
Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5454

SECURE DATA SHARING MODEL FOR PRESERVING

PRIVACY

1SANAA SARAHNEH, 2RADWAN TAHBOUB
1Researcher, Deanship of Scientific Research, Palestine Polytechnic University, PS

2Asstt Prof., Department of Computer Engineering, Palestine Polytechnic University, PS

Networking Research Group (PPU)

E-mail: 1sanaa.sarahneh@gmail.com, 2radwant@ppu.edu

ABSTRACT
Data sharing is the process of interchanging, analyzing, retrieving and integrating data. Although data
sharing facilitates the way that data can be exchanged, security concerns arise as a challenge for conducting
data sharing. Many policies include confidentiality, integrity, availability and privacy must be taken into
consideration. In this research, preserving privacy subject will be considered. This research will propose a
new privacy preserving data sharing model that combines compression techniques such as Huffman coding
and different encryption algorithms in order to provide privacy in data sharing to facilitate data sharing in
different areas. Performance parameters, such as processing and transfer time, and the enhancement for the
expected model are also considered. Experiments results over 10 different files sizes show that the
proposed model provide privacy to shared files also it reduces large files size since the proposed model
uses Huffman coding and it is 87% faster on speed of 1MB/sec and on speed of 16MB/sec it is 38% faster
than existing models.

Keywords: Security, Data Sharing, Privacy, cryptography, compression.

1. INTRODUCTION

Many policies include confidentiality and
privacy must be taken into consideration [32].
However data sharing and integration are prevented
from being widespread because of privacy concerns
[1]. Privacy can be defined as the process to protect
information from unauthorized access [2].
Unrestricted data sharing will reduce the privacy of
individuals; the challenge is to enforce appropriate
security policies that facilitate data sharing as
needed [3–5].

Also, data sharing can be defined as the process
of interchanging, analyzing, retrieving and
integrating data among multiple data sources in a
controlled access manner [6, 7, 32]. Conducting
business transactions is a basic reason for sharing
data in e-commerce it is mainly used in Electronic
Data Interchange (EDI) [4, 6]. This increases the
need for data sharing management and data
integration [1]. However data sharing and
integration are prevented from being widespread
because of privacy concerns. Privacy is defined as
the process to protect information from
unauthorized access [2]. Confidentiality concept
and data privacy are almost have the same
meaning; which is to limit access to personal
information. Different models have been introduced
to apply privacy in data sharing and data

integration. Each may be the same or different
structure of other, such as Semantic Privacy-
Preserving Model [8], Capability-based Access
Control Model [9], BitTorrent Protocol [10], and
OneSwarm Data Sharing Model [2]. Sensitive data
must be encrypted when share it, the challenge is to
apply policies that preserve privacy. Preserve
privacy is to protect data from unauthorized users
and to control who can access data [4, 11, 12].

OneSwarm data sharing model is a peer to peer
(P2P) data sharing model that provide privacy.
Also, it provides better performance than existing
data sharing models; it uses Secure Socket Layer
(SSL) to provide privacy for the users. Figure 1 is
an overview for OneSwarm data sharing model
structure; it shows a P2P network with secure
connection using SSL [2, 13].

Most of existing data sharing models suffer
either from privacy problems or from poor
performance (computational processes, network
bandwidth, storage and volume of transfer) if
confidentiality and integrity are considered for the
whole shared files and data [2, 13]. Hence
increasing privacy may case a performance hit for
large files. In this research, an attempt to study and
analyze existing data sharing models. The idea of
using data compression such as Huffman coding to

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5455

partition shared files into header file and binary file
will be considered and tested to increase the
performance of a data sharing model like
OneSwarm model. Both computation and transfer
performance problems will be addressed, studied
and compared with the existing data sharing
models. This research aims to practice secure data
sharing among different organizations focusing on
preserving privacy.

Two basic encryption techniques are used to get
secure system, symmetric key encryption and
asymmetric key encryption [14, 15]. Rivest-
Shamir-Adleman (RSA) cryptosystem is
asymmetric key encryption algorithm [16].

Figure 1: OneSwarm Structure [2].

RSA is not semantically secure, encrypts the
same message more than once always gives the
same ciphertext. Also, RSA does not use to encrypt
large data, and it is slower than the symmetric key
encryption [17, 18]. A new encryption technique is
implemented by [17] called Augmented-RSA (A-
RSA). A-RSA has three enhancement factors
comparing with RSA. These factors are the
security, the execution time, and the size of the
ciphertext [17]. Also Secure Socket Layer (SSL) is
used to provide privacy; SSL uses symmetric key
encryption algorithms such as Data Encryption
Standard (DES) and Advanced Encryption Standard
(AES). The symmetric key encryption algorithms
are faster than the asymmetric key encryption and
provide more security [19]. Data Compression is a
technique to reduce files size which helps in
increasing network bandwidth and reducing
transmission time. Also data compression is used in
security areas because it decodes the original file
such as Huffman coding. Huffman Coding is a
lossless data compression algorithm that decodes
original file to get smaller file size [20–22].

2. BACKGROUND
A. 2.1 Data Sharing Concepts
Data sharing is an important feature of modern

organizations due to the increase in the use of
communication networks, the changes in

architectures of enterprise information systems, as
well as the increase of availability of data in
computerized form [6, 7, 32]. And perhaps the
biggest impact on data sharing can be attributed to
the widespread use of the Internet and Internet-
related technologies for e-government and e-
commerce [6, 7, 32]. They clarify; e-government
involves sharing data for transactions with citizens,
other agencies and outside vendors and businesses
[32]. The proposed data sharing model is a model
that preserves privacy by using symmetric key
encryption algorithm and data compression. The
proposed model provides privacy to shared files
also it reduces transmission time, and the size of the
shared data. Figure 2 shows the main components
for the proposed model.

Figure 2: The Proposed Model Components.

2.2 Preserving Privacy Models in Data
Sharing

 Different models have been introduced to apply
data sharing each may be the same or different
structure of other, some models introduced to
extend previous models, others developed to
overcome limitations and challenges of previous
models. This section lists different data sharing
models [32].

2.2.1 BitTorrent
 BitTorrent is data sharing model created in
2003, it uses P2P network architecture which
allows users to join a ”swarm” of hosts to download
and upload from each other simultaneously and
shares files efficiently using file swarming [10, 25].
as shown in figure 3.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5456

Figure
3:

BitTorre
nt

Overvie
w.

2.2.2 Privacy preserving P2P data sharing

with OneSwarm
 OneSwarm data sharing model is a P2P
design for data sharing that overcomes the lack of
privacy in P2P data sharing models such as
BitTorrent and to overcome poor performance in
anonymizing overlays such as Tor [2, 13, 32].

OneSwarm made a tradeoff between privacy and
performance, also it provides better privacy than
BitTorrent [2, 13, 32]. OneSwarm builds trusted
links through social network peers instead of direct
links. OneSwarm users are free to control the
performance and privacy by using one of the three
cases that OneSwarm provides [2].

OneSwarm protocol are managed by the
DHT which contain of hashed IP and port, entries
for a client encrypted with the public key. Naming
and locating data in OneSwarm used Secure
Sockets Layer (SSL) for connection [2, 32].

2.3 Cryptography and Network Security
 Cryptography is a science that contains
different ways for converting the original data to
coded data in order to protect data [26, 27]. It is
important to use cryptography to secure
communications between users or to transmit and
store sensitive data [26].

2.3.1 Secure Sockets Layer (SSL)
 Secure Sockets Layer (SSL) was
developed by Netscape in 1994 to provide a secure
transmission between applications [26]. SSL
provides confidentiality by using symmetric key
encryption such as AES and DES also it provides
message integrity by using a Message
Authentication Code (MAC), figure 4 shows the
general processes for SSL.

Figure 4: SSL Overview.

The Data Encryption Standard (DES) was
developed by International Business Machines
corporation (IBM) in 1974, then it was adopted by
the National Institute of Standards and Technology
(NIST) in 1977. DES is a symmetric key encryption
as shown in figure 9, data are encrypted in 64-bit
per block using short key 56-bit [28].

The Advanced Encryption Standard (AES)
is a symmetric key encryption published by (NIST)
in 2001 as shown in figure 10, it was a replacement
for Data Encryption Standard (DES) [19].

2.3.2 RSA and A-RSA cryptosystems
 In 1977, Ron Rivest, Adi Shamir and
Leonard Adleman developed RSA as an encryption
technique [17]. Although RSA is the most popular
encryption method, it takes long time for
encrypting and decrypting large data, also it is not
semantically secure because encrypting the same
message more than once gives the same ciphertext,
which make it vulnerable to some attacks [17, 29].

 New encryption method called
Augmented-RSA (A-RSA) [17]. A-RSA depends
on RSA algorithm and Rabin algorithm, in this
cryptosystem new component is added to RSA
algorithm, this component is encrypted by Rabin
algorithm. Also Huffman coding algorithm is used
to reduce data redundancy before adding the
randomized component which enhances the
execution time. The compression process using
Huffman coding facilitates storing and transmission
of large data. The main idea of A-RSA is that it
uses Huffman coding to compress the message, this
coding process will produce two files the Binary
file (B) and Header file (H), the binary file depends
on the header file to retrieving the original data.
Instead of encrypts the entire message, A-RSA
encrypt the header file using RSA and blinding the
binary file by the randomization component Y [17]
as shown in figure 5.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5457

Figure 5: A-RSA Cryptosystem [17].

2.4 Data Compression and Coding
 Data compression is a way to save or
transmit data in a smaller size than its original also
data compression can be defined that it is the art of
representing data in a compact form rather than its
original [20]. Data compression is used to reduce
storage needed to save data, increase channel
bandwidth and reduce transmission time. Also data
compression is used in security areas because
compressed data is different than the original data
[30]. It has two categories, lossy data compression
and lossless data compression. Data in lossy
compression are not recovered as its original, some
of data is lost. it is used for images and sound
where a loss in bits or resolution is acceptable.
While in lossless data compression, data is
recovered exactly as the original data without any
loss. It used for text files.

2.4.1 Huffman coding
 Huffman coding is the most used of
lossless data compression algorithm, which uses
small number of bits to encode common characters.
Huffman coding developed by David Huffman in
1952 to reduce size of data, reduce storage needed
and reduce transmission time, latency and
bandwidth [22, 30]. Huffman coding algorithm
reads file to be compressed, stores all characters on
a list according to their frequency counts, then it
uses the frequency of the characters to build
bottom-up tree its leaves are the weights. Huffman
tree used to represent frequent symbols with fewer
bits and infrequent symbols with more bits. The
result of applying Huffman coding on data is binary
file and header file. The header file contains a list
of all characters and their frequency counts. Binary
file and header file depend on each other’s, if the
header file does not exist we cannot recover the
origin data [30].

3. PROPOSED DATA SHARING MODEL
FOR PRESERVING PRIVACY

 The generic proposed data sharing model
was developed to provide privacy to the shared files
without affecting the performance using
compression and encryption. The computation time,
transfer time and privacy of the standard generic
model can be improved. The proposed model is
peer to peer model that shares data in secure way so
no one can read data except the authorized users.
The proposed model combined compression
technique and encryption algorithms to provide
privacy for the shared data. It focuses on preserving
privacy for shared data by combining Huffman
coding algorithm and SSL encryption.
 When Alice wants to upload a file to
network, the file is compressed using Huffman
coding. Huffman coding generates two files, header
file and binary file. The binary file is shared offline
while the header is edited to include X% of data of
the binary file then it is secured using SSL which
can be either DES, AES or A-RSA. When Bob
wants to download a file that shared by Alice, Alice
sends the encrypted header file to Bob, so he can
decrypt the downloaded file (binary file) and read
it. Bob decrypts the header file, then the decrypted
header file is used to recover the original data using
Huffman decoding. Only the authorized users who
have the encrypted header file can read the shared
binary file as shown in figure 6.

Figure 6: The Proposed Model Overview.

3.1 Proposed Model Components
 The proposed model has two main
components: The first is the compression,
decompression which is used to reduce data size
and to reduce transmission time. The second
component is to provide privacy using encryption,

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5458

decryption algorithms. Also X% of data have been
added to header file before encrypt it to make the
algorithm stronger against attacks such as direct
attacks, in these attacks the attacker tries to guess
the secret keys that have been used in encryption
process by trying all possible combinations to find
these keys, so using X% will make it harder for the
attacker to guess the header file and it will take
longer time.

3.1.1 Compression using Huffman coding
 The compression algorithm used in this
study was the Huffman code compression. It used
to reduce size of data, transmission time and
bandwidth [20]. Huffman coding generates two file
binary file and header file. Binary file and header
file depend on each other’s, if the header file does
not exist we cannot recover the original data. The
header file size is fixed for all files sizes, it is 1KB.
3.1.2 Security for the proposed model
 The proposed model uses SSL encryption
to encrypt and decrypt the header file, it can be
AES, DES or A-RSA. To enhance the algorithm
against attacks such as direct attacks, X% of the
data of binary file is added to the header file before
encrypt it, also to enhance security Cipher Block
Chaining (CBC) was used [31]. In (CBC) every
block of the plaintext will be XORed with the
encrypted previous block this make the plaintext
analysis difficult for the attacker comparing with
other operation modes because every block of the
ciphertext depends on the previous block.

3.1.3 Privacy for the proposed model
 The proposed data sharing model provides
privacy to the shared data. Huffman coding which
encode the original data, this increase data security
because the file that will be shared is coded and
different from the original file [17]. Encryption
algorithm to encrypt the header file. Also to
improve security Cipher Block Chaining (CBC) is
used. CBC makes the plain- text analysis difficult
for the attacker comparing with other operation
modes due to every block of the plaintext is
dependent on the previous block [26]. In addition
the proposed model add X% of data of binary file
to header file to enhance the algorithm against the
attacks such as direct attacks, in these attacks the
attacker tries to guess the secret keys that have been
used in encryption process by trying all possible
combinations to find these keys, so using X% will
make it harder for the attacker to guess the header
file and it will take longer time.

3.2 Computation and Transfer Time
Parameters for Proposed Model

 This section shows the total sharing time
for the proposed model that uses Huffman coding
as compression algorithm and encrypts the header
file. The section shows the enhancement for the
sharing time for the proposed model which shares
the binary file offline and uses Huffman coding as
compression technique and encryption algorithm to
encrypt the header file then it. Total sharing time
for the proposed model that using compression and
encryption is expressed in equation 1.

TsharingHuff = TcomputationHuff + TtrabsferHuff (1)

Where TsharingHuff is the sharing time when using
Huffman coding as compression algorithm,
TcomputationHuff is the computation time and TtrabsferHuff

is the transfer time. The computation time for
compression, decompression using Huffman coding
and encryption, decryption is:

TcomputationHuff = THuffcom + Tcomputation(Binary) +
TEnc(Header) + TDec(Header)
 + THuffdecom + TProcessing (2)

Where THuffcom is the compression time using
Huffman coding, Tcomputation(Binary) is the
computation time for the binary file, TEnc(Header)
is the encryption time for the header file,
TDec(Header) is the decryption time for the header
file at the receiver side, THuffdecom is the
decompression time at the receiver side using
Huffman coding and TProcessing is a processing time.

 4. PROPOSED SYSTEM IMPLEMENTATION
 The proposed model has been
implemented using C++ programming language,
using XCode version 8.2.1. Ten test files with
different sizes is generated to test different
scenarios. The scenarios were tested on macOS
Sierra version 10.12.3 with: processor: Intel Core
i5, CPU 2.90 GHz, memory 8 GB and the system
type is 64-bit operating system. Sharing files was
tested between two users on two different networks
with two different speeds (1MB/sec and
16MB/sec). The experiments were performed three
times, average values are used to express the
results.

5. EXPERIMENTS AND RESULTS
 The proposed model is tested on ten files using
different scenarios to compare the results, the
scenarios are:

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5459

✓ AES (file): encrypt the file using AES before
sharing it, to simulate OneSwarm.

✓ DES (file): encrypt the file using DES instead of
AES before sharing it.

✓ RSA (file): encrypt the file using RSA before
sharing it, which is not common.

✓ A-RSA (file): encrypt the file using A-RSA
before sharing it, to test A-RSA algorithm.

✓ AES (Header file): compress the file to generate
header file and binary file then encrypt the header
file using AES before sharing it.

✓ DES (Header file): compress the file to generate
header file and binary file then encrypt the header
file using DES before sharing it.

✓ DES (Header file + X% Binary file): compress
the file to generate header file and binary file
after that add X% of data to the header file then
encrypt the edited header file using DES before
sharing it, this research assumed that the X% of
data is equal to 10%.

✓ AES (Header file + X% Binary file): compress
the file to generate header file and binary file
after that add X% of data to the header file then
encrypt the edited header file using AES before
sharing it, this research assumed that the X% of
data is equal to 10%.

The computation time for AES (file), DES (file)
and A-RSA(file) is:

Tcomputation = TEnc(File) + TDec(File) + TProcessing (3)

Where TEnc(File) is the encryption time for the file,
TDec(File) is the decryption time for the file and
TProcessing is a processing time.
While the computation time for AES (Header file)
and DES (Header file):

TcomputationHuff = THuffcom + TEnc(Header) +
TDec(Header) + THuffdecom + TProcessing (4)

Where THuffcom is the compression time using
Huffman coding, TEnc(Header) is the encryption
time for the header file, TDec(Header) is the
decryption time for the header file at the receiver
side, THuffdecom is the decompression time at the
receiver side using Huffman coding and TProcessing is
a processing time.
And the computation time for AES (Header file +
X% Binary file) and DES (Header file + X%
Binary file):

TcomputationEditHuff = THuffcom + Tcomputation(Binary) +
TEnc(Header) + TDec(Header) + THuffdecom +
TProcessing (5)

Where Tcomputation(Binary) is the computation time
for the binary file.
Based on the previous equations, TcomputationHuff and
TcomputationEditHuff will consumes more time than the
Tcomputation because of the compression time. Table 1
shows the average execution time for encrypting 10
files. Each file is encrypted three times, the average
of these readings was computed.

 According to the results the computation time for
AES (file), DES (file) consumes less time than AES
(H), DES (H), AES (Header file + 10% Binary file)
and DES (Header file + 10% Binary file) due to the
compression process. And Table 2 shows the
decrypted and decompression process for each file

in the mentioned scenarios. According to the results
the computation time for AES (file), DES (file)
consumes less time than AES (H), DES (H), AES
(Header file + 10% Binary file) and DES (Header
file + 10% Binary file) due to the decompression
process.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5460

The sharing time for the mentioned scenarios where
is:

Tsharing = Tcomputation + Ttransfer (6)

Where Tsharing is the sharing time, Tcomputation is the
computation time and Ttransfer is the transfer time.
Table 3 shows the sharing time for the ten files on
1MB/sec speed. The results shows that the sharing
time for AES(file), DES(file) and A-RSA consumes
more time. While transferring time when using

compression algorithm consumes less time
assuming that the binary file is shared offline .
While table 4 shows the sharing time for the ten
files on 16MB/sec speed.

Figure 7 shows that sharing time on
1MB/sec speed when using compression and add
X% data is 87% faster than sharing file without
compression assuming that the binary file is shared
offline.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5461

Figure 8 shows that sharing time on 16MB/sec
speed when using compression and add X% is 38%
faster than sharing file without compression
assuming that the binary file is shared offline.

Figure 7: Sharing Time on 1MB/sec Speed.

Figure8 : Sharing Time on 16MB/sec Speed.

6. DISCUSSION

Experiments result shows that the

proposed model saves storage by 45% comparing to
other scenarios that sharing the full file without
compression. Also, Experiments result on speed
1MB/sec shows that sharing time for the proposed
model is 87% faster than sharing the complete file.
While on 16MB/sec it is 38% faster than the others.
Using Huffman coding to compress data generates
header file and binary file, the proposed model
encrypts just the header file which its size is much
smaller than the original file and the binary file is
approximately 50% smaller than the original file so
the time for encrypting header file is less than
encrypting the entire file. Also sharing time for the
header file is much less than sharing time for the

file because the shared file is much smaller than the
original file. In addition, the proposed model
provides privacy to the shared files due to:

1. Huffman coding which encode the original
data, this increase data security because
the file that will be shared is coded and
different from the original file [17].

2. Encryption algorithm to encrypt the header
file.

3. To improve security Cipher Block
Chaining (CBC) is used. CBC makes the
plain text analysis difficult for the attacker
comparing with other operation modes due
to every block of the plaintext is
dependent on the previous block [26].

The proposed preserving privacy data sharing
model differs from other data sharing models in
several points, that are summarized as follows:

1. Privacy: The proposed model provides
privacy since it uses encryption algorithms
and Huffman coding as compression
technique.

2. Sharing time: the proposed model is 87%
faster on 1MB/sec speed than other models
and it is 38% faster on network speed of
16MB/sec, since it uses file compression,
assuming the binary file is shared offline.

3. Save storage: the proposed model is 45%
less in size than files size in other models,
since it uses Huffman coding as
compression technique to reduce file size
before encrypting it.

4. In addition the proposed model add X% of
data of binary file to header file to enhance
the algorithm against the attacks such as
direct attacks, in these attacks the attacker
tries to guess the secret keys that have
been used in encryption process by trying
all possible combinations to find these
keys, so using X% will make it harder for
the attacker to guess the header file and it
will take longer time.

7. CONCLUSION

In this work, preserving privacy subject will be

considered. This research proposed a new privacy
preserving data sharing model that combines
compression techniques such as Huffman coding

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5462

and different encryption algorithms in order to
provide privacy in data sharing to facilitate data
sharing in different areas. Performance parameters,
such as processing and transfer time, and the
enhancement for the expected model are also
considered. Experiments results over 10 different
files sizes show that the proposed model provide
privacy to shared files also it reduces large file size
since the proposed model use Huffman coding and
it is 87% faster on speed of 1MB/sec and on speed
of 16MB/sec it is 38% faster than existing models

REFERENCES:

[1] Doan A. Elmagarmid A. Clifton, C.
Privacy-preserving data integration and
sharing. ACM-Research issues in data
mining and knowledge discovery, pages
19–26, 2004

[2] Piatek M. Krishnamurthy A. Anderson T.
Isdal, T. Privacy-preserving P2P data
sharing with oneswarm. ACM SIGCOMM
Computer Communication Review, 40
(4):111–112, 2010.

[3] Khan L. Paul R. Thuraisingham B. Harris,
D. Standards for secure data sharing
across organizations. ACM-Computer
Standards and Interfaces, 29(1):86–96,
2007.

[4] Kohno T. Krishnamurthy A. Piatek, M.
Challenges and directions for monitoring
P2P file sharing networks. Proceeding
HOTSEC’08 Proceedings of the 3rd
conference on Hot topics in security,
12(12), 2008.

[5] Kim H. Kim D. Son, J. On secure data
sharing in cloud environment. Proceedings
of the 8th International Conference on
Ubiquitous Information Management and
Communication, 6, 2014.

[6] Muralidhar K. Sarathy, R. Secure and
useful data sharing. Elsevier, 42(1):204–
220, 2004.

[7] Chun S. Kim D. Keromytis A. Choi, J.
Securegov: Secure data sharing for gov-
ernment services. The Proceedings of the
14th Annual International Conference on
Digital Government Research, 2013.

[8] Yang J. Hu, Y. A semantic privacy-
preserving model for data sharing and

integra- tion. ACM-Web Intelligence,
Mining and Semantics, 9(9):1–12, 2011.

[9] Balazinska M. Gribble S. Levy H.
Geambasu, R. Homeviews: P2P
middleware for personal data sharing
applications. ACM, pages 235–246, 2007.

[10] B. Cohen. Incentives build robustness in
BitTorrent. IPTPS, pages 1–5, 2003.

[11] Johnson M. Appari, A. Information
security and privacy in Healthcare:
Current state of research. International
Journal of Internet and Enterprise
Management, 6 (4):1–36, 2008.

[12] Zaiane O. Oliveira, S. Achieving privacy
preservation when sharing data for clus-
tering. Secure Data Management,
3178:67–82, 2004.

[13] Levine B. Liberatore M. Prusty, S. Forensic
investigation of the OneSwarm anony-
mous filesharing system. Proceedings of
the 18th ACM conference on Computer
and communications security, pages 201–
214, 2011.

[14] Dixon D. Wilson J. Sasi, S. A general
comparison of symmetric and asymmetric
cryptosystems for WSNs and an overview
of location based encryption technique for
improving security. IOSR Journal of
Engineering, 4(3):01–04, 2014.

[15] Philemon D. Falaki O. Alese, K.
Comparative analysis of public-key
encryption schemes. International Journal
of Engineering and Technology,
2(9):1552–1568, 2012.

[16] Shamir A. Adleman L. Rivest, R. A method
for obtaining digital signatures and public-
key cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[17] Alsadeh A. Karakra, A. A-RSA:
Augmented RSA. SAI Computing
Conference, pages 1016–1023, 2016.

[18] Supriya Singh, G. A study of encryption
algorithms (RSA, DES, 3DES and AES)
for information security. International
Journal of Computer Applicationsy,
67(19): 33–38, 2013.

Journal of Theoretical and Applied Information Technology
31st October 2017. Vol.95. No 20

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5463

[19] The National Institute of Standards and
Technology. Announcing the advanced
encryption standard (AES). Federal
Information Processing Standards
Publication 197, 2001.

[20] G. Blelloch. Introduction to Data
Compression. Carnegie Mellon
University, 2013.

[21] Amaeasinghe U. Kodituwakku, S.
Comprison of lossless data compression
algorithms for text data. Indian Journal of
Computer Science and Engineering, 1(4):
416–425, 2006.

[22] Itwala U. Rana R. Patel, H. Survey of
lossless data compression algorithms.
International Journal of Engineering
Research and Technology, 4(4):926–929,
2015.

[23] Aouad G. Kagioglou M. Bakis, N. Towards
distributed product data sharing envi-
ronments progress so far and future
challenges. Elsevier-Automation in
Construc- tion, 16(5):586–595, 2007.

[24] Sarin S. Greif, I. Data sharing in group
work. ACM, 5(2):187–211, 1987.

[25] Grunwald D. Sicker D. Bauer, K. The arms
race in P2P. 37th Research Conference on
Communication, Information and Internet
Policy, 2009.

[26] W. Stallings. Cryptography and network
security principles and practice. Pearson
Education, 2011. ISBN 978-0-13-609704-
4.

[27] Davie B. Peterson, L. Computer Networks
a systems approach. Elsevier, Inc, 2012.

[28] M. Rhee. Internet Security: Cryptographic
Principles, Algorithms and Protocols.
John Wiley and Sons Ltd, 2003. ISBN 0-
470-852285-2.

[29] W. Diffie. The first ten years of public-key
cryptography. Proceedings of the IEEE,
76(5):560–577, 1988.

[30] D. Huffman. A method for the construction
of minimum-redundancy codes.
Proceedings of the I.R.E., pages 1098–
1101, 1952.

[31]

[32]

Shacham H. Modadugu N. Boneh D. Goh,
E. Sirius: Securing remote untrusted
storage. Proc. Network and Distributed
Systems Security Symp, pages 131–145,
2003.

Sarahneh S. Tahboub R. Secure Data
Sharing Model Using New Technique for
Preserving Privacy Journal of Internet
Technology and Secured Transactions,
4(4) ,2015

