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ABSTRACT 
 

The Cellular Manufacturing System has emerged as a strategy capable of improving the manufacturing cost 
and decreasing the lead time with no negative impacts on the product quality. One of the fundamental 
problems of this strategy is known as the Cell Formation Problem, which consists of defining cells 
including a machine group and a product (part) family. In this paper, we consider the Manufacturing Cell 
Formation Problem where the objective is to maximize the Grouping Efficacy measure. We introduce a 
hybrid gravitational method (HGM) combining a population based algorithm and a local search procedure. 
This hybrid metaheuristic is a variant of the Discrete Gravitational Search Algorithm (DGSA). It allows 
searching extensively the feasible domain of a problem during the early iterations. It also includes a well-
balanced mechanism for enhancing exploration and exploitation strategies. Several modifications were 
necessary to adapt the DGSA in order to maintain similar performance when dealing with the CFP. The 
major ones consist in modifying the population of solutions and in performing the exploration phase. The 
Path Relinking process used in DGSA to modify the solution is replaced by a crossover strategy derived 
from concepts of the Gravitational Search Algorithm (GSA). The performance of this hybrid variant of the 
Gravitational Search Algorithm is evaluated using a set of 35 benchmarks from the literature. The 
numerical results confirm that our hybrid metaheuristic could be considered as one of the best algorithms. 

Keywords: Cell Formation Problem, Hybrid Gravitational Method, Gravitational Search Algorithm, Tabu 
Search, Grouping Efficacy. 

 
1. INTRODUCTION  
 

The Group Technology (GT) is a concept which 
had emerged in the late 1950s; it had been first 
introduced by [15] and adopted for the first time by 
the Ford Motor Company in the 1970s according to 
[17]. Since then GT has been widely applied in the 
industrial field due to its impact on increasing both 
the productivity and the manufactured products 
quality with a reduced lead time and cost. The 
application of the GT concept known as Cellular 
Manufacturing is based on the principle that similar 
things should be manufactured similarly. One of the 
most used methods to bring the cellular 
manufacturing philosophy to bear is referred as the 
Cell Formation Problem (CFP). The CFP takes its 
origins from the works performed by the pioneers 
of GT cited in [21]. 

Consider a production organization (system) 
within a company including a set of machines and a 
set of parts to be produced. The CFP consists in 
dividing the system into subsystems, referred to as 
cells, in order to decrease inter-cell movements and 

to increase the intra-cell movements. This can be 
done by grouping parts into families and assign 
them to machine groups. To the best of our 
knowledge, the methods used to solve the CFP can 
be divided into the following categories: 

a. Cluster Analysis, 
b. Graph Partitioning Approaches, 
c. Mathematical Programming Methods, 
d. Heuristic and Metaheuristic Algorithms, 
e. Artificial Intelligence Methodologies. 

A survey of the methods employed to solve the 
CFP can be found in [16]. Some exact methods 
have been applied to solve CFP of small dimension, 
and two popular exact methods can be found in [5]  
and [5]. In spite of that, the CFP is still considered 
as an NP-complete (hard) problem according to 
[24]. For this particular reason, a large number of 
heuristics have been developed to solve the CFP 
using reasonable computational time. 

In this paper, we introduce a hybrid gravitational 
method combining a population based algorithm 
and a local search procedure. This hybrid 
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metaheuristic is a variant of the Discrete 
Gravitational Search Algorithm (DGSA) introduced 
in [1]. DGSA allows searching extensively the 
feasible domain of a problem during the early 
iterations of the process. DGSA also includes a 
well-balanced mechanism for enhancing 
exploration and exploitation strategies. Several 
modifications were necessary to adapt the DGSA in 
order to maintain similar performance when dealing 
with the CFP. The required modifications to adapt 
the DGSA to the CFP are described thoroughly in 
the paper. The major ones consist in modifying the 
population of solutions and in performing the 
exploration phase. Moreover, the Path Relinking 
process used in DGSA to modify the solution is 
replaced by a crossover strategy derived from 
concepts of the Gravitational Search Algorithm 
(GSA) proposed [18]. 

The reminder of this paper is organized as 
follows. In Section 2, the CFP and the mathematical 
model are introduced. The basic notions of the 
Gravitational Search Algorithm (GSA) required to 
specify the crossover of our hybrid metaheuristic 
are presented in Section 3. Our variant HGM of the 
DGSA is detailed in Section 4. First, we indicate 
how the solutions are encoded in the process, and 
how the solutions of the initial population are 
generated. Then we describe the Dependent 
Movement Search Operator Phase (DMSOP) where 
a solution is modified using a crossover operator 
driven by the other solutions in the population, and 
the Independent Movement Search Operator Phase 
(IMSOP) where the offspring is improved 
independently of the other using a Tabu search 
procedure. The numerical results are summarized in 
Section 5. First, the values of the parameters are 
determined, and the efficiency of the HGM is 
analyzed using 35 well-known benchmark 
problems. Our approach HGM outperforms the 
best-known value for one problem, it reaches the 
best-known values for 30 other problems, and it 
misses the best-known solution for 4 other 
problems by a small margin. Concluding remarks 
are presented in Section 6. 

2. THE MATHEMATICAL FORMULATION 
OF THE CELL FORMATION PROBLEM 

2.1 The Cell Formation Problem 

Given a 0-1 machine-part incidence matrix, the 
main goal of the CFP is to obtain a diagonal block 
matrix by rearranging the rows and the columns. 
The columns and the rows are rearranged in such a 
way to construct machine groups and part families 
that optimize one of the performance measures 

defined in literature. In this paper, the Grouping 
Efficacy measure is selected due to its several 
advantages such as: 

a. improving both the with-in cell machine 
use and to reduce the inter-cell movement, 

b. allowing to differentiate between well-
structured (with a high with-in cell machine and 
low inter-cell movement) and ill-structured (with a 
low with-in cell machine and high inter-cell 
movement) incidence matrices, 

c. generating interesting block diagonal 
matrices, 

d. simplifying its formulation. 
 

 
Figure 1. An incidence matrix example. 

 
Many performance measures had been cited in 

literature. A survey overview of performance 
measures can be found in [8] and [25].We select the 
Grouping Efficacy defined as follows: 

1 1

0 0

Out In

In In

a a a
Eff

a a a a


 

 
  (1) 

Where a  is the total number of 1  in the incidence 

matrix, 0
Ina  is the number of voids (the number of 

zeros within a cell), 1
Outa  is the number of 

exceptional elements (the number of 1  out of all 
cells), and 1

Ina  is the number of 1  within a given 

cell. An example of a solution of the CFP is shown 
in Figure 1, where machines and parts were 
respectively grouped into cells and families such as 
each part family were assigned to a cell containing 
the machines required for the operations.  

2.2 The mathematical model 
In this subsection a mathematical model 

similar to the one presented in [2] and [26], is 
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introduced. The mathematical programming model 
is formulated as below:     

1 1 1

1 1 1
(1 )
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1,...,k C      (6) 

0 or1, 1,..., , 1,...,ikx i M k C          (7) 

0 or1, 1,..., , 1,...,jky j P k C          (8) 

Where ikx  and jky  are two binary variables defined 

as below: 
For each 1,..., , 1,...,i M k C    

ikx 

 

For each 1,..., , 1,...,j P k C    

jky 

 

And where  

1 1 1 1

C M POut
ij ik jkk i j

a a a x y
  

       (9) 

0 1 1 1
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C M PIn
ij ik jkk i j

a a x y
  

       (10) 

ija denotes the element in the thi  row and the 

thj column of the incidence matrix. The constraints 

(3) and (4) ensure that each part and each machine 
must be assigned to only one cell. The constraints 
(5) and (6) indicate that each cell contains at least 
one part and one machine. The constraints (7) and 
(8) indicate that decision variables are binary. In the 
computational experiments, the number of cells, 
denoted C, was fixed for each problem to its value 
in the best-known solution reported in the literature. 

Our solution approach deals with a 0-1 
programming problem. It is considered as hybrid 
metheuristic. This hybrid metaheuristic includes a 
population based procedure as well as a local search 
algorithm. The proposed hybrid metaheuristic is in 
line with the discrete gravitational search algorithm 
(DGSA) proposed in [1]. As the hybrid 
metaheuristic is referring to the swarm procedure 
gravitational search algorithm (GSA), we should 
first summarize this swarm procedure. 

3. THE GRAVITATIONAL SEARCH 
ALGORITHM 

The swarm procedure called Gravitational 
Search Algorithm (GSA) is a population based 
procedure first proposed by [18] to mimic the 
Newton’s Law of Gravity and the Law of Motion 
when solving continuous optimization problem of 

the form  Max  
ns R

fit s


.The value  fit s measures the 

fitness of a solution  1, , , , n
d ns s s s R   . In 

the GSA, each solution s corresponds to an agent 
having four specifications: 

position  1, , , ,d ns s s  , inertia mass, active 

gravitational mass, and passive gravitational mass.  

Now assume that N solutions (agents) are 
available: 

 1 , , , , ,    1,2, , .i i i i
d ns s s s i N      (11) 

In the context of gravitational motion, good 

solutions (with higher fitness  ifit s ) move more 

slowly than ones having smaller fitness  ifit s . 

Hence, agents with smaller fitness navigate around 
agents with higher fitness. Through the iterations, 
the gravitational and inertia mass of each agent is 
regulated. After a while, the solutions will be 
attracted by the one having the best fit that 
represents an optimal solution in the search space. 
All solutions (agents) are modified to mimic the 
Newton Law of Gravity. At iteration t, we denote 
the position of solution i by: 

        1 , , , , ,    1,2, , .i i i i
d ns t s t s t s t i N      (12) 

It is modified according to a velocity vector 

        1 , , , ,i i i i
d nv t v t v t v t   involving an 

acceleration vector  iac t . To determine these 

vectors, consider the acting force on solution i by 
another solution j  specified as follows: 

( ) ( )
( ) ( ) (s ( ) ( )),    1,2, ,

( )
pi ajij j i

d d d
ij

M t M t
F t Gt t s t d n

R t 


  




    
(13) 

where ( )ajM t  represents the active gravitational 

mass of agent ,j ( )piM t represents the passive 

gravitational mass of agent ,i ( )G t  represents the 

gravitational constant at time ,t  represents a 

small constant, and ( )ijR t  represents the Euclidian 

distance between the two agents i  and 

j  
2

i.e., ( ) ( ), ( )
i j

ij
R t s t s t  
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 To include a stochastic aspect into the GSA, the 
total force acting on solution (agent) i  in a 
dimension d   is determined by a randomly 
weighted sum of thd components of the forces 
exerted from other agents: 

1,

( ) ( )
N

i ij
d j d

j j i

F t rand F t
 

        (14) 

where jrand  denotes a random number in the 

interval  0,1 . Thus, by the Law of Motion, the 

acceleration ( )i
dac t of the thd component of agent i  

at a specific time t  is specified as follows: 
 

( )
( )

( )

d
i i
d

ii

F t
ac t

M t
          (15) 

where ( )iiM t  denotes the thi agent inertia mass. 

Moreover, the velocity of the solution (agent) i at 
the next iteration is specified as a linear 
combination of its current velocity and its current 
acceleration. Therefore, the position and the 
velocity of the thd component of solution i are 
defined as follows: 

( 1) ( ) ( )i i i
d i d dv t rand v t ac t        (16) 

 ( 1) ( ) ( 1)i i i
d d ds t s t v t         (17) 

where irand is a uniform random number in the 

interval  0,1 to induce a stochastic aspect into the 

GSA.  

We initialize the gravitational constant G at a 
specific value which is reduced during the search 
process in order to control the search accuracy. In 
other words, G  is a function of the initial value 

0(G )  and time ( ) :t  

0( ) (G , )G t G t         (18) 

The fitness of the updated solutions is used to 
simulate the fact that the best solutions are more 
attractive and that they induce a larger impact on 
modifying the gravitational and the inertia masses 
of the other solutions. At implementation stage of 
GSA, the three different masses take the same 
value: 

          1,2,..., .ai pi ii iM t M t M t M t i N          (19) 

 

Moreover, they are specified as follows: 

( ( )) ( )
( )

( ) ( )

i

i

fit s t worst t
m t

best t worst t





     (20) 

1

( )
( )

( )
i

i N

jj

m t
M t

m t





         (21) 

where ( )worst t  and ( )best t  are defined as follows: 

 
1,2,

( ) max ( ( )j

j N
best t fit s t





     (22) 

 
1,2,

( ) min ( ( )j

j N
worst t fit s t





    (23) 

During the early iterations of the procedure, the 
acting forces on an agent are specified as in 
equation (14) to simulate an exploration phase of 
the process to search more extensively the feasible 
domain. Later, the process should move to an 
exploitation phase as proposed in [18]. Thus in 
(14), instead of using all the other solutions to 
specify the acting force, we use only a set Kbest of 
the best solutions available. In other words, in the 
early stage, the set Kbest includes all the solutions, 
then its size is reduced during the process to include 
only the best solutions. Consequently, the equation 
(14) is modified as follows: 
 

,

( ) ( )i ij
d j d

j Kbest j i

F t rand F t
 

      (24) 

According to [9], the GSA is a swarm 
intelligence algorithm usually described as a swarm 
based system leading to emergent behavior 
specified through interactions between components 
of the system. Moreover, all the swarm intelligence 
algorithms have their own specific way to explore 
and exploit the search space, even though they all 
share common principles. 

4. THE HYBRID GRAVITATIONAL 
METHOD 

In this paper, we introduce a hybrid 
gravitational method quite similar to the Discrete 
Gravitational Search Algorithm proposed in [1]  to 
solve the CFP. Accordingly, our hybrid method 
includes two phases: the Dependent Movement 
Search Operator Phase (DMSOP) where a solution 
is modified according to the solutions within the 
population, and the Independent Movement Search 
Operator Phase (IMSOP) where the offspring is 
improved independently of the solution within the 
population using a local search procedure. Hence, 
our hybrid is composed of a population based 
algorithm corresponding to the Dependent 
Movement Search Operator that modify the 
population of solutions where each offspring 
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solution can be improved using a local search 
method. First we summarize the hybrid 
metaheuristic: 

 
Hybrid gravitational method (HGM) 
(1) Generate an initial population S including N 
feasible solutions. 

 Compute the acceleration sac for each solution 
.s S  

 Specify the set Kbest of the solutions having the 
best values of Eff in the population, and the 

parameter impp  

(2) For iterationq generations 

 Select randomly a solution  s S Kbest   

 Modify the solutions in S using the (DMSOP) 
and (IMSOP) operators as follows: 

o Let the current solution s s  . 
o Apply the following process for each solution 

0s Kbest  in decreasing order of their Eff 
values:  

 Use the (DMSOP) operator to complete a 
crossover between the solution sand 

0s Kbest  to generate a solution 3.s  

 Improve solution 3s by fixing the groups to 
assign parts to families according to the 
machine groups, and afterward fixing the new 
families in order to assign the machines to the 
groups according to the part families, and 
repeat sequentially the two assignment 
modifications until no modification is possible. 
Denote by s the best solution generated 
during this process. 

 If necessary, apply the repair process to the 
offspring solution s to insure that no group or 
no family is empty. 

 Use the (IMSOP) to improve the solution s  
using the local search procedure according to 
the parameter impp . 

 Let sdenotes the resulting solution. 
 The resulting s replaces the solution s in S 

having the worst Eff value.  

 Compute the updated acceleration sac for each 
solution .s S  

 Determine the new set .Kbest  
 

Now let us complete the presentation of the 
method HGM by describing in more details the 
chromosomal representation, the initialization of 

the initial population, and the stages of the 
proposed HGM. 

4.1 The Chromosomal representation 
For our CFP problem, each chromosome 

(solution) s S includes P M  genes, encoded as 
a vector of integers. Recall that P and M are the 
number of parts and machines. Each integer 
component of the chromosome s lies in the 

interval 1,C (C being the number of cells). Hence, 

the chromosome is composed of two subsets 
associated with parts and machines, respectively. 

Figure2 illustrates a chromosome where js denotes 

the cell to which part or machine j belongs, 
according to the value of 

   1, ,  or 1, ,j P j P P M     , respectively.  

 
Figure 2. The chromosomal representation. 

 

Accordingly, the chromosome associated with the 
solution in Figure 1 is the following. 
 

 
 
4.2 The generation of the initial population 

Let N be the number of solutions in the 
population S. The first solution in the initial 
population is obtained by combining the group-and-
assign method introduced in [23] and the approach 
presented in [19]. The group-and-assign method 
introduced in [23] is used to generate the machine 
groups. The approach presented in [19]  is used to 
determine the part families on the basis of the 
machine groups. The reminder solutions of the 
initial population are generated randomly.  

For the sake of completeness, the group-and-
assign method is summarized as follows. The first 
machine is selected randomly among those having 
an index between 1 and   the floor of .M M

C C
    

The 

selected machine (referred as the seed machine) is 
assigned to the first group 1gr . The 

reminder  1C  seed machines will be assigned to 

the other cells 2 , , Cgr gr . Each machine is 

selected sequentially among the unassigned 
machines in order to reduce the number of parts 
that are not serviced by the current set of seed 
machines already selected. In the second stage, the 
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reminder machines are assigned in order to 
maximize the number of parts serviced by all the 
machines already assigned to the cell. The 
procedure can be summarized as follows: 

I. For all unassigned machines i INA  
determine the group  

 
1, ,

1

1, , 1

1
Min

1
ArgMin

k

k k

k

k k

n

ij i j
k C

j i grk

n

i ij i j
k C j i grk

k i a a
gr

gr a a
gr


 

  

    
  
    
  

 

 





. 

II. Determine the machine i INA  

  ArgMin
i INA

i k i


  

and assign  i  to the group 

  ;  i.e., .i i igr gr gr i   

III. Eliminate  from i INA , and repeat steps I-III 
 until all machines are assigned. 

 
The approach introduced in (Rojas et al., 2004) 

is used to assign parts to families according to the 
machine groups in order to generate an initial 
solution having a good grouping efficacy. It mainly 
consists in assigning each part j to the family 

kF where the quotient jk

j jk

u

e v
is maximized. 

Here jku denotes the number of machines in group 

kgr  that process the part j , jkv denotes the 

number of machines within group kgr that are not 

processing the part j , and je denotes the number 

of machines processing the part j .  

Note that whenever a new solution is 
generated, a correction process exists to ensure that 
each group and each family contains a machine or a 
part, respectively. Thus, if a group has no machine 
within it, then a machine is selected randomly from 
another group including more than one machine, 
and it is transferred to the former group. A similar 
process exists for the part families. 

4.3 The Dependent Movement Search Operator 
Phase for the CFP 
The first step during the DMSOP is to apply 

sequentially a crossover operator to a randomly 
selected solution  s S Kbest   and a solution in 

Kbest to generate a new solution s . The solutions 
of Kbest set are picked up one by one in a 

decreasing order according to their Eff. To 
summarize the crossover operator, consider some 
step of this process where the crossover operator is 
applied between the current solution s  and a 
solution: 

 

 

The crossover operator is governed by the 

acceleration vector 0ac of os  as specified in (15). 

Recall that in the CFP, 0ac is a P M vector. The 
crossover is completed as follows. First, select 
randomly an index  1,r P M  . Then, for each 

index  1,2,...,d M P  , compute the value 
0 0.d r dDiff ac ac  If 0,dDiff   then 3

d ds s , 

otherwise 3 o
d ds s . 

 
The output solution 3s of the crossover operation 

becomes the new solution 3;  i.e., .s s s    Then, we 

improve solution 3s by fixing the groups to assign 
parts to families according to the machine groups, 
and afterward fixing the new families in order to 
assign the machines to the groups according to the 
part families, and repeat sequentially the two 
assignment modifications until no modification is 
possible. Thereafter the best solution obtained by 
DMSOP is denoted s . 
 
4.4 The Independent Movement Search 

Operator Phase for the CFP 
In this paper, a Tabu search algorithm with short 

memory, is used as the Independent Movement 
Search Operator Phase (IMSOP). Recall that the 
Tabu search algorithm was first introduced by [3]  
[11], and then extended in [4]. The main purpose of 
the Tabu search algorithm is to allow overcoming 

the local optima. The search starts with solution
"s , 

and iteratively it seeks for better solutions in a 
neighborhood where each element is obtained by 
applying either the add/drop operator or the swap 
operator according to a probability p . The 

neighborhood includes only solutions that are not 
Tabu unless it satisfies the aspiration criteria. This 
process continues until the stopping criteria are met. 
To specify completely the Tabu search algorithm, 
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five different concepts have to be defined: the 
neighborhood structure, the movement operators, 
the Tabu list, the aspiration criteria, and the 
stopping criteria.  

The neighborhood size is denoted neighborI (in our 

implementation, neighborI = 4
M ). To generate each 

neighbor, we select randomly one of the two 
operators add/drop and swap according to a 

probability p  1in our implementation, 2p  . 

Assume that s denotes the current solution. To 
generate a neighbour of s usingthe add/drop 
operator, we select randomly an index 

 1,2,...,d M P   and a cell c C . Then the 

neighbor solution is obtained by modifying the 

value of  to .ds c similarly, to generate a neighbour 

of s using the swap operator, two index 

 1 2, 1,2,...,d d M P  are selected randomly. 

Then the neighbor solution is obtained by 

exchanging the values 
1 2
 and d ds s  .  

The Tabu list T is stored into a matrix 
( )C P M  .Whenever a machine or a part 

ijt denotes the thi  row and the thj  column of the 

matrix T . If a machine or a part 

 1,2,...,d M P   is assigned to a cell c C , 

then the value of ijt increases from its value  to the 

iteration where this move will lose its tabu status.  
In our case, we consider a short-term memory tabu 
search where a move is forbidden for 10 iterations 
unless the aspiration criterion is met. The aspiration 
criterion is met if all moves except one are tabu.  

5. THE COMPUTATIONAL RESULTS 

In the first part of this section, a statistical study 
is performed to determine the parameter values of 
the HGM process for solving the CFP. Then, once 
these values are specified, we complete a 
comparative study to evaluate the performance of 
the proposed algorithm with respect to the best 
known solution of 35 benchmark problems. 

To evaluate the algorithm performance when 
solving a problem, we use a gap specified as the 
difference between the value of the obtained 
solution denoted A and the best known solution B. 
The gap is calculated as follows: 

(%) 100
B A

gap
B


                (25) 

In the DGSA introduced by [1] the Kbest set 
size and the gravitational constant G parameters 
were defined as relevant parameters, and thus we 
kept the same strategies to determine their values. 
Indeed, [1] determine their values based on 
experiments. Moreover, a statistical study was 
performed to define the other relevant parameters of 
the proposed HGM. Based on experiments, we 
notice that the value of the gap depends on the 

those of impp (the probability to apply the 

improving process IMSOP), N (the population size), 

and iterationq (the number of required iterations) 

variables. To verify the relevance of the mentioned 
parameters, we use the multiple regression method 
defining the relationships among variables. In our 
model the dependent variable is the gap. The 

independent variables in the model are impp ,N, and   

iterationq . 

Ten different executions of the HGM with 
different values of the independent variables were 

performed. We randomly picked up the impp ,N, and 

iterationq values for the 35 problems. The statistical 

study shows that the relation between the dependent 
variable and independent variables is statically 
significant. The Figure 3 indicates that the gap 
variable value is almost constant even if N varies. 
Therefore N is not included as a regression model 
variable. Unlike the Figure 3, the Figures 4 and 

5confirm that the variations of impp  and 

iterationq influence the gap value. Furthermore, the 

statistical study demonstrates that only 74.49% of 
the gap variation is explained by the variations of 

impp and iterationq .Thus, the regression model is 

defined as follows: 

 
0.5329 0.152 0,0012imp iterationgap p q         

(26) 
The Multiple Regression process uses two 
statistical tests to demonstrate the significance of 
variables, namely the Fisher and the Student tests. 
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Figure 2. The Population Size And The Gap Variation 
Graph. 

 

Figure 4.The Probability Of Improving Process And The 
Gap Variation Graph. 
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Figure 5.The Number Of Required Iterations And The 

Gap Variation Graph. 
 
 
 
The fisher and student tests show that  impp  and  

iterationq  are significant variables. Therefore, 

inasmuch as the value of the impp is known, we can 

use the equation (26) to predict the value of  

iterationq , and vice-versa. The parameters which 

play a major role in the performance of the method 
are provided in Table 1. 
 

Table 1. The Relevant Parameters Of HGM. 

Parameter Value 

The size of the 
population N 

3M  

The number of 

iterations iterationq  

500  

The size of the Kbest  set 3 1M   

The value of the initial G 100  

 
After adjusting the parameters, the proposed 

HGM was used to solve the set of 35 benchmarks 
from literature. The proposed heuristic is coded in 
JAVA language, and it is run on a personal 
computer with an intel Core i5-2540M 2.60GHz 
processor.  

Each instance is solved 10 times. The results are 
summarized in Table 2. Each problem is specified 
in the first 4 columns. Then the results obtained 
with the method HGM are summarized in the next 4 
columns: the worst, the best, the average Eff in 
columns 5, 6, and 7, respectively, and the average 
CPU time in column 8 for each problem. The value 
of the best known solution and the gap% for each 
problem are given in columns 9 and 10, 
respectively. Finally, the references where the best 
known solutions are found are also provided in 
column 11 of the Table 2.  

The results in Table 2 indicate that the HGM 
procedure outperforms other solution method to 
determine the best known solution for problem P33, 
and it reaches the best known solutions for 30 other 
problems. The best known solutions is missed for 
the four problems (P18,P21, P27 and P31), but the 
gap % indicate that the gap to the best known 
solution is rather small. Thus the numerical results 
indicate the efficiency of the HGM procedure to 
solve the CFP.  

 
CONCLUSION 
 

In this paper, we introduce a hybrid gravitational 
method combining a population based algorithm 
and a local search procedure to deal with the NP-
complete cell formation problem. This hybrid is a 
variant of the Discrete Gravitational Search 
Algorithm (DGSA) allowing to search extensively 
the feasible domain of a problem 
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Table 2. Computational Results  
 

Problem 
 

M 
 

P 
 

C 
HGM Best  

known 
Eff 

 
Gap 
(%) 

 
References Worst 

 Eff 
Best 
Eff 

Average 
Eff 

Time 
(second) 

P1 5 7 2 82.35 82.35 82.35 0.0219 82.35 0 [22] 
P2 5 7 2 69.57 69.57 69.57 0.0156 69.57 0 [22] 
P3 5 18 2 79.59 79.59 79.59 0.0124 79.59 0 [22] 
P4 6 8 2 76.92 76.92 76.92 0.0141 76.92 0 [22] 
P5 7 11 5 60.87 60.87 60.87 0.0937 60.87 0 [22] 
P6 7 11 4 70.83 70.83 70.83 0.0234 70.83 0 [22] 
P7 8 12 4 69.44 69.44 69.44 0.0266 69.44 0 [22] 
P8 8 20 3 85.25 85.25 85.25 0.0188 85.25 0 [22] 
P9 8 20 2 58.72 58.72 58.72 0.039 58.72 0 [22] 
P10 10 10 5 75 75 75 0.0577 75 0 [6] 
P11 10 15 3 92 92 92 0.0236 92 0 [6] 
P12 14 24 7 72.06 72.06 72.06 0.3263 72.06 0 [7] 
P13 14 24 7 71.83 71.83 71.83 0.3766 71.83 0 [7] 
P14 16 24 8 53.26 53.26 53.26 4.1425 53.26 0 [22] 
P15 16 30 6 69.53 69.53 69.53 0.915 69.53 0 [2] 
P16 16 43 8 57.53 57.53 57.53 10.6387 57.53 0 [22] 
P17 18 24 9 57.73 57.73 57.73 3.6019 57.73 0 [22] 
P18 20 20 5 43.06 43.17 43.109 164.3702 43.45 0.64 [13] 
P19 20 23 7 50.81 50.81 50.81 4.3093 50.81 0 [7] 
P20 20 35 5 77.91 77.91 77.91 1.6562 77.91 0 [22] 
P21 20 35 5 57.14 57.14 57.14 280.6444 57.98 1.45 [22] 
P22 24 40 7 100 100 100 1.1683 100 0 [22] 
P23 24 40 7 85.11 85.11 85.11 1.3688 85.11 0 [22] 
P24 24 40 7 73.51 73.51 73.51 1.3756 73.51 0 [22] 
P25 24 40 11 53.29 53.29 53.29 53.4848 53.29 0 [22] 
P26 24 40 12 48.95 48.95 48.95 393.5611 48.95 0 [22] 
P27 24 40 12 46.58 46.58 46.58 957.4588 47.26 1.44 [13] 
P28 27 27 5 54.82 54.82 54.82 11.047 54.82 0 [22] 
P29 28 46 10 47.08 47.08 47.08 584.1145 47.08 0 [13] 
P30 30 41 14 63.31 63.31 63.31 790.244 63.31 0 [13] 
P31 30 50 13 59.77 59.77 59.77 2033.4975 60.12 0.58 [14]  
P32 30 50 14 50.83 50.83 50.83 792.9925 50.83 0 [7] 
P33 36 90 17 47.9 48.00 47.97 1128.0133 47.75 -0.5 [2] 
P34 37 53 3 60.64 60.64 60.64 399.5972 60.64 0 [22] 
P35 40 100 10 84.03 84.03 84.03 42.2884 84.03 0 [6] 

 
during the early iterations of the process, and 
including a well-balanced mechanism for 
enhancing exploration and exploitation strategies. 
Hence, at each iteration of our variant of the 
DGSA, two phases are completed. Moreover, the 
Path Relinking process used in HGM to modify the 
solution is replaced by a crossover strategy derived 
from concepts included in the gravitational search 
algorithm (GSA). During the Independent 
Movement Search Operator Phase (IMSOP) the 
offspring can be improved, according to some 
probability, independently of the other using a Tabu 
search procedure. 

A statistical study was performed to determine 
the parameter values of the HGM process for 
solving the CFP. A comparative study to evaluate 
the performance of the proposed algorithm with 
respect to the best known solution of 35 benchmark 
problems was performed too. Our hybrid 
gravitational method outperforms the best-known 
value for one problem, it reaches the best-known 
values for 30 other problems, and it misses the best-
known solution for 4 other problems by a small 
margin. Thus this hybrid metaheuristic can be 
considered as one of the best algorithms to solve the 
CFP. 
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