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ABSTRACT 
 

K-Means is a method of non-hierarchical data clustering, which partitions observations into k clusters so 
that observations with the same characteristics are grouped into the same cluster, while observations with 
different characteristics are grouped into other cluster. The advantages of this method are easy to apply, 
simple, and efficient, and its success has been proven empirically. The problem is when the data is non-
linearly separable. Overcoming the problem of non-linearly separable data can be done through a data 
extraction and dimension reduction using Kernel Principal Component Analysis (KPCA). The results of 
KPCA transformation were affected by the kernel type and the size of bandwidth parameters (), as a 
smoothing parameter. Calculation of K-Means clustering of Iris dataset, using 2 Principal Component (PC), 
Euclid distance and Gaussian kernel showed that the external validity (entropy) and internal validity (Sum 
Square Within) are better than the result of standard K-Means algorithm. 

Keywords: K-Means Clustering, KPCA Bandwidth, Validity, Entropy, Non-Linear Separable Dataset 

1. INTRODUCTION 
 

K-Means introduced by [1], attempts to find  
k clusters so that observations with the same 
characteristics are grouped into the same cluster, 
while observations with different characteristics are 
grouped into other cluster. Assessment of the 
results of K-Means clustering algorithm is 
performed by using validity index. In general, the 
validity of the index is classified as the external and 
internal index as well as the relative index.   

External indexes are used to measure the 
extent to which cluster labels match with an 
externally supplied class label usually expressed as 
the entropy, which evaluates the "purity" of cluster 
label based on the given class. The Internal indexes 
are used to measure the goodness based on 
clustering structure of data intrinsic information but 
not connected with external information. The 
function of internal criteria focuses on the 
observations of each cluster and does not take into 
account the observations of different clusters. The 
measurements include the value of SSW cluster 
[2].  

The excellence of K-Means method is easy 
to be  implemented, simple, efficient, and empirical 

success.  However, this method does not guarantee 
that the result of clustering is unique because it is 
sensitive to the selection of initial seeds. Initial 
centroid for K-Means clustering are randomly 
determined, thereby clustering the same data can 
produce different clusters [3]. K-Means clustering 
would work perfectly if clusters are linearly 
separable and spherical in shape. Meanwhile, the 
K-Means clustering performance is greatly affected 
when high-dimensional datasets are used  [3]. This 
is due to the fact that data with a higher dimension 
has observations that are not linear in structure. 

K-Means clustering for non-linearly 
separable data is done in two stages. Initially, 
observations ݔଵ, … ,   in Թௗ extracted through aݔ
mapping using kernel functions Φሺݔሻ to featured 
space ࣠, That has higher dimension than even 
infinite-dimensional or Hilbert Space Φ ∶ Թௗ 	→ ࣠, 
so they are linearly separable. At higher 
dimensional space, observation is expected to 
become more structured and more easily separated 
[4]. Furthermore, the high dimensional space also 
performs K-Means clustering.  
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Scholkopf  et al. in [5]  conducted a data 
extraction and dimension reduction using KPCA. 
The results of this extraction were affected by the 

kernel type and the size of bandwidth () used, 
which further affected the results of clustering. The 

size of bandwidth  can also be determined 
subjectively or based on research that has been 
done before [6]. Therefore, the question in this 
researh is how the size of KPCA bandwidth that 
ensures the K-Means clustering of non-linearly 
separable data has high internal and external 
validation.  

The motivation in this research is to study 
the superiority of K-Means clustering, which is 
obtained through KPCA transformation, compared 
to  conventional   K-Means.   Furthermore,   the   
K-Means clustering validation of the KPCA 
transformation result is performed by using 
SSW(%) and Entropy towards original and 
standard data. This calculation, which uses 1, 2 and 
3 PCs,  can be compared using bandwidth  = 0.2 
and  = 0.3. 

The article is organized as follows. 
Background is presented in Section 2, KPCA is 
detailed in Section 3, Simulations on real data set 
are presented in Section 4, Results and discussion 
are detailed in Section 5. Finally, Conclusion and 
Recommendation are drawn in Section 6. 

 
2. BACKGROUND 
 

KPCA is an extension of the non-linear 
PCA which is done through dimensional data 
reduction.  The use of KPCA was introduced by [7] 
where the training data is mapped into high-
dimensional feature space including even infinite 
dimensions. In this space, KPCA extracts the main 
components of the data distribution. For non-
linearly  separable  cluster,  [8]  used the  Kernel  
K-Means which is the development of a standard 
K-Means clustering algorithm. Two main 
advantages of this method are the deterministic 
factor which makes it independent of the cluster 
initialization and the ability to identify groups that 
non-linearly separable in the input space.  

Chang [9] in his research, concluded that the 
Gaussian  kernel is sensitive to the width of the 
kernel. Small bandwidth size will lead to over-
fitting, otherwise the size of large bandwidth leads 
to under-fitting. Therefore, optimal kernel width 
has only been based on the tradeoff between the 
under-fitting loss and over-fitting loss. Thus, there 
is an urgent need to reduce the loss tradeoff.  

In his research on SVC, [10] stated that the 
kernel width depends on the spatial characteristics 
of the data but does not depend on the amount of 
data or the dimensions of the dataset. A major 
challenge in SVC is a selection of parameter 
values, i.e. the width of the kernel function that 
determines the non-linear transformation of the 
input data.  Serious weakness of kernel method is 
the difficulty in choosing the kernel function that is 
suitable for the dataset. No specific kernel function 
has the best generalization performance for all 
types of the problem domain and it suggests the 
combinations of various types of kernels to solve 
problems in Support Vector Machines (SVM). 
Chen et al. in [11] proposed the use of KPCA for 
SVM in feature extraction. Compared with other 
predictors, this model has a greater general ability 
and higher accuracy. 

Furthermore, [12] using multiple bandwidth 
measures in his research, he trained the data with 
the SVDD algorithm for different values of  from 
range 0.0001 to 8.0 by increment 0.05 and 
concluded that a spherical data boundary led to 
underfitting, while an extremely wiggly data 
boundary led to overfitting. At  = 0.1, each point 
in the data was identified as a support vector, 
representing a very wiggly boundary around the 
data. As the value of   increased from 0.1 to 0.6, 
the data boundary was still wiggly, with many 
“inside” points identified as the support vectors 
(SVs). As  increased from 0.7 to 1.0, the boundary 
began to form the Banana shape. 

So far, some of tested the sizes by [12] are 
related to the number of SVs and shapes of the 
cluster, but not discussing about the validity of 
clustering results. Therefore, in this research we 
will look for the size of the KPCA bandwidth that 
gives the K-Means clustering results in the feature 
space with high internal and external validation for 
the non-linear separable data. 

3. KERNEL PRINCIPAL COMPONENT 
ANALYSIS (KPCA) 
 

3.1. Kernel Trick 
K-Means  is an unsupervised clustering 

method that reallocates observations to each 
cluster, where an observation is explicitly stated as 
a member of a cluster and not the other cluster 
members [1].  For non-linear separable case, the 
calculation of the K-Means is modified into two 
stages utilizing the concept of trick kernel Φ(xk). 
The observations ݔଵ, … , -  in Թௗ which is nonݔ
linear separable is first mapped into a higher 
dimensional space (>d) ࣠,Φ ∶ Թௗ 	→ 	࣠, ࣠: feature 
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space, which makes it linearly separable (Figure 1).  
Furthermore, K-Means clustering is done on a 
feature space which dimensions have been reduced. 

Kernel trick is a mathematical tool that can 
be applied to any algorithm which exclusively 
based on the dot product between two vectors [4]. 

 
Figure 1. Mapping From Space Input Into Features 

          Space And Solutions In Input Space 

By using the kernel trick, a form of a non-
linear function needs not be known, but just be 
aware when kernel function is used. Let, X is a 
design matrix. The Gram matrix K =ࢀࢄࢄ is shown 
as follows :  
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When the data is mapped by the function , the 
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as : 
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The Gaussian kernel with kernel trick is as follows: 

ܭ ൌ ,ݔ൫ܭ 	ݔ݁=൯ݔ ቆെ
ฮ௫ି௫ೕฮ

మ

ଶమ
ቇ, 0,  

 : bandwidth,  i, j = 1,2,...,n 

3.2. Principal Component Analysis (PCA) 

PCA was first introduced by Karl Pearson in 
the early 1900s  and formal treatment was done by 
Hotelling (1933). PCA procedure can basically 
simplify the observed variables through dimension 
reduction to get dataset that has smaller dimension 
while retaining as much as possible the diversity of 
the original dataset. The set of new variables is a 
linear combination of the set of original variables 
with smaller dimensions. The set is not correlated 
and called principal component (PC). 

For example, having  the  random  vector  
YT = [Y1,Y2,... ,Yp] which has a multivariate 
normal  distribution  mean μ,  covariance  matrix   
Σ=cov(Y),  full  rank  p and the eigenvalues λ

1 
≥ … 

≥λ
p 

≥ 0.  The matrix P constructed from the 

eigenvectors corresponding to the eigenvalues  λ 
obtained from equation v = Σ v  can be written as: 
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So that each PC can be written as: 
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The first PC of the vector Y is a linear combination 
of vector p: 

Z
1   

=  p
11

Y
1 
+ p
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 2 
+… + p
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Y

 p
 

Z1  =  ଵ்ࢅ 
,ଶଵ,ଵଵ] =ଵ் … ,  [	ଵ
YT  = (Y

1
,…,Y

p
) 

So that var(Z1) = varሺଵ்ࢅሻ	= ଵ்	ଵ is 
maximum, with the constraint ଵ்ଵ = 1. To 
determine  the  second  PC,  a linear combination 
Z2 = ଶ்ࢅ is constructed so as not to be correlated 
with Z1 with the second largest variance. To be Z2 
is not correlated with Z1, cov(Z1,Z2) = 0, or 
,ሺܼଶ	ݒܿ ܼଵሻ ൌ ଵ	ଶ் ൌ ଵߣଵ	ଶ் ൌ 0. It is 
stated that ଶ்	ଵ ൌ 0		 and 	ଶ்	ଶ ൌ 1. 

3.3. Kernel PCA (KPCA) 
KPCA is non-linear PCA extension that was  

introduced by [5] through the mapping of the set of 
features into a high dimensional feature space by 
applying the Mercer theorem and then performing 
the dimension reduction.  KPCA calculations is 
carried out in two stages. The first ݔ ∈ Թௗ  which 
is non-linearly separable is mapped to the feature 
space		࣠, dimensionally higher (>d), Φ ∶ Թௗ 	→ ࣠, 
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so that it is linearly separable. Every ݔ ∈ Թௗ will 
obtain (ݔ)	∈ ࣠. Mapping  :	Թௗ → ࣠ is defined 
as dot product K(x,y)=(࢞)•(࢟). The dot product 
of Gaussian kernel is:  

ܭ ൌ ,ݔ൫ܭ 	ݔ݁	=	൯ݔ ቆെ
ฮ௫ି௫ೕฮ

మ

ଶమ
ቇ,  0, 

                                              : bandwidth.  
Furthermore, on the second stage, the feature space 
࣠ is used in calculation of the PCA.   
Supposed the input space dataset XT = [X

1
, …, X

p
] 

is mapped to the feature space which is defined as 
{(ݔଵ), (ݔଶ),..., (ݔ)}, the feature space is 
constructed by the vectors {(ݔଵ),  (ݔଶ), . . ., 
(ݔ)}. If one assumes that the data is centralized 
where∑ 	൫ݔ൯ ൌ 0

ୀଵ , covariance for vector { 
 :can be written as {(ݔ)  , ... ,(ଶݔ)  ,(ଵݔ)

መܥ ൌ 	
ଵ


∑ 	ሺݔሻ		ሺݔሻ்
ୀଵ . 

Looking for eigenvalues   0 and nonzero 
eigenvectors v ∈ ࣠ that satisfy: 

v = ܥመv;  ࢜ ∈ ࣠,     0 
〈	ሺݔሻ, ,ሻݔሺ	〉	= 〈࢜  .k =1,2, . . . , m ,〈࢜መܥ

All the vectors in the feature space ࣠ can be 
expressed as a linear combination of { (ݔଵ), . . . , 
 (ݔ)}. Then the eigenvectors, as a solution to the 
problem of eigenvalues v = Cv, can be expressed 
as a linear combination of { (ݔଵ),. . . ,  (ݔ)}. 
So, there are constants i   where i=1,..., m, in such 
so		࢜ ൌ 	∑ Φߙ


,ୀଵ ሺݔሻ.	 By substituting all 

previous equations on the following we obtains :  
∑ ߙ


ୀଵ ሺݔሻ

்ሺݔሻ ൌ
	
ଵ


ሾ∑ α୧


ୀଵ Φሺݔሻሿൣ∑ 

ୀଵ ൫ݔ൯
்൫ݔ൯൧

்ሺݔሻ,  

                                                       k =1,2, . . . , m. 
Let  ݇൫ݔ, ൯ݔ ൌ ݇ ൌ Φሺݔሻ

்൫ݔ൯, ܭ ൌ ൣ݇൧,  
ൣ݇൧ is square matrix mxm, we obtain,  

݉ܭ ൌ     with  ܭܭ	 ൌ ሺߙଵ, ,ଶߙ … ,   ሻᇱߙ
Solution of the above equation can be calculated by 
solving the following equation: 

݉ ൌ  .ܭ	
Supposed k is the k-th eigenvector of the 
eigenvalue problem in the above equation. If all 
vectors v	∈ ࣠ be normalized, i.e. fulfilling ்࢜࢜ ൌ 1 
then using the previous equation, the following is 
obtained: 

ݒ்ݒ								 ൌ 	  ߙߙ


,ୀଵ

	Φሺݔሻ
൫ݔ൯ 

ൌ ሺࢻሻ்ࢻܭ ൌ ࢻሻ்ࢻሺߣ ൌ 1. 
To extract the PC, all maps of the input vector z, 
i.e. Φ (z), are projected onto the normalized vector 
v calculated by the following equations: 
ሻݖΦሺ்࢜	 ൌ 	∑ ݇ߙ


,ୀଵ ሺݔ,  .ሻݖ

             =  Cv  =  
ଵ
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3.4. KPCA Bandwidth 
Non-linear separable problems are 

overcome by transformation.  Scholkopf et al. in 
[5] conducted a data extraction and dimension 
reduction using KPCA. Results of KPCA 
transformation influenced by the type of kernel 
used and the size of bandwidth parameters. 

Bandwidth parameters () is the smoothing 
parameter, a role in controlling the smoothness of 
the estimated result  [10].   Smoothing aims to 
dispose the variability in the data that does not have 
the effect so that the data characteristics will appear 

more clearly [6].  The size of  determines the 
smoothness of the curve generated such as the 
width of the interval in the histogram. This 
parameter is very important that controls the degree 
of smoothing applied to the data.  

There are many types of kernel used in the 
transformation including the Gaussian kernel. The 
Gaussian kernel is sensitive to the size of the 
bandwidth. Bandwidth’s small size can lead to 
over-fitting, while a large bandwidth can lead to 
under-fitting [9].  Selection of the optimum 
bandwidth based on the balance between the losses 
due to under-fitting and over-fitting, between bias 
and variance, is performed by minimizing MSE or 
SSW. 

 
4. SIMULATION 

 
This simulation is intended to find the 

reference bandwidth of the Gaussian kernel on the 
transformation of KPCA for non-linear separable 
data that has high internal and external validity 
with the optimum K-Means clustering stability 
level. Simulation is carried out using the Iris 
dataset that are taken from the UCI Machine 
Learning Repository, which is composed of four 
variables (Sepal.Length, Sepal.Width, Petal.Length 
and Petal.Width) with species (Setosa, Versicolor 
And Virginica) each consisting of 50 observations. 
Iris Setosa linearly separable from the Iris 
Virginica and Iris Versicolor. Whereas between Iris 
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Virginica and Iris Versicolor is non-linearly  
separable. Non-linear transformation  into a higher 
dimensional feature space is performed  using 
KPCA with Gaussian kernel. The bandwidth sizes 
used in the range of 10-4 to 103 with fifteen 
bandwidth sizes selected are   = 0.0001, 0.001, 
0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 
1,2,3,4,5,6,7,8,9,10, 100 and 1000.  

To investigate the validity of the 
performance of  K-Means clustering algorithm, 
calculation is done using 2 PCs in feature space. 
This procedure is executed 30 times (with 
randomly selected initial centroid) as done by [13], 
while other researchers run it by 10, 20, 50, or 
1,000 times [14]. The aim is to see the stability of 
the results in accordance with the statement by [15] 
that many 'right' clusters in the partition can be 
determined by examining the size of the stability of 
partition. 

External validity is calculated using entropy. 
Entropy is a measure of external validation which 
evaluates the "purity" of clusters based on a label in 
the given class [14]. Value of entropy refers to the 
quality of the clustering where the smaller the 
value of entropy the better the results of clustering 
[16].  Entropy value that equals to zero refers to the 
pure clusters where the class labels are the same as 
cluster labels. To calculate the entropy of a set of 
clusters, the first calculation is counting class 
distribution of observations within each cluster. 
This means that for each j-th cluster there is 
calculated pij, the probability of an object of i-th 
class to j-th cluster. Based on the grade 
distribution, l-th cluster entropy is calculated as 
[17]: 

ࡱ ൌ





ୀ

ሺെ


	ࢍ
ሻ

,ࢎ




ୀࢎ

ࢍ
,ࢎ


 

Ci: Class of actual data, i= 1,2,3 
Sj:  Clustering results, j= 1,2,3 
ni:  The amount of data in the class Ci  
nj:  The amount of data in the cluster Sj  
nij:  The amount of data in the class Ci and in Sj 
k :  The number of clusters 
n :  Amount of data 

Internal validity is calculated using the 
percentage of SSW. The internal index is used to 
measure the goodness of clustering structure 
without regard to external information and it 
usually uses percentage of MSE/SSE or SSW. 
MSE of estimator   against the unknown 

parameter θ is MSE	=	E൫ െ ൯
ଶ
= Var (ሻ +  [Bias 

(, )]2. To compare two different clustering results 
into k clusters, MSE function can be used which 
measures the scatter observations of their centroid. 

A small percentage of SSW refers to a high 
validity.  

Supposed that an indicator variable is 
defined as znk where znk = 1 if the observation xn is a 
cluster member and znk = 0 otherwise, MSE is 
written as follows : 

MSE ൌ
1
ܰ
ݖ	

ே

ୀଵ



ୀଵ

࢞‖ െ  ‖ଶࢉ

where ck is the centroid of k-th cluster, N is the 
total observation and ‖.‖ is Euclidean norm vector. 
SSW is written as :  

SSW ൌ  ࢞‖ െ ‖ଶࢉ
ଶ

௫ఢ௦ೖ



ୀଵ

 

where sk are k-th cluster. 
As a comparison, the calculation of entropy 

and the percentage of  SSW (Within_SS /Total_SS) 
is also performed using a standard K-Means 
algorithm (executed 30 times with randomly 
selected initial centroid) for original and 
standardized data. 

5. RESULT AND DISCUSSION 
 

The following are summary calculation of 
Entropy and percentage of  SSW, see table 1. On 
the bandwidth range = 10-4 to = 103, the 
calculation results show that the greatest entropy 
occurs  in  bandwidth   = 100  with  an  average  
  .ଶ = 0ݏ ఊ = 0.937 and varianceݔ̅

 

 

 

 

4. (a) 
 
 
 
 
 
 
 
 
 
 
 4.(b) 
 Figure 4. (a) Entropy, (b) Percentage SSW of Standard  
                 K-Means Clustering On Original and  
                 Standardized Data 
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Greatest variety of entropy occurs in 
bandwidth  = 0.4 with an average ̅ݔఊ = 0.245 and 
variance ݏଶ= 0.045. The smallest entropy which 
states the 'purity' resulted from clustering occurs in 
the  size of  bandwidth   = 0.2  with an  average  
  .ଶ = 0ݏ ఊ = 0.05 and varianceݔ̅

Meanwhile, the bandwidth  = 0.3 obtained 
an average ̅ݔఊ	= 0.064 and variance ݏଶ= 0.005. 
Thus, the size of bandwidth  = 0.2, entropy 
clustering results is smaller and more stable. This 
means the external validity is optimum (Table 1 & 
Figure 2). The accuracy of this result based on 
entrophy is better compared to the result of 
standard K-Means algorithm. The average and 
variance of entropy of standard K-Means algorithm 
are ̅ݔఊ=0.129, sଶ = 0.032 (original data) and 
 ఊ=0.315,  sଶ = 0.005 (standardized data), seeݔ̅
figure 4a. 

The measurement of internal validity used 
the percentage of SSW. On the bandwidth range of 
 = 0.0001 to = 1000, the largest percentage SSW 
(%) occurred in  = 100 with an average  ̅ݔఊ= 35.3 
and ݏଶ = 443. SSW (%) indicates a low  value  on  
 = 0.2, 0.3, 8, 9 and 10 with each variance ݏଶ = 0. 
In the size of bandwidth  = 0.3, the percentage 
SSW reached  the lowest score by average ̅ݔఊ=11% 
and the variance ݏଶ = 0, the centroid did not shift 
indicating the best clustering results and stable. 
That means the  internal validity is optimum (Table 
1 & Figure 3).  

The proposed method outplays the original 
K-Means clustering [1] on some specific values of 
bandwidth. At bandwidth  = 0.3, the proposed 
method is better than SSW (%)  of  the  standard  
K-Means algorithm.  The average and variance of 
SSW (%) of the standard K-Means algorithm are 
 ,ఊ=24,44ݔ̅ ఊ=14.03, sଶ = 22.73  (original data) andݔ̅
sଶ = 15.63 (standardized data), see figure 4b. 

Figure 5 is the result obtained using K-Means 
clustering algorithm with KPCA transformation. At 
 = 0.2, the average of SSW (%) for standardized 
data is smaller than the average of SSW (%) in the 
original data when using 2 & 3 PCs. The opposite 
result is the use of 1 PC (Figure 5.a). For 
standardized data, the average of SSW (%) of 
clustering using 1 & 3 PCs is not significantly 
different between  = 0.2 and  = 0.3. The 
significant differences occurred in the use of 2 PCs 
(Figure 5.b), where the average SSW (%) at  = 0.2 
is greater than the average SSW (%) at  = 0.3. The 
opposite occurs on the average of entropy value 
(Table 1).  In KPCA bandwidth size  = 0.3, the 
clustering results is stable and have very high 

internal validation (SSW). These results are better 
for standardized data than original data on 
calculations using 2 and 3 PCs, while the opposite 
is true on the use of 1 PC. 

To compare the effect of standardized data on 
K-Means clustering with KPCA transformation, the 
entropy value is observeb using 2 PCs with  = 0.2.   

 
 
 
 
 
 
 
 
 
5.(a) 
5.(b) 

Figure 5. Percentage SSW of K-Means Clustering  
              Using 1,2 & 3 PCs  ( a)  = 0.2 On Original  
              and Standardized Data (b)  = 0.2  and  = 0.3  
 

Entropy value for original data with 
average ̅ݔఊ= 0,098 and the variance ݏଶ= 0,024 is 
higher than entropy value for standardized data 
with average ̅ݔఊ= 0.050 and the variance ݏଶ = 0 
(Figure 6). This indicates that the clustering of 
standardized data with  = 0.2 has higher accuracy 
and stable. This means the external validity is 
optimum. 

 
Figure 6. Entropy of K-Means Clustering on KPCA  
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The  advantage  of  KPCA  bandwidth  size  
 = 0.2 is the clustering results will have a stable 
(range close to zero) and very high external 
validation (entropy) even though the calculations 
are repeated over and over. The entropy value is 
smaller for the standardized data than the original 
data on the calculation using 2 PCs.  

6. CONCLUSIONS & RECOMMENDATIONS 
 

The analysis of the Iris standardized data 
that are executed from 30 replications and using 2 
PCs show that the size of KPCA bandwidth that 
ensures the K-Means clustering of non-linearly 
separable data has high internal and external 
validation on  = 0.2 and  = 0.3. The external 
validity is maximum occurred  in  bandwidth  size  
 = 0.2 (entropy) and the internal validity is 
maximum occurred in bandwidth size  = 0.3 
(percentage of SSW). This results are better than 
the results of standard K-Means algorithm, either 
using original or standardized dataset. 
Standardization of Iris (non-linearly separable 
dataset), which is transformed into feature space 
using KPCA, provides clustering results with 
higher accuracy than using the original data, and 
that result is very stable. 

The empirical results with the optimum 
bandwidth can be tested on other non-linearly 
separable datasets or studied mathematically to 
obtain generalization. Furthermore it can be 
furtherly investigated to obtain an optimum 
bandwidth size for high internal and external 
validity at the same time, then its superiority can be 
tested on SVC as done by [12]. 
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APPENDIX 
Table 1. Average and Variety of Entropy and SSW on Various KPCA Bandwidth Scales 

Bandwidth   0.0001 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Entropy Mean 0,631 0,668 0,587 0,207 0,050 0,064 0,245 0,174 0,165 0,146 0,103 0,133 

Variance 0,019 0,021 0,022 0,000 0,000 0,005 0,045 0,038 0,038 0,044 0,036 0,028 

SSW(%) Mean  36,5 37,0 35,1 19,5 13,0 11,0 29,2 26,7 25,6 25,6 23,2 22,7 

Variance 3,5 4,85 4,29 0 0 0 413 442 393 337 295 254 

Bandwidth   1 2 3 4 5 6 7 8 9 10 100 1000 
Entropy Mean 0,174 0,332 0,617 0,693 0,698 0,762 0,785 0,752 0,821 0,819 0,937 0,899 

Variance 0,037 0,012 0,016 0,002 0,004 0,000 0,001 0,004 0,000 0,000 0,000 0,026 

SSW(%) 
 

Mean  27,7 33,0 14,8 20,6 27,4 15,7 14,5 12,5 11,9 11,4 35,3 33,8 

Variance 339 221 0 193 363 56 51 0 0 0 443 0 

 
Figure 2. Boxplots of Entropy of Clustering on Various KPCA Bandwidth Scales 

 
Figure 3. Boxplots of Percentage SSW of Clustering on Various KPCA Bandwidth Scales 
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