Davies-Meyer mode (DM-PRESENTS). 
 
 
 
 

6- DISCUSSION ON THE SECURITY OF 
SMALL KEY LIGHTWEIGHT 
PRIMITIVES 

 
Since the world is moving towards smart, small and 
light technologies, information security always 
becomes the main concern. As a consequence, 
several cryptographic primitives have been actively 
proposed and analyzed recently. The security of 
small keys deployed in these primitives is well 
defined and discussed in a standardization project of 
lightweight cryptography namely, ISO/IEC 29192 
in ISO/IEC JTC 1/SC 27. In the project, several 
criteria were identified to evaluate the lightweight 
properties, viz: chip size and/or energy 
consumption for hardware implementation and 
code size and/or RAM size for software 
implementation. To provide adequate security, a 
minimum of 80-bit key is recommended [54]. We 
observe that these factors determine the significance 
of small key in securing a communication via 
resource constrained devices; 

 The value of the information.    
Usually a communication via resource constrained 
devices involve data with low level of 
confidentiality. It means that, with various type of 
attacks and attacker’s processing capabilities, the 
time taken to deduce the key or retrieve the data 
exceeds the worthiness of the data at times when 
the data is retrieved.  

 Cost of serious attack. 
A report in [57] and rough estimation from 
Moore’s law indicate that the cost to attack 75-bit 
security level would take more than 30 days with 
hundreds of million, i.e. the lifetime of 
time/success ratio would be larger than the life-
time of the protected data. However, with the 
advance of storage and computational power, one 
should take into account the security level that is 
really desired for data protection. It means that 
small bits would be breakable with the correct 
technology and sophisticated attack are in place.  

 Applications with special properties. 
There are some applications with special 
requirements and properties that allow low level 
security requirement, i.e. to balance out the needs 
of data security and performance-based business 
applicability. Practically, small organizations 
might prefer to have medium term data protection 
as the security safeguards involve high cost and big 
organizations might prefer medium and long term 
data protection for different categories of their 
data.  

 The security of small key. 



Journal of Theoretical and Applied Information Technology 
31st October 2017. Vol.95. No 20 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
5581 

 

The security of small key becomes the topic of 
interest by many cryptographers recently. In 
principle, we can move into having a more secure 
communication provided that we are flexible to 
transition to longer key lengths to sustain data 
confidentiality over a period of time. 

 
 
 

 

  
Table 1. Classification of Block Lightweight Primitives 

 

Primitives 

Structure  Block 

[bits] 

Key 

[bits] 

cycle 
per 
block 

Throughp
ut at 100 
KHz 

Power  

µA 

Logic 
process 

µm 

GE 

DESL [6]. 

Feistel 
structure 

64 56 144 44.4 O.89 0.18 1848 

DESX [6]. 64 128 144 44.4 1.42 0.18 2629 

DESXL [6]. 64 184 144 44.4 1.17 0.18 2168 

KATAN32 [35] 32 80 245 12.5 3.81  0.13 802 

KATAN48 [35] 48 80 245 18.8 4.39  0.13 927 

KATAN64 [35] 64 80 245 25.1 5.55  0.13 1054 

KTANTAN32 [35] 32 80 245 12.5 1.46. 0.13 462 

KTANTAN48 [35] 48 80 245 18.8 2.34. 0.13 588 

KTANTAN64 [35] 64 80 245 25.1 2.92. 0.13 688 

CLEFIA [34] 128 128 18 268.63 N/A 0.9 5979 

128 196 22 140.81 N/A 0.9 8536 

128 256 26 119.89 N/A 0.9 8482 

HIGHT [29] 64 128 34 188.20 1.65 0.25 3048 

LBlock [38] 64 80 3955 200 N/A 0.18 1320 

SIMON 48/96    [42] 48 96 187 5.0 N/A 0.13 739 

SPECK 48/96   [42] 48 96 104 4.0 N/A 0.13 794 

SIMON 64/96   [42] 64 96 205 4.4 N/A 0.13 809 

SPECK 64/96   [42] 64 96 114 3.6 N/A 0.13 860 

SIMON 64/128 [42] 64 128 217 4.2 N/A 0.13 958 

SPECK 64/128 [42] 64 128 118 3.4 N/A 0.13 996 

SIMON 96/96    [42] 96 96 249 3.7 N/A 0.13 955 

SPECK 96/96    [42] 96 96 123 3.4 N/A 0.13 1012 

SIMON 128/128 [42] 128 128 333 2.9 N/A 0.13 1234 

SPECK 128/128 [42] 128 128 139 3.0 N/A 0.13 1280 

TWINE [40] 64 80 36 178 N/A 0.09 1799 

TWINE [40] 64 128 36 178 N/A 0.09 2285 

QTL [44] 64 64 16 200 N/A 0 .18 1026 

AES-128 [2] 

SP-network

128 128 992 12.4 8.15 0.35 3,628 

PRESENT-80 [8]. 64 80 32 200 5  0.18 1570 

PRESENT-128 [8]. 64 128 32 200 3.3 0.18 1886 

Humming bird-2 [58] 16 128 4 400.00 4.17 0.13 3220 

LED-64 [39] 64 64 1,248 5.1 1.67 0.18 966 

LED-80  [39] 64 80 1,872 3.4 2.2 0.18 1040 

LED-96  [39] 64 96 1,872 3.4 2.2 0.18 1116 

LED-128 [39] 64 128 1,872 3.4 2.2 0.18 1265 

PRINCE  [41] 64 128 1 N/A 4.1 0.13 8679 

PRINTcipher-48 [37] 48 80 768 6.25 2.6 0.18 402 
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PRINTcipher-48 [37] 48 80 48 100 2.6 0.18 503 

PRINTcipher-96 [37] 96 160 3072 3.13 2.6 0.18 726 

PRINTcipher-96 [37] 96 160 96 100 2.6 0.18 967 

KLEIN-64 [43] 64 64 64 0.44 N/A 0.18 1981 

KLEIN-80 [43] 64 80 64 0.57 N/A 0.18 2097 

KLEIN-96 [43] 64 96 64 0.71 N/A 0.18 2213 

 
Table 2. Comparison of Performances of Lightweight Hash Functions. 

 

Primitives  

 Hash 
output 
size 

Data 
path size 

Cycles 
per block

Throughp
ut at 100 
KHz 

Power 

µW 

Logic 
process 

µm 

GE 

DM-PRESENT-80 [21]. Davies-Meyer 
mode 

64 4 4547 14.63 6.28 0.18 1600 

64 64 45 242.42 1.83 0.18 2213 

DM-PRESENT-128 [21] 64 4 559 22.9 7.49 0.18 1886 

64 128 74 387.88 2.94 0.18 2530 

PHOTON-80/20/16 [9] sponge-like 
construction 

80 4 708 2.82 1.59 0.18 865 

80 20 132 2.82 2.7 0.18 1168 

PHOTON-128/16/16 [9] 128 4 996 1.61 2.29 0.18 1122 

128 24 156 15.15 3.45 0.18 1708 

PHOTON-160/36/36 [9] 160 4 1332 2.70 2.74 0.18 1396 

160 28 180 10.26 4.35 0.18 2117 

PHOTON-224/32/32 [9] 224 4 1716 1.86 4.01 0.18 1735 

224 32 204 15.69 6.5 0.18 2786 

PHOTON-256/32/32 [9] 256 4 996 3.21 4.55 0.18 2177 

256 48 156 20.51 8.38 0.18 4362 

Parallel Keccakf[1600] [47] 256 64 24 4533 315.1 0.18 4763 

Serial Keccak-f[1600]   [47] 256 64 1200 90.66 44.9 0.18 2079 

Parallel Keccak-f[400]  [47] 128 16 20 720 78.1 0.18 1056 

Serial Keccak-f[400]     [47] 128 16 1000 14.4 11.5 0.18 509 

Parallel Keccak-f[200]  [47] 64 8 18 400 27.6 0.18 409 

Serial Keccak-f[200]     [47] 64 8 900 8 5.6 0.18 252 

U-Quark [19] 128 1 544 1.47 2.44 0.18 1379 

128 8 68 11.76 4.07 0.18 2392 

D-Quark [19] 160 1 704 2.27 3.10 0.18 1702 

160 8 88 18.18 4.67 0.18 2819 

T-Quark [19] 224 1 1024 3.13 4.35 0.18 2296 

224 16 64 50 8.39 0.18 4640 

GLUON-64 [46] 128 8 66 12.12 N/A 0.13 2071 

GLUON-80 [46] 160 16 50 32 N/A 0.13 2799.3 

GLUON-112 [46] 224 32 55 58.18 N/A 0.13 4724 

spongent-88/80/8 [20] 88 4 990 0.81 1.57 0.13 738 

88 88 45 17.78 2.31 0.13 1127 

spongent-128/128/8 [20] 128 8 2380 0.34 2.20 0.13 1060 

128 136 70 11.43 3.58 0.13 1687 

spongent-160/160/16 [20] 160 4 3960 0.40 2.85 0.13 1329 

160 176 90 17.78 4.74 0.13 2190 
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spongent-224/224/16 [20] 224 4 7200 0.22 3.74 0.13 1728 

224 240 120 13.33 5.97 0.13 2903 

spongent-256/256/16 [20] 256 4 9520 0.17 4.21 0.13 1950 

256 272 140 11.43 6.62 0.13 3281 

Neeva [55] 224 32 12067 4.99 -  -  

ARMADILLO [48] Merkle–
Damgård  

48 80 176 272 44 0.18 2,923  

5- CONCLUSION 
 

In this paper, we gives comprehensive survey of 
lightweight symmetric cryptographic primitives 
which include lightweight block ciphers and 
lightweight hash algorithm. These classifications are 
very useful because the primitives have different and 
sometimes contrary characteristics. Also, this survey 
highlights some of the issues related to security aspect 
of small key length in lightweight cryptographic 
primitives. The structures show that primitive designs 
with hardware-friendly operations give a smaller GE. 
Also, parallel design gives faster performance but 
higher GE than serialized design. The observation 
from the classification would help the researcher to 
further investigate an optimized design of lightweight 
cryptographic primitives that balance the security 
aspect and resource constraints.  
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