
Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5571

IMPLEMENTATION OF LIGHTWEIGHT CRYPTOGRAPHIC
PRIMITIVES

1BARAA TAREQ HAMMAD, 1NORZIANA JAMIL, 1MOHD EZANEE RUSLI, 2MUHAMMAD

REZA Z’ABA and ISMAIL T. AHMED
1 Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia

2 MIMOS Berhad, Technology Park Malaysia, Kuala Lumpur, Malaysia

ABSTRACT

 Lightweight cryptography is not a new branch in cryptography. It is a subject specifically addressing the
implementation of security mechanism in pervasive computing that are characterized by smart but resource
constrained devices. There are at least two main lightweight symmetric cryptographic primitives namely
lightweight block cipher and lightweight hash algorithm. Most of the previous surveys were focusing on
implementation of specific cryptographic primitives. In this paper we present a comprehensive survey of all
lightweight symmetric cryptographic primitives, from hardware and software perspectives. The survey covers
analysis of these algorithms and a comparison between these primitives in terms of throughput, number of
cycle, comprehensive area, power, and energy. We also provide a classification of the structure of lightweight
block cipher and lightweight hash function. These classifications are very useful because the primitives have
different and sometimes contrary characteristics. Finally this comprehensive survey highlights some of the
issues related to security aspect of small key length in lightweight cryptographic primitives.

Keywords: Lightweight Cryptography, Symmetric Cryptography, Block Cipher, Hash Function.

1- INTRODUCTION

Nowadays, Personal digital assistants (PADs),
cellular phones, radio-frequency identification
(RFID) tags, low-end smart cards, wireless sensors,
custom controllers, smart cards, healthcare devices,
and a plethora of small devices have ushered in a
new explosion of technology. These devices meet
numerous application and consumer demands.
However, these devices typically have several
limitations in terms of energy/power, computation,
memory, storage, and/or resources. These
limitations result in challenges to the
implementation of cryptographic primitives in these
devices. Lightweight cryptography was thus
introduced.
Lightweight cryptography is a modern branch of
cryptography that resulted from the significant
expansion in ubiquitous emerging technologies. In
terms of performance, the implementation of
traditional cryptography in these devices is
impractical because of the complex and heavy
mathematical operations of the traditional
cryptographic primitives. These operations require
high processing power and large memory space. In
other words, the implementation of traditional
cryptography in constrained environments is
expensive. Many researchers have attempted to
decrease the execution time of traditional

cryptographic primitives [1, 2, 3, 4, 5]. However,
the overall implementation costs of these attempts
has increased because of the hardware requirements
of recommended integrated components.
 Lightweight cryptography aims at minimizing the
overall implementation costs of cryptographic
primitives relative to several aspects, such as key
size, cycle rate, throughput rate, power
consumption, and areas, which are measured in
Gate Equivalence (GE) [66].
Lightweight cryptographic primitives are generally
divided into two categories, viz: lightweight
symmetric cipher and lightweight asymmetric
cipher. The first design of the lightweight
symmetric cipher was DESL algorithm [6]. This
algorithm was based on the general structure of the
Data Encryption Standard (DES) [7], in which
different S-boxes were used. The key size is 56 bits,
with 1848 GE. Two recent lightweight
cryptographic primitives are PRESENT block
cipher [8] and PHOTON hash function [9].
Panasenko et al. [10] proposed approach to the
design of lightweight cryptographic primitives.
They also highlighted some constraints and
recommendations for implementing lightweight
cryptographic primitives. John [11] conducted a
survey of lightweight cryptographic primitives with
only two block ciphers and stream ciphers. He

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5572

analyzed the security features and performances of
the hardware implementations of some primitives.
Katagi et al. [12] provided an overview of the
technology and standardization status of
lightweight cryptography primitives. Batina et al.
[13] analyzed the requirements of some lightweight
block ciphers and compared these requirements
with those of the AES algorithm. Juels reported a
survey examining the approaches for privacy
protection and integrity assurance in RFID systems
and then discussed the social and technical contexts
of his work [14]. Lata et al. [15] provided an
overview of some lightweight primitives and their
attributes with a comparison of the possibilities of
the applications of such primitives. Arora et al. [16]
discussed the lightweight stream cipher and
lightweight block cipher primitives and compared
the hybrid model of Hummingbird [17] with other
lightweight cryptography primitives. Mohd et.al.
Provided a taxonomy of lightweight block cipher
implementation and showed that the most important
metric in low constrained devices is energy metrics
[18]. This paper gives a more comprehensive survey
of lightweight symmetric cryptographic primitives
which include lightweight block ciphers and
lightweight hash algorithm. These classifications
are very useful because the primitives have different
and sometimes contrary characteristics. Also, this
survey highlights some of the issues related to
security aspect of small key length in lightweight
cryptographic primitives.
The remainder of this paper is organized as follows.
Section 2 presents the structures of lightweight
block ciphers and lightweight hash functions. In
Section 3, we provide a classification for both
lightweight block cipher and lightweight hash
function, and discuss the performance according to
their structures. Section 4 discusses the security
aspect of small key in lightweight primitives. The
conclusion is given in Section 5.

2- LIGHTWEIGHT CRYPTOGRAPHIC

PRIMITIVE
We present a holistic view of lightweight
cryptographic primitives as shown in Figure 1.
As crucial applications go pervasive, the need for
security in RFID and sensor networks is
dramatically increasing, which requires secure yet
efficiently implementable cryptographic primitives
including symmetric and asymmetric cryptography
as we shown in Figure 1.
At this time, no promising asymmetric
cryptographic primitive has met the desired
security and lightweight properties as compared
with conventional primitives. Asymmetric

cryptography provides more security functionality
than the symmetric cipher, but requires more
computational power and is slower than symmetric
cryptography [59].
Elliptic curve cryptography (ECC) [22], Rivest–
Shamir–Adleman (RSA) [23], discrete logarithms
[24], LPKI [68] and LEPA [67] are examples of
asymmetric cryptographic family. ECC is
considered the most effective method for resource-
constrained devices because of its small operand
lengths and relatively low computational
requirements [25]. This interest is normally
dictated by the need for good hardware and
software requirements. At this time, no promising
asymmetric cryptographic primitive has met the
desired security and lightweight properties as
compared with conventional primitives, such as
RSA and ECC. Using Public-key in lightweight
cryptography, Public-key constructions need a lot
of mathematical operation and computational, such
as factoring which require huge resources to
complete. Approaches based on public key
cryptography are too expensive for the most
resource constrained devices.
RSA is the most popular algorithm for asymmetric
cryptography and supports key sizes from 1024 to
4096 bits. But require a large hardware footprint
and the resource demanding implementations that
led researchers to looking for other algorithms for
applications in constrained devices. ECC is more
attractive for low constrained devices. Its offer the
same level of security with shorter keys compared
to RSA and lower computational requirements
[56].
Asymmetric cryptography provides more security
functionality than the symmetric cipher, but
requires more computational power and is slower
than symmetric cryptography. Batina et al. [26]
showed that ECC, which was implemented on a
constrained device, requires between 8500 and
14000 gates while in case of symmetric primitives
like PRESENT as an example it require only 1570
GE. Obviously, the implementation of asymmetric
cryptographic primitives is more costly than
symmetric ones. Therefore, it is not the focus of this
paper.

We classify the Lightweight Cryptographic Block
Cipher according into the structure that build based
on it into Feistel structure and SP-network structure.
Feistel structure such as DESL [6],
KATAN/KTANTAN [35], MIBS [60], CLEFIA
[34], HIGHT [29], CURUPIRA [31], LBlock [38],
SIMON and SPECK [42], TWINE [40], QTL [39].

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5573

SP-network such as AES [2], PRESENT [8],
Humming bird-2 [49, 50], LED [41], PRINCE [51],
PRINTcipher [52], KLEIN [53].
From this classification, we note that the Feistel
structure-based primitives performs faster than SP-
network-based primitives. However, in terms of

hardware implementation while the SP-network is
more hardware friendly where it require less GE.
Also, there was a few attempts to build a
Lightweight stream ciphers such as Grain [51],
Trivium [36], MICKEY [61], BEAN [62], Wg-8
[63], Fruit [64], and Lizard [65].

Figure 1. Lightweight Cryptographic Primitives.

2-1 Lightweight Block Ciphers
In this section, we review existing lightweight block
ciphers:-
A. AES: - Feldhofer et al. [27] introduced an
authentication protocol for RFID tags using AES
[28]. The proposed low-power implementation of
the AES operates on a fixed input size. The
flexibility of AES enables its implementation on
different platforms. Efficient implementations are
possible on 8-, 32-, 64-, and 128-bit platforms. The
hardware implementation of AES to encrypt a 128-
bit block of data requires 3595 GE within 996 clock
cycles and has a power consumption of 8.15 µA on
a 0.35 µm (CMOS) process.
B. HIGHT: - Hong et al. [29] design HIGHT (high
security and light weight) was standardized by the
Telecommunications Technology Association of
Korea. The structure of HIGHT is a generalized
Feistel structure GFS, and the round function is light
when compared with the SP-like structure. Every
operation in HIGHT is 8-bit processor-oriented,
making it suitable for low-resource hardware
implementation. Therefore, HIGHT is hardware-
oriented rather than software-oriented. Hardware
implementation of HIGHT requires 3048 GE. The
encryption and decryption processes in HIGHT are
the same.

C. DESL & DESXL (DES Lightweight) proposed
by Poschmann et al. [6]. The design is based on
DES. The main idea of DESL and DESXL is to
minimize gate complexity by using serial hardware.
Furthermore, a single S-box repeated eight times is
used in the round function instead of the eight S-
boxes employed in the original DES. The single S-
box is more resistant to differential and linear
cryptanalysis than the original DES S-boxes. The
original initial permutation and its inverse are
removed because they do not provide additional
cryptographic strength, as well as to decrease wiring
costs. DESL implementation requires 1848 GE. The
small 56-bit key size provides limited protection.
Thus, DESL is suitable for applications that require
short-term security.
D. Curupira: - Barreto [30] suggested the use of
“Curupira-1” for the original key schedule. Marcos
[31] proposed the use of “Curupira-2” for the new
specification. We simply write “Curupira” when
discussing both. The round function structure is
used for Curupira [31], with nonlinear layer γ,
permutation layer π, linear diffusion layer θ, and key
addition layer σ (Kr).

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5574

Figure2. Structure of the Curupira-1 S-Box [30].
With a highly nonlinear S-box, the Curupira S-box
is the same as that used in Anubis [32] and Khazad
[33], in which the implemented 8 × 8-bit Curupira
S-box is composed of two 4 × 4-bit S-boxes,
namely, P and Q, to ensure high diffusion speed.
The Curupira S-box has the advantage of being
cyclical, which indicates that the original key is
recovered after a certain number of rounds, thus
eliminating the need for storing any intermediary
subkey during encryption and decryption. However,
the use of the Curupira S-box results in many
memory/performance trade-offs.
E. PRESENT: - [8] is an SP network block cipher
with 31 rounds. The block size is 64 bits, and the
cipher supports two keys sizes, which are 80 and
128 bits. Each round consists of an XOR operation
to introduce a secret round subkey, a bitwise
permutation, and a nonlinear substitution, which
consists of 16 identical S-boxes with 4-bit input and
4-bit output (4 × 4). Hardware implementation
of PRESENT-80 requires an area of 1570 GE.
F. CLEFIA: - [34] is a block cipher uses the
generalized Feistel structure (GFS). CLEFIA has
two different 32-bit F functions per round, with each
function containing two distinct 8 × 8 S-boxes and
a maximum distance separable (MDS) matrix. This
construction is used to maximize cipher resistance
against differential and linear cryptanalysis.
CLEFIA requires 5979 GE.
G. KATAN and KTANTAN: - De Cannière et al.
[35] proposed a new family of block ciphers
composed of two variants, namely, KATAN and
KTANTAN. The design is based on the Trivium
stream cipher [36], which is similar to a nonlinear
feedback shift register (NLFSR), with a Feistel
structure. KTANTAN is more compact than
KATAN and is used in devices in which the key is
fixed and can never be changed. The only difference
between KATAN and KTANTAN is the key
schedule. KATAN and KTANTAN are hardware-
efficient block ciphers that require less than 1000

GE. The use of shift registers makes KATAN and
KATANTAN suitable for low-resource devices
[35]. The KTANTAN32 can be implemented in 462
GE at 100 KHz, whereas KTANTAN48 requires
588 GE and KATAN64, the largest cipher, requires
1054 GE at 100 KHz.
H. Hummingbird: - Engels et al. design
Hummingbird [17], and Hummingbird-2 [58],
Hummingbird is not classified under the block
cipher or stream cipher category, but has the
properties of both. The 16-bit block cipher is a
typical SP-network consisting of four rounds and a
final round that only includes the key mixing and
the S-box substitution steps. The round comprises
three stages, namely, a key mixing step, a
substitution layer, and a permutation layer. The
block size is 16 bits, which is suitable for low
constrained devices because it deals only with small
messages. The implementation of Hummingbird
requires 3220 GE. Authenticated Encryption with
Associated Data is a method in Hummingbird that
authenticates any associated data that travels with
cipher text. Processing of associated data occurs
only after an entire encrypted payload has been
processed.
L. PRINTcipher: - Knudsen et al. [37] proposed
the PRINTcipher block cipher for integrated circuit
printing or IC-printing as one of the low constrained
devices. The structure of PRINTcipher is an SP
network. The cipher state is combined with a round
key using bitwise XOR. Then, the cipher state is
shuffled using a fixed linear diffusion layer.
Thereafter, the cipher state is combined with a
round constant by using bitwise XOR. The 3-bit
entry to each S-box is permuted in a key-dependent
permutation layer. Finally, the cipher state is mixed
using a layer of b3 nonlinear S-box substitutions.
J. LBlock: - Wu and Zhang [38] proposed the
LBlock lightweight block cipher with Feistel
structure. The LBlock consists of eight 4 × 4 S-
boxes in parallel and requires 1320 GE. The LBlock
consists of three parts, namely, encryption
algorithm, decryption algorithm, and key
scheduling. Each round consists of round function,
confusion function, and diffusion function
(permutation of eight 4-bit words). The number of
S-boxes is decreased, and the size of each S-box is
minimized. More rounds are needed to achieve
adequate security margins. In each round of LBlock,
only half of the data is selected to undergo round
function, whereas the other half undergoes a simple
rotation operation.
K- LED: - Guo et al. [39] presented an LED block
cipher with SP-network structure. The cipher state
is conceptually arranged in a 4-bit matrix, with each

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5575

nibble representing an element from GF (24) with a
polynomial expressed as X4 + X + 1. The S-box in
the LED cipher is the same as the PRESENT S-box,
and its implementation requires 1265 GE.
L. TWINE: - Suzaki et al. [40] proposed TWINE.
The structure of TWINE depends on Type-2
generalized Feistel network structure (GFS), with
16 4-bit sub blocks. TWINE uses only one 4-bit S-
box and 4-bit XOR. A round function of TWINE
consists of a nonlinear layer using 4-bit S-boxes and
a diffusion layer, which permutes the 16 blocks. The
diffusion layer is not a circular shift and is designed
to provide better diffusion than the circular shift.
The decryption of TWINE is the same as the
encryption in that it uses the same S-box and key
schedule with the inverse block shuffle. TWINE
requires 2285 GE.
M. PRINCE: - Borghoff et al. [41] proposed the
PRINCE. A ciphertext is computed within a single
clock cycle and requires 8679 GE. The cipher uses
a 4-bit S-box. The same S-box is used 16 times.
PRINCE is the first lightweight block cipher that
takes latency as the main priority. The cipher is
optimized with respect to latency when
implemented in the hardware. The internal block
cipher is based on the SP-network structure. The
cipher has an interesting feature in that one can
perform decryption by reusing the encryption
process with a slightly different key. This feature
provides an advantage in implementations requiring
encryption and decryption, but at the same time
induces some structure.
N. SIMON and SPECK: - are two families of
block ciphers publicly released by the National
Security Agency in 2013 and proposed by Beaulieu
et al. [42]. SPECK is tuned for optimal performance
in software implementations, whereas SIMON is
tuned for optimal performance in hardware
implementations. The structure for SIMON and
SPECK is the Feistel network. SIMON requires
1234 GE, whereas SPECK requires 1280 GE.
O.KLEIN
Gong [43] proposed the KLEIN cipher. The
structure of KLEIN is a typical SP-network, the
same as AES, and has a 4 bit S-box. KLEIN requires
2,213 GE.
P. QTL: - [44] Propose a Feistel network structures
block cipher, QTL. Supports 64 bits block with 64
or 128 bits keys. In traditional Feistel structure
process only half the block message, but in QTL it
changed the whole message. They don’t use the key
schedule to reduce the energy consumption.

Q. LiCi:- Patil, et.al. [69] proposed LiCi: a
lightweight block cipher. Its Feistel based network

the input is 64 bits and the key size is 128 to
generate 64 bits cipher text. It requires 1153 GE
and consumes 30mW.
R. Oppel-1: presented by Ali, Arshad. [70]. non-
Fiestel, substitution-permutation network. input
lengths 128 bits and 128 bit key length. The key
divides into subkeys by using specially designed
subkey generation mechanism.

2-2 Lightweight Cryptographic Hash Functions
Hash function takes an arbitrary input size of
messages and produces output messages with a
fixed size. Although no secret is involved in the
computation, one would like to preserve collisions
(two distinct messages hashing to the same value)
or (second) preimage (a message input that hashes
to a given challenge output value) to be
computationally difficult for the attacker. For an n-
bit ideal hash function, an attacker performs 2n/2 and
2n computations to obtain a collision and a (second)
preimage, respectively [9].
Some significant work on lightweight hash
functions was recently reported. Bogdanov et al.
[45] describes ways of using PRESENT block
cipher in hashing modes of operation, whereas
Spongent [20], PHOTON [9], and GLUON [46]
took the approach of designing a dedicated
lightweight hash function based on sponge
construction. In the following section, the three
different types of construction will be discussed.
2-2-1 permutation-based Sponge Construction
The challenge with the design of lightweight hash
functions is dealing with the balance between the
security requirement and memory requirements.
Most designers of lightweight hash functions focus
on the security requirement by producing an output
size of at least 256 bits to prevent any collision. This
requirement caused the computation of hash
function to consume more memory registers.
Therefore, most of the proposed hash functions are
software-oriented. Sponge construction was
recommended to solve this issue. This process can
save on memory registers, which reduces (second)
preimage security for the same internal state size
[20].
Sponge construction is based on b-bit permutation
P, with capacity c bits and bit rate r. mi is the r-bit
message block and Zi is part of the hash value and
has an output length n. The width of a sponge
construction corresponds to the size of its internal
state b = r + c ≥ n. In the first step, the bits of the
state are all initialized to zero. Then, the input
message is padded and divided into blocks of r-bit.
The construction consists of two phases: the

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5576

absorbing and squeezing phases. In the absorbing
phase, the r-bit input message blocks are XORed
with the first r-bit of the state before interleaving
with the function P. After processing all of the
message blocks, the squeezing phase begins. The
first r-bit of the state is returned as an output block,
which then interleaves with the function P as shown
in Figure3. The number of output blocks is chosen
by the user [19], [47].
The sponge construction [27] seems to be the only
alternative to the classical Merkle–Damgård
construction in terms of lightweight design. This
process relies on a single permutation, and message
blocks are integrated with a simple XOR with the
internal state. Sponge functions do not require
storage of message blocks nor “feed forward”
intermediate values, as in Davies–Meyer
constructions. However, sponge functions require a
larger state to achieve traditional security levels,
which compensates those memory savings [9].

Figure 3. Sponge Construction [19]

2-2-2 Merkle- Damgård construction
The Merkle–Damgård construction is used in many
hash algorithms, such as MD5, SHA1 and SHA2, as
well as lightweight Hash function algorithm
ARMADILLO [48]. The Merkle–Damgård
construction is a method used to build collision-
resistant cryptographic hash functions from
collision-resistant one-way compression functions.
The Merkle–Damgård [49] hash function first
applies an MD-compliant padding function to create
an output with size that is double that of a fixed
number because compression functions cannot
handle inputs of arbitrary size. The hash function
then breaks the output into blocks of fixed size and
processes them one at a time with the compression
function. At each time, a block of the input is
combined with the output of the previous round. We
consider a compression function h mapping {0,1}n
× {0,1}k to {0,1}n, a fixed and public IV of {0,1}n,
and a message (m1, m2, …, mt), where each mi is a
block of k bits. Then, we can build a hash function
H, as shown in Figure 4.

Figure 4. Merkle-Damgård construction [49].
2-2-3 Davies Meyer construction
Hash functions in use today are built around the use
of a compression function and appeal to the
theoretical foundations laid down by Merkle and
Damgård [49]. The compression function H has a
fixed-length input that consists of a chaining
variable and a message extract and yields a fixed-
length output [21].
The Davies–Meyer compression function feeds
each block of the message (mi) as the key to a block
cipher. This function also feeds the previous hash
value (Hi − 1) as the plaintext to be encrypted. The
output ciphertext is then also XORed with the
previous hash value (Hi − 1) to produce the next
hash value (Hi). In the first round, the lack of a
previous hash value requires the use of a constant
pre specified initial value (H0) [21], as shown in
Figure 5 and is based on the following computation:
Hi= Emi (Hi-1) ⊕ Hi-1

Figure 5. Davies Meyer Compression Function [8]

2-2-4 lightweight cryptographic hash function
The lightweight cryptographic hash functions are
given below:
A. DM-PRESENT and H-PRESENT
DM-PRESENT80, DM-PRESE128 and H-DM-
PRESENT80, DM-PRESE128, and H-
PRESENT128 [21] are lightweight designs of the
hash function based on the block cipher PRESENT
[8]. The reversible components that can be used as
a block cipher are discarded, and the feed forward
from the compression function was removed.
The DM-PRESENT [21] hash functions use a
compression function that takes input from some
words of the chaining variable, represented by Hi,
and some words of the (formatted) message extract,
represented by Mi. A single 64-bit chaining variable

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5577

Hi is updated in a Davies–Meyer mode of operation
by using a message extract Mi based on the
following computation:

ܪ
ᇱ = E (Hi, M) ⊕Hi

In this case, E denotes encryption with either
PRESENT-80 or PRESENT-128, which can
provide 64-bit security level. At each iteration of the
compression function, 64 bits of chaining variable
and 80 bits of message-related input are
compressed. Therefore, DM-PRESENT-80 and
DM-PRESENT-128 provide a simple trade-off
between space and throughput. Replacing
PRESENT with a different block cipher will almost
certainly cause an increase in the space required for
an implementation.
The scheme of the H-PRESENT-128 compression
function takes as input two 64-bit chaining variables
and a 64-bit message extract, denoted by the triple
(H1,H2, M), and outputs the pair of updated
chaining variables (ܪଵᇱ ଶܪ ,

ᇱ) based on the following
computation:
ଵᇱܪ = E (H1, H2, ∥M) ⊕H1 and
ଶܪ
ᇱ = E (H1 ⊕ c, H2, ∥M) ⊕H1

Where E denotes PRESENT-128, and c is a nonzero
constant that should be fixed. Thus, the chaining
variable H1∥H2 is 128 bits long, and 64 bits of
message-related input are hashed per iteration.
Hirose showed that in the ideal cipher model, an
adversary has to make at least 2n queries to the
cipher to obtain a collision with non-negligible
advantage, where n is the block size of the cipher.
The same kind of analysis can be made for preimage
resistance to show that any adversary has to make at
least 22n queries to the cipher to identify a preimage.
B. Keccak
Kavun and Yalcin [47] presented a lightweight
implementation of the Keccak-f [200] and Keccak-
f [400] permutations. Keccak-f [200] and Keccak-f
[400] are variants of a SHA-3 hash function, Keccak
[50] Keccak is a family of hash functions based on
the sponge construction. The basic component is the
Keccak-f permutation, which consists of a number
of simple rounds with logical operations and bit
permutations. The fundamental function of Keccak
is a permutation chosen from a set of seven
permutations denoted by Keccak-f[b], where b
denotes the width of the permutation
{25,50,100,200,400,800,1600} and the width of the
state in the sponge construction.
C. Quark
Quark was designed by Aumasson in 2010 [19].
Quark is the first lightweight hash function based on
a single security level using sponge construction to

minimize memory requirements. Quark uses a
permutation P based on the stream ciphers Grain
[51] and block cipher KATAN [35]. The hash
function family Quark is composed of three
different flavors: U-Quark (64-bit security), D-
Quark (80-bit security), and T-Quark (112-bit
security).
The lightest instance of U-Quark provides at least
64-bit security against collision attacks and all other
types of attacks [19]. U-Quark fits in 1379 GE and
consumes an average of 2.44 µW at 100 kHz in 0.18
µm [19]. T-Quark in [19] was implemented with
2296 GE. The internal permutation P contains three
nonlinear Boolean functions f, g (similar to that in
Grain), and h, one linear Boolean function p, and the
P processes. All the nonlinear Boolean functions are
distinctive in each flavor of Quark. The P processes
rely on three phases: initialization, state update, and
computation of the output, as shown in Figure 6.

Figure 6. Diagram of the Permutation of Quark [19].

D. ARMADILLO
Badel et al. [48] proposed the ARMADILLO, a
multi-application primitive used as a MAC and
digital signatures used as a PRNG and PRF. The
structure of ARMADILLO depends on the Merkle–
Damgård construction. ARMADILLO requires
2,923 GE. One computation could be performed
within 176 clock cycles, consuming 44 µW power.
A better trade-off would use 4,030 GE, 77 µW
power, and 44 cycles.
ARMADILLO2 was developed based on the design
of ARMADILLO. However, ARMADILLO2 is
more robust than ARMADILLO. ARMADILLO2
uses the new compression function, which is more
compact in hardware than the one used in
ARMADILLO and more secure [48].
E. PHOTON
The PHOTON lightweight hash function family
was designed by Guo, Peyrin, and Poschmann [9].
PHOTON uses a sponge-like construction and an
AES-like primitive as internal unkeyed
permutation, which enables it to be a compact hash
function with 1120 GE for 64-bit collision
resistance security [9]. The PHOTON family of

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5578

hash functions varies the output size n to be between
64 ≤ n ≤ 256, and the input and output bit rates are
r and r′, respectively. Thus, each of the PHOTON
family hash functions is denoted as PHOTON-
n/r/r′. The internal state size depends on the hash
output size and takes five different values: 100, 144,
196, 256, and 288 bits. The internal permutation P
applied to an internal state of d2 elements of b bits.
The PHOTON hash functions also use two types of
S-boxes: the 4-bit PRESENT S-box SBOXPRE and
the 8-bit AES S-box SBOXAES.
F. GLUON
Berger et al. proposed the GLUON family hash
function [46] based on a sponge construction model
[52], where the f function calls a filtered feedback
with carry shift register (FCSR). The filtered FCSR
is directly based on the F-FCSR-v3 hardware stream
cipher [53] and the X-FCSR-v2 software stream
cipher [54].The hardware size of such a primitive is
slightly heavier than the basic building blocks used
in Quark and PHOTON. From the generic definition
of lightweight hash function, three different
instances were derived on the basis of the desired
security level that must be achieved. The lightest
instance, GLUON-64, provides a 64-bit security
level and fits in 2071 GE [46], GLUON-80 provides
an 80-bit security level, GLUON-112 provides a
112-bit security level and 4724 GE [46]. The design
choice of f comes from this simple idea: From a
stream cipher with an internal state size of n, one
can construct a function from {0, 1} b as follows:
1. The b-bit input is filled into an initial state size of
n bits.
2. The stream cipher is initialized as usual, where
the first b output bits compose the output of the f
function.
Under the assumption that the stream cipher is
“perfect,” the function will look like a random
function and will be used to identify siding in the
function and the equivalent of twice the stream
cipher.
G. SPONGENT
Bogdanov [20] designed Spongent lightweight hash
functions based on the sponge construction
instantiated with PRESENT-type permutations. The
4-bit S-box is the major block of functional logic in
a serial low-area implementation of Spongent. The
4-bit S-box fulfills the PRESENT design criteria in
terms of differential and linear properties [8].
Spongent has 13 variants for different levels of
collision and (second) preimage resistance, as well
as for various implementation constraints. Spongent
keeps the round function simple, which reduces the

logic size close to the smallest theoretically possible
size.
In Spongent, the b-bit 0 is taken as the initial value
before the absorbing phase. In all Spongent variants,
the hash size n is equal to either capacity c or 2c.
The message chunks are XORed into the r rightmost
bit positions of the state. The same r bit positions
form parts of the hash output. Any linear
approximation over the S-box involving only single
bits in the input and output masks is unbiased. This
linear approximation aims to restrict the linear hull
effect discovered in round-reduced PRESENT [20].
H. Neeva
[55] Proposed a lightweight hash function based on
sponge construction and PRESENT block cipher.
The state b is of 256-bit. The rate and capacity is 32-
bit and 224-bit respectively, and 32 rounds. The
process of Neeva is as follow, first the Message M
is padded and then divided into the 32-bit blocks
after that the first message block M1 is XORed to
the state. After applying the PRESENT S-box in
parallel, the updated register is divided in 16-bit
words and apply Feistel structure on every 64-bit.
After an 8-bit left rotation, it is added to a round
constant. The updated register after modular
addition is the output of first round. It keeps feeding
to the next round till 32 rounds. In squeezing phase,
take the most significant 32-bit of last register of
absorbed phase. Then apply f seven times on the
updated register and every time take out the most
significant 32-bit. In order to get the 224 bit output,
the seven 32 bit will be concatenated.

I. Tav-128
Peris-Lopez, et.al. [71] propose the Tav-128
lightweight hash function based on Merkle-
Damgård construction. The output is 128 bit and the
input message is split into 32-bit blocks. The
internal state is composed of five 32-bit words and
the final output consists of the four 32-bit state
registers. The finalization function g truncates the
state and outputs its 128 least significant bits. The
authors analyzed the statistical properties of its
output and provided an estimation of the hardware
footprint required, stating that around 2.6K GEs
would be needed.

3. RESULT AND DISCUSSION:
CLASSIFICATION AND
PERFORMANCE ANALYSIS OF
LIGHTWEIGHT SYMMETRIC
PRIMITIVES

A fair comparison between different designs of
lightweight cryptographic primitives is difficult
because many characteristics should be considered.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5579

In addition, these primitives depend on the
technology being used in the design. Generally, a
fair comparison is only achieved if the same tools
and the same library are used.
To assess the efficiency of the implementation of
lightweight cryptographic primitives, the following
metrics should be considered:

 Area: Measured in gate equivalent (GE) stands for
a unit of measure which allows to specify
manufacturing technology independence
complexity of digital electronic circuits. It’s the
silicon area of a two NAND gate usually
constitutes the technology-dependent unit area.

 Cycles: The number of clock cycles used to
compute and read out the ciphertext. It is one
aspect of a processor’s performance, and measured
in Hz, megahertz MHz or gigahertz GHz.

 Time: The ratio of the number of cycles to the
operating frequency in seconds, and also it’s the
time during which a program is executing, in
contrast to other program life cycle phases such as
compile time, link time and load time.

 Throughput: In general terms, throughput is the
maximum rate of production or the maximum rate
at which something can be processed. We define it
as the rate at which new output is produced with
respect to time, measured in bits per second (bps),
megabits per second (Mbps) or gigabits per second
(Gbps)

 Power: The estimated power consumption on the
gate level by using the Power Compiler.it performs
simultaneous optimization for timing, power and
area, and measured by Watt W.

 Efficiency: It is the ability to minimize resource
usage. Optimizing the speed and memory
requirements of a computer program. Hardware
efficiency is measured by dividing the throughput
to area ratio.

A basic RFID tag may have a total gate count of
between 1000 and 10000 gates [9]. No more than
2,000 GE are available for security in low-cost RFID
tags [12], [45], [9]. A common metric to measure the
efficiency of the proposed algorithm is the number
of GE. Basically, the GE can be calculated by
dividing the silicon area that is used for a cipher with
a given standard cell library by the area of a two-
input NAND gate [13]. In addition, the power
required for 100 KHz RFIDs must be less than 27
µW power [56]. Therefore, we can conclude that the
area metric is more important than the power,
especially when we want to measure the efficiency
of the primitives.
That makes the traditional cryptographic are not
suitable to work on such devices. The traditional

cryptographic algorisms focuses only on providing
high level of security which requiring a complicated
mathematical without focusing on the hardware
requirement. The evaluation of the strength and
effectiveness of existing primitives raises a serious
challenge to researchers. Overcoming this
challenges, it is necessary for realizing these
limitations.
Tables 1 and 2 show a classification of different
block cipher primitives and a comparison between
them in terms of comprehensive area, power, and
energy. In Table 1, we observe that KTANTAN
family block cipher, SIMON and SPECK require
much less GE as compared to other lightweight
block ciphers. The similarity between these block
ciphers is they use hardware-friendly operations
such as shift registers in KTANTAN and AND,
XOR and rotation in SIMON and SPECK. To
increase diffusion property, all of these primitives
spend many rounds. In the other hand, TWINE
block cipher requires the highest GE. Looking at its
structure, TWINE does not use circular shift but
using 4-bit S-box and 4-bit permutation. The cost
probably lies on its permutation layer which is not a
simple circular shift although good diffusion is
achieved through fewer round than that in
KTANTAN, SIMON and SPECK. However,
TWINE is superior than KTANTAN, SIMON and
SPECK in terms of the number of cycle per block.
Again, this is due to fewer number of rounds
implemented in TWINE where only half as much
rounds as a circular shift for one sub-block
difference is needed to diffuse all the other sub-
blocks. Among all, PRINCE requires only 1 cycle
per block and this is due to its involutive structure
that allows the encryption and decryption to be
implemented in the same circuit.
From the classification, we can easily see that the
Feistel structure-based primitives such as HIGHT,
DESL, DESXL, KATAN and CLEFIA performs
faster than SP-network-based primitives. However,
in terms of hardware implementation we can see
that SP-network is more hardware friendly where it
require less GE.
Table 2 shows the comparison of the performances
of lightweight hash functions of different hash
functions based on the direct application of sponge-
based construction. In principle, comparing the
performances of designs implemented in different
platforms is not easy. Nevertheless, the results
shown in the table are calculated based on
measurements –as reported in the references.
First, the DM-PRESENT-80 consumes 6.28µW at a
clock frequency of 100 KHz in the round-based
implementation with a total area of 2213 GE,

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5580

whereas the serialized implementation consumes
1.83µW and requires 1600 GE. We observed that
the parallel design needs more area than the
serialized design. However, the parallel design is
faster because it needs fewer clock cycles and
consumes less power than the serialized design. A
similar finding can also be observed when the
Parallel Keccak-f and the Serial Keccak-f were
compared.
In terms of power consumption of the serialized
implementation of PHOTON-80/20/16, PHOTON-
128/16/16, PHOTON-160/36/36, PHOTON-
224/32/32, and PHOTON-256/32/32, each of these
variants of PHOTON consumes 1.59µW, 2.29µW,
2.74µW, 4.01µW, and 4.55µW of power,
respectively. By contrast, the parallel
implementations of the same hash functions require
2.7µW, 3.45µW, 4.35µW, 6.5µW, and 8.38µW of
power, respectively. These values are higher than
the serialized implementation. We also observed
that parallel implementation of PHOTON generally
requires a higher number of GE than serialized
implementations. A similar observation was also
observed when Spongent and Quark were
compared.
The most recently published hash families like
Keccak, SPONGENT, PHOTON and Quark is
based on a sponge construction. The sponge
construction can be seen as an alternative to the
classical Merkle-Damg°ard construction. It rather
relies on a single permutation, and message blocks
are integrated with a simple XOR with the internal
state. There is No feed-forward necessary for the
sponge construction as in Davies-Meyer
constructions, however they need a larger state to
achieve traditional security levels that compromises
memory savings. Using sponge functions as
operating mode is another step towards
compactness. Avoiding any feed-forward such as
that in sponge construction saves a lot of memory
registers at the cost of an invertible iterative process
that induces a lower (second)-preimage security for
the same internal state size. The sponge
construction keeps the internal memory size as low
as possible. This can be seen when we compare the
result of all sponge construction functions with
Merkle-Damg°ard construction (ARMADELO)
and Davies-Meyer mode (DM-PRESENTS).

6- DISCUSSION ON THE SECURITY OF
SMALL KEY LIGHTWEIGHT
PRIMITIVES

Since the world is moving towards smart, small and
light technologies, information security always
becomes the main concern. As a consequence,
several cryptographic primitives have been actively
proposed and analyzed recently. The security of
small keys deployed in these primitives is well
defined and discussed in a standardization project of
lightweight cryptography namely, ISO/IEC 29192
in ISO/IEC JTC 1/SC 27. In the project, several
criteria were identified to evaluate the lightweight
properties, viz: chip size and/or energy
consumption for hardware implementation and
code size and/or RAM size for software
implementation. To provide adequate security, a
minimum of 80-bit key is recommended [54]. We
observe that these factors determine the significance
of small key in securing a communication via
resource constrained devices;

 The value of the information.
Usually a communication via resource constrained
devices involve data with low level of
confidentiality. It means that, with various type of
attacks and attacker’s processing capabilities, the
time taken to deduce the key or retrieve the data
exceeds the worthiness of the data at times when
the data is retrieved.

 Cost of serious attack.
A report in [57] and rough estimation from
Moore’s law indicate that the cost to attack 75-bit
security level would take more than 30 days with
hundreds of million, i.e. the lifetime of
time/success ratio would be larger than the life-
time of the protected data. However, with the
advance of storage and computational power, one
should take into account the security level that is
really desired for data protection. It means that
small bits would be breakable with the correct
technology and sophisticated attack are in place.

 Applications with special properties.
There are some applications with special
requirements and properties that allow low level
security requirement, i.e. to balance out the needs
of data security and performance-based business
applicability. Practically, small organizations
might prefer to have medium term data protection
as the security safeguards involve high cost and big
organizations might prefer medium and long term
data protection for different categories of their
data.

 The security of small key.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5581

The security of small key becomes the topic of
interest by many cryptographers recently. In
principle, we can move into having a more secure
communication provided that we are flexible to
transition to longer key lengths to sustain data
confidentiality over a period of time.

Table 1. Classification of Block Lightweight Primitives

Primitives

Structure Block

[bits]

Key

[bits]

cycle
per
block

Throughp
ut at 100
KHz

Power

µA

Logic
process

µm

GE

DESL [6].

Feistel
structure

64 56 144 44.4 O.89 0.18 1848

DESX [6]. 64 128 144 44.4 1.42 0.18 2629

DESXL [6]. 64 184 144 44.4 1.17 0.18 2168

KATAN32 [35] 32 80 245 12.5 3.81 0.13 802

KATAN48 [35] 48 80 245 18.8 4.39 0.13 927

KATAN64 [35] 64 80 245 25.1 5.55 0.13 1054

KTANTAN32 [35] 32 80 245 12.5 1.46. 0.13 462

KTANTAN48 [35] 48 80 245 18.8 2.34. 0.13 588

KTANTAN64 [35] 64 80 245 25.1 2.92. 0.13 688

CLEFIA [34] 128 128 18 268.63 N/A 0.9 5979

128 196 22 140.81 N/A 0.9 8536

128 256 26 119.89 N/A 0.9 8482

HIGHT [29] 64 128 34 188.20 1.65 0.25 3048

LBlock [38] 64 80 3955 200 N/A 0.18 1320

SIMON 48/96 [42] 48 96 187 5.0 N/A 0.13 739

SPECK 48/96 [42] 48 96 104 4.0 N/A 0.13 794

SIMON 64/96 [42] 64 96 205 4.4 N/A 0.13 809

SPECK 64/96 [42] 64 96 114 3.6 N/A 0.13 860

SIMON 64/128 [42] 64 128 217 4.2 N/A 0.13 958

SPECK 64/128 [42] 64 128 118 3.4 N/A 0.13 996

SIMON 96/96 [42] 96 96 249 3.7 N/A 0.13 955

SPECK 96/96 [42] 96 96 123 3.4 N/A 0.13 1012

SIMON 128/128 [42] 128 128 333 2.9 N/A 0.13 1234

SPECK 128/128 [42] 128 128 139 3.0 N/A 0.13 1280

TWINE [40] 64 80 36 178 N/A 0.09 1799

TWINE [40] 64 128 36 178 N/A 0.09 2285

QTL [44] 64 64 16 200 N/A 0 .18 1026

AES-128 [2]

SP-network

128 128 992 12.4 8.15 0.35 3,628

PRESENT-80 [8]. 64 80 32 200 5 0.18 1570

PRESENT-128 [8]. 64 128 32 200 3.3 0.18 1886

Humming bird-2 [58] 16 128 4 400.00 4.17 0.13 3220

LED-64 [39] 64 64 1,248 5.1 1.67 0.18 966

LED-80 [39] 64 80 1,872 3.4 2.2 0.18 1040

LED-96 [39] 64 96 1,872 3.4 2.2 0.18 1116

LED-128 [39] 64 128 1,872 3.4 2.2 0.18 1265

PRINCE [41] 64 128 1 N/A 4.1 0.13 8679

PRINTcipher-48 [37] 48 80 768 6.25 2.6 0.18 402

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5582

PRINTcipher-48 [37] 48 80 48 100 2.6 0.18 503

PRINTcipher-96 [37] 96 160 3072 3.13 2.6 0.18 726

PRINTcipher-96 [37] 96 160 96 100 2.6 0.18 967

KLEIN-64 [43] 64 64 64 0.44 N/A 0.18 1981

KLEIN-80 [43] 64 80 64 0.57 N/A 0.18 2097

KLEIN-96 [43] 64 96 64 0.71 N/A 0.18 2213

Table 2. Comparison of Performances of Lightweight Hash Functions.

Primitives

 Hash
output
size

Data
path size

Cycles
per block

Throughp
ut at 100
KHz

Power

µW

Logic
process

µm

GE

DM-PRESENT-80 [21]. Davies-Meyer
mode

64 4 4547 14.63 6.28 0.18 1600

64 64 45 242.42 1.83 0.18 2213

DM-PRESENT-128 [21] 64 4 559 22.9 7.49 0.18 1886

64 128 74 387.88 2.94 0.18 2530

PHOTON-80/20/16 [9] sponge-like
construction

80 4 708 2.82 1.59 0.18 865

80 20 132 2.82 2.7 0.18 1168

PHOTON-128/16/16 [9] 128 4 996 1.61 2.29 0.18 1122

128 24 156 15.15 3.45 0.18 1708

PHOTON-160/36/36 [9] 160 4 1332 2.70 2.74 0.18 1396

160 28 180 10.26 4.35 0.18 2117

PHOTON-224/32/32 [9] 224 4 1716 1.86 4.01 0.18 1735

224 32 204 15.69 6.5 0.18 2786

PHOTON-256/32/32 [9] 256 4 996 3.21 4.55 0.18 2177

256 48 156 20.51 8.38 0.18 4362

Parallel Keccakf[1600] [47] 256 64 24 4533 315.1 0.18 4763

Serial Keccak-f[1600] [47] 256 64 1200 90.66 44.9 0.18 2079

Parallel Keccak-f[400] [47] 128 16 20 720 78.1 0.18 1056

Serial Keccak-f[400] [47] 128 16 1000 14.4 11.5 0.18 509

Parallel Keccak-f[200] [47] 64 8 18 400 27.6 0.18 409

Serial Keccak-f[200] [47] 64 8 900 8 5.6 0.18 252

U-Quark [19] 128 1 544 1.47 2.44 0.18 1379

128 8 68 11.76 4.07 0.18 2392

D-Quark [19] 160 1 704 2.27 3.10 0.18 1702

160 8 88 18.18 4.67 0.18 2819

T-Quark [19] 224 1 1024 3.13 4.35 0.18 2296

224 16 64 50 8.39 0.18 4640

GLUON-64 [46] 128 8 66 12.12 N/A 0.13 2071

GLUON-80 [46] 160 16 50 32 N/A 0.13 2799.3

GLUON-112 [46] 224 32 55 58.18 N/A 0.13 4724

spongent-88/80/8 [20] 88 4 990 0.81 1.57 0.13 738

88 88 45 17.78 2.31 0.13 1127

spongent-128/128/8 [20] 128 8 2380 0.34 2.20 0.13 1060

128 136 70 11.43 3.58 0.13 1687

spongent-160/160/16 [20] 160 4 3960 0.40 2.85 0.13 1329

160 176 90 17.78 4.74 0.13 2190

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5583

spongent-224/224/16 [20] 224 4 7200 0.22 3.74 0.13 1728

224 240 120 13.33 5.97 0.13 2903

spongent-256/256/16 [20] 256 4 9520 0.17 4.21 0.13 1950

256 272 140 11.43 6.62 0.13 3281

Neeva [55] 224 32 12067 4.99 - -

ARMADILLO [48] Merkle–
Damgård

48 80 176 272 44 0.18 2,923

5- CONCLUSION

In this paper, we gives comprehensive survey of
lightweight symmetric cryptographic primitives
which include lightweight block ciphers and
lightweight hash algorithm. These classifications are
very useful because the primitives have different and
sometimes contrary characteristics. Also, this survey
highlights some of the issues related to security aspect
of small key length in lightweight cryptographic
primitives. The structures show that primitive designs
with hardware-friendly operations give a smaller GE.
Also, parallel design gives faster performance but
higher GE than serialized design. The observation
from the classification would help the researcher to
further investigate an optimized design of lightweight
cryptographic primitives that balance the security
aspect and resource constraints.

REFERENCES
[1] Constantin, J., Burg, A., & Gürkaynak, F. K.

(2012). Investigating the Potential of Custom
Instruction Set Extensions for SHA-3
Candidates on a 16-bit Microcontroller
Architecture. IACR Cryptology ePrint Archive,
2012, 50.

[2] Elbirt, A. J. (2007, May). Fast and efficient
implementation of AES via instruction set
extensions. In Advanced Information
Networking and Applications Workshops, 2007,
AINAW'07. 21st International Conference on
(Vol. 1, pp. 396-403). IEEE.

[3] Grabher, P., Großschädl, J., & Page, D. (2008).
Light-weight instruction set extensions for bit-
sliced cryptography. In Cryptographic Hardware
and Embedded Systems–CHES 2008 (pp. 331-
345). Springer Berlin Heidelberg.

[4] Hodjat, Alireza, and Ingrid Verbauwhede.
(2004, November). Interfacing a high speed
crypto accelerator to an embedded CPU. In
Signals, Systems and Computers, 2004.
Conference Record of the Thirty-Eighth

Asilomar Conference on (Vol. 1, pp. 488-492).
IEEE.

[5] O'Melia, Sean, and Adam J. Elbirt (2008,
December). Instruction Set Extensions for
Enhancing the Performance of Symmetric-Key
Cryptography. In Computer Security
Applications Conference, 2008. ACSAC 2008.
Annual (pp. 465-474). IEEE.

[6] Poschmann, A., Leander, G., Schramm, K., &
Paar, C. (2007). New Lightweight DES Variants
Suited for RFID Applications. In FSE (Vol.
4593, pp. 196-210).

[7] Standard, N. F. (1999). Data Encryption
Standard (DES). Federal Information Processing
Standards Publication.

[8] Bogdanov, A., Knudsen, L. R., Leander, G.,
Paar, C., Poschmann, A., Robshaw, M. J. ... &
Vikkelsoe, C. (2007). PRESENT: An ultra-
lightweight block cipher. In Cryptographic
Hardware and Embedded Systems-CHES 2007
(pp. 450-466). Springer Berlin Heidelberg.

[9] Guo, J., Peyrin, T., & Poschmann, A. (2011a).
The PHOTON family of lightweight hash
functions. In Advances in Cryptology–
CRYPTO 2011 (pp. 222-239). Springer Berlin
Heidelberg.

[10] Panasenko, Sergey, and Sergey Smagin.
(2011). Lightweight Cryptography: Underlying
Principles and Approaches. International
Journal of Computer Theory and Engineering,
3(4).

[11] John, J. (2012). Cryptography for Resource
Constrained Devices: A Survey. International
Journal on Computer Science & Engineering,
4(11).

[12] Katagi, Masanobu, and Shiho Moriai.
(2008). Lightweight cryptography for the
Internet of Things. Sony Corporation, 7-10.

[13] Batina, L., Das, A., Ege, B., Kavun, E. B.,
Mentens, N., Paar, C. ... & Yalçın, T. (2013).
Dietary recommendations for lightweight block
ciphers: Power, energy and area analysis of
recently developed architectures. In Radio

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5584

Frequency Identification (pp. 103-112).
Springer Berlin Heidelberg.

[14] Juels, A. (2006). RFID security and privacy:
A research survey. Selected Areas in
Communications, IEEE Journal on, 24(2), 381-
394.

[15] Lata, Manju, and Adarsh Kumar. (2014).
Survey on Lightweight Primitives and Protocols
for RFID in Wireless Sensor Networks.
International Journal of Communication
Networks and Information Security (IJCNIS),
6(1).

[16] Arora, Nikita, and Yogita Gigras (2013).
LIGHT WEIGHT CRYPTOGRAPHIC
ALGORITHMS: A SURVEY, IJRDTM –
Kailash | ISBN No. 978-1-63041-994-3| Vol.20
| Issue 08.

[17] Fan, X., Hu, H., Gong, G., Smith, E. M., &
Engels, D. (2009, November). Lightweight
implementation of Hummingbird cryptographic
algorithm on 4-bit microcontrollers. In Internet
Technology and Secured Transactions, 2009.
ICITST 2009. International Conference for (pp.
1-7). IEEE.

[18] Mohd, B.J., Hayajneh, T. and Vasilakos,
A.V., 2015. A survey on lightweight block
ciphers for low-resource devices: Comparative
study and open issues. Journal of Network and
Computer Applications, 58, pp.73-93.

[19] Aumasson, J. P., Henzen, L., Meier, W., &
Naya-Plasencia, M. (2013). Quark: A
lightweight hash. Journal of cryptology, 26(2),
313-339.

[20] Bogdanov, A., Knezevic, M., Leander, G.,
Toz, D., Varici, K., & Verbauwhede, I. (2013).
Spongent: The design space of lightweight
cryptographic hashing. Computers, IEEE
Transactions on, 62(10), 2041-2053.

[21] Poschmann, A. Y. (2009). Lightweight
cryptography: cryptographic engineering for a
pervasive world. In PH. D. THESIS.

[22] Hankerson, D., Vanstone, S., & Menezes, A.
J. (2004). Guide to elliptic curve cryptography.
Springer.

[23] Rivest, R. L., Shamir, A., & Adleman, L.
(1978). A method for obtaining digital
signatures and public-key cryptosystems.
Communications of the ACM, 21(2), 120-126.

[24] Odlyzko, A. M. (1985, January). Discrete
logarithms in finite fields and their
cryptographic significance. In Advances in
cryptology (pp. 224-314). Springer Berlin
Heidelberg.

[25] Chien, Hung-Yu, and Chi-Sung Laih. (2009).
ECC-based lightweight authentication protocol
with untraceability for low-cost RFID. Journal
of parallel and distributed computing, 69(10),
848-853.

[26] Batina, L., Guajardo, J., Kerins, T., Mentens,
N., Tuyls, P., & Verbauwhede, I. (2006). An
Elliptic Curve Processor Suitable For RFID-
Tags. IACR Cryptology ePrint Archive, 2006,
22.

[27] Feldhofer, M., Dominikus, S., &
Wolkerstorfer, J. (2004). Strong authentication
for RFID systems using the AES algorithm. In
Cryptographic Hardware and Embedded
Systems-CHES 2004 (pp. 357-370). Springer
Berlin Heidelberg.

[28] Daemen, Joan, and Vincent Rijmen (1999).
AES Proposal: Rijndael. AES Algorithm
Submission, September 3, 1999. URL
http://www. nist. gov/CryptoToolKit.

[29] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S.,
Koo, B. S. ... & Chee, S. (2006). HIGHT: A new
block cipher suitable for low-resource device. In
Cryptographic Hardware and Embedded
Systems-CHES 2006 (pp. 46-59). Springer
Berlin Heidelberg.

[30] Barreto, P. S. L. M., and M. Simplicio.
(2007). CURUPIRA, a block cipher for
constrained platforms. In 5th Brazilian
Symposium on Computer Networks and
Distributed Systems (pp. 61-74).

[31] Simplicio Jr, M., Barreto, P. S., Carvalho, T.
C., Margi, C. B., & Näslund, M. (2008). The
CURUPIRA-2 block cipher for constrained
platforms: Specification and benchmarking.
Barreto, P. S. L. M., & Rijmen, V. (2000). The
Anubis block cipher. Submission to the NESSIE
Project.

[32] Barreto, P. S. L. M., and Vincent Rijmen.
(2000b). The Anubis block cipher, NESSIE
Algorithm Submission.

[33] Barreto, P. S. L. M., and Vincent Rijmen
(2000). The Khazad legacy-level block cipher.
Primitive submitted to NESSIE, 97.

[34] Shirai, T., Shibutani, K., Akishita, T., Moriai,
S., & Iwata, T. (2007, January). The 128-bit
blockcipher CLEFIA. In Fast software
encryption (pp. 181-195). Springer Berlin
Heidelberg.

[35] De Canniere, C., Dunkelman, O., &
Knežević, M. (2009). KATAN and
KTANTAN—a family of small and efficient
hardware-oriented block ciphers. In
Cryptographic Hardware and Embedded

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5585

Systems-CHES 2009 (pp. 272-288). Springer
Berlin Heidelberg.

[36] Canniere, C. De, and B. Preneel. (2005).
Trivium specifications. ESTREAM. ECRYPT
Stream Cipher Project, Report, 30, 2005.

[37] Knudsen, L., Leander, G., Poschmann, A., &
Robshaw, M. J. (2010). PRINTcipher: a block
cipher for IC-printing. In Cryptographic
Hardware and Embedded Systems, CHES 2010
(pp. 16-32). Springer Berlin Heidelberg.

[38] Wu, Wenling, and Lei Zhang. (2011,
January). LBlock: a lightweight block cipher. In
Applied Cryptography and Network Security
(pp. 327-344). Springer Berlin Heidelberg.

[39] Guo, J., Peyrin, T., Poschmann, A., &
Robshaw, M. (2011). The LED block cipher. In
Cryptographic Hardware and Embedded
Systems–CHES 2011 (pp. 326-341). Springer
Berlin Heidelberg.

[40] Suzaki, T., Minematsu, K., Morioka, S., &
Kobayashi, E. (2011, November). Twine: A
lightweight, versatile block cipher. In ECRYPT
Workshop on Lightweight Cryptography (pp.
146-169).

[41] Borghoff, J., Canteaut, A., Güneysu, T.,
Kavun, E. B., Knezevic, M., Knudsen, L. R. ...
& Yalçın, T. (2012). PRINCE–A low-latency
block cipher for pervasive computing
applications. In Advances in Cryptology–
ASIACRYPT 2012 (pp. 208-225). Springer
Berlin Heidelberg.

[42] Beaulieu, R., Shors, D., Smith, J., Treatman-
Clark, S., Weeks, B., & Wingers, L. (2013). The
Simon and speck families of lightweight block
ciphers. Cryptology ePrint Archive, Report
2013/404, 2013. http://eprint. iacr. Org.

[43] Gong, Z., Nikova, S., & Law, Y. W. (2012).
KLEIN: a new family of lightweight block
ciphers. In RFID. Security and Privacy (pp. 1-
18). Springer Berlin Heidelberg.

[44] Li, L., Liu, B. and Wang, H., 2016. QTL: A
new ultra-lightweight block cipher.
Microprocessors and Microsystems.

[45] Bogdanov, A., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J., & Seurin, Y.
(2008). Hash functions and RFID tags: Mind the
gap. In Cryptographic Hardware and Embedded
Systems–CHES 2008 (pp. 283-299). Springer
Berlin Heidelberg.

[46] Berger, T. P., D’Hayer, J., Marquet, K.,
Minier, M., & Thomas, G. (2012). The GLUON
family: a lightweight Hash function family
based on FCSRs. In Progress in Cryptology-

AFRICACRYPT 2012 (pp. 306-323). Springer
Berlin Heidelberg.

[47] Kavun, Elif Bilge, and Tolga Yalcin. (2010).
A lightweight implementation of Keccak hash
function for radio-frequency identification
applications. In Radio frequency identification:
security and privacy issues (pp. 258-269).
Springer Berlin Heidelberg.

[48] Badel, S., Dağtekin, N., Nakahara Jr, J.,
Ouafi, K., Reffé, N., Sepehrdad, P. ... &
Vaudenay, S. (2010). ARMADILLO: a multi-
purpose cryptographic primitive dedicated to
hardware. In Cryptographic Hardware and
Embedded Systems, CHES 2010 (pp. 398-412).
Springer Berlin Heidelberg.

[49] Menezes, Alfred J., Paul C. Van Oorschot,
and Scott A. Vanstone (1996). Handbook of
applied cryptography. CRC press.

[50] Macé, F., Standaert, F. X., & Quisquater, J.
J. (2008). FPGA implementation (s) of a scalable
encryption algorithm. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions
on, 16(2), 212-216. Menezes, A. J., Van
Oorschot, P. C., & Vanstone, S. A. (1996).
Handbook of applied cryptography. CRC press.

[51] Daemen, Joan, and Vincent Rijmen (2002).
The design of Rijndael: AES-the advanced
encryption standard. Springer.

[52] Arnault, F., Berger, T., Lauradoux, C.,
Minier, M., & Pousse, B. (2009). A New
Approach for FCSRs, Selected Areas in
Cryptography: 16th Annual International
Workshop, SAC 2009, Calgary, Alberta,
Canada, August 13-14, 2009, Revised Selected
Papers.

[53] Juels, Ari, and Stephen A. Weis. (2005,
January). Authenticating pervasive devices with
human protocols. In Advances in Cryptology–
CRYPTO 2005 (pp. 293-308). Springer Berlin
Heidelberg.

[54] Guo, Xu, and Patrick Schaumont (2011,
November). The Technology Dependence of
Lightweight Hash Implementation Cost. In
ECRYPT Workshop on Lightweight
Cryptography 2011.

[55] Bussi, K., Dey, D., Kumar, M. and Dass,
B.K., 2016. Neeva: A Lightweight Hash
Function.

[56] Manifavas, C., Hatzivasilis, G., Fysarakis,
K., & Rantos, K. (2014). Lightweight
Cryptography for Embedded Systems–A
Comparative Analysis. In Data Privacy
Management and Autonomous Spontaneous

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5586

Security (pp. 333-349). Springer Berlin
Heidelberg.

[57] Dutertre, B., Cheung, S., & Levy, J. (2004).
Lightweight key management in wireless
sensor networks by leveraging initial trust.
Technical Report SRI-SDL-04-02, SRI
International.

[58] Engels, D., Saarinen, M. J. O., Schweitzer,
P., & Smith, E. M. (2012). The
Hummingbird-2 lightweight authenticated
encryption algorithm. In RFID. Security and
Privacy (pp. 19-31). Springer Berlin
Heidelberg.

[59] Ågren, M. (2012). On some symmetric
lightweight cryptographic designs.

[60] Izadi, M., Sadeghiyan, B., Sadeghian, S. S.,
& Khanooki, H. A. (2009, December). MIBS:
a new lightweight block cipher. In
International Conference on Cryptology and
Network Security (pp. 334-348). Springer,
Berlin, Heidelberg.

[61] Babbage, Steve, and Matthew Dodd. (2008).
"The MICKEY stream ciphers." In New
Stream Cipher Designs, pp. 191-209.
Springer Berlin Heidelberg, 2008.

[62] Kumar, Naveen, Shrikant Ojha, Kritika Jain,
and Sangeeta Lal. (2009) "BEAN: a
lightweight stream cipher." In Proceedings of
the 2nd international conference on Security
of information and networks, pp. 168-171.
ACM, 2009.

[63] Fan, Xinxin, Kalikinkar Mandal, and Guang
Gong. (2013). "Wg-8: A lightweight stream
cipher for resource-constrained smart
devices." In International Conference on
Heterogeneous Networking for Quality,
Reliability, Security and Robustness, pp. 617-
632. Springer, Berlin, Heidelberg, 2013.

[64] Ghafari, Vahid Amin, Honggang Hu, and
Chengxin Xie. (2016). "Fruit: ultra-
lightweight stream cipher with shorter
internal state." eSTREAM, ECRYPT Stream
Cipher Project, https://eprint. iacr.
org/2016/355. pdf (2016).

[65] Hamann, Matthias, Matthias Krause, and
Willi Meier. (2017). "LIZARD–A lightweight
stream cipher for power-constrained devices."
IACR Transactions on Symmetric Cryptology
2017, no. 1 (2017): 45-79.

[66] McKay, Kerry A., Larry Feldman, and
Gregory A. Witte. (2017) "Toward
Standardizing Lightweight Cryptography."
ITL Bulletin- (2017).

[67] Li, Song, Jie Cui, Hong Zhong, Yiwen
Zhang, and Qiang He. (2017) "LEPA: A
Lightweight and Efficient Public Auditing
Scheme for Cloud-Assisted Wireless Body
Sensor Networks." Security and
Communication Networks 2017 (2017).

[68] Toorani, Mohsen, and A. Beheshti. (2008).
"LPKI-a lightweight public key infrastructure
for the mobile environments." In
Communication Systems, 2008. ICCS 2008.
11th IEEE Singapore International
Conference on, pp. 162-166. IEEE, 2008.

[69] Patil, Jagdish, Gaurav Bansod, and Kumar
Shashi Kant. (2017). "LiCi: A new ultra-
lightweight block cipher." In Emerging
Trends & Innovation in ICT (ICEI), 2017
International Conference on, pp. 40-45. IEEE,
2017.

[70] Ali, Arshad. (2017). "Oppel-1: A new block
cipher." In Applied Sciences and Technology
(IBCAST), 2017 14th International Bhurban
Conference on, pp. 441-447. IEEE, 2017.

[71] Martin, Honorio, Pedro Peris Lopez, Enrique
San Millan, and Juan E. Tapiador. (2017). "A
lightweight implementation of the Tav-128
hash function." IEICE Electronics Express
14, no. 11 (2017): 20161255-20161255.

