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ABSTRACT 
 

The application of adaptive control technique or procedure in designing control coordination of power 
system stabilizers is presented in this paper. The design is based on the use of a wavelet neural network 
which adjusts the parameters of the stabilizers to achieve system stability and maintain optimal dampings as 
the system operating condition and/or configuration changes. The developed wavelet neural network-based 
adaptive stabilizer is tested with a representative multi-machine power system. The test results show that 
the proposed adaptive stabilizer can maintain and improve the stability even with the changes of system 
operating conditions and configurations. 
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1. INTRODUCTION 

One of the essential criteria for secure system 
operation is the stability of the power system. On 
the other hand, it has been known that the system 
stability can only be maintained if the 
electromechanical modes of oscillations among 
interconnected synchronous generators have 
sufficient damping. Power system stabilizers (PSSs) 
have been used for many years to improve and 
maintain the stability of the system 
electromechanical modes. 

In this context, there has been extensive research 
in the application of PSSs, particularly their control 
coordination, for achieving optimal damping of 
electromechanical modes and power system 
stability improvement [1-9]. In [1-9], control 
coordination design procedures in off-line 
environments which lead to fixed-parameter 
controllers have been reported. However, it is, in 
general, accepted that there are disadvantages 
associated with fixed-parameter controllers, even 
with those obtained by robust design. If the design 
is based on one particular power system operating 
condition and configuration, it is possible that the 
performances of the controllers will deteriorate 
under other operating conditions or configurations. 

With the objective of removing the disadvantages 
of fixed-parameter controllers, adaptive control 
techniques applied for power system damping 
controller design have been developed by some 
researchers [10-15]. In [10-15], artificial neural 
networks were proposed for implementing PSS in a 
single-machine infinite bus system. However, 

control coordination among different PSSs in multi-
machine power system was not considered in the 
papers. Furthermore, the changes in system 
configuration due to contingencies, which have a 
significant impact on electromechanical mode 
dampings and system stability, were not discussed 
in the design procedure. 

In [14], MRAS (Model Reference Adaptive 
System) technique has been utilized for the design 
of STATCOM and UPFC controllers. The proposed 
MRAS has been applied to guarantee system 
stability. However, the stabilizer design proposed in 
[14] also only dealt with the system load 
fluctuations. The changes in system configuration 
were not considered in the paper. 

In [15], an adaptive and optimal control 
coordination scheme for power system damping 
controllers (including PSSs) has been developed. 
Central to scheme proposed in [15] is the use of 
neural network synthesized to give in its output 
layer the optimal controller parameters adaptive to 
system operating condition and configuration. By 
using the adaptive controllers design, the system 
stability and optimal damping can be maintained 
even with the changes of system operating 
condition and/or network configuration. The neural 
network-based stabilizers proposed in [15] have 
successfully been applied in enhancing damping of 
electromechanical oscillations, maintaining 
stability, and improving dynamic performance of a 
multi-machine power system. 

Recently, wavelet neural network has been used 
as an alternative to neural network [16-18]. Similar 



Journal of Theoretical and Applied Information Technology 
15th October 2017. Vol.95. No 19 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
4984 

 

to neural network, wavelet neural network is also a 
universal function approximator. However, with 
smaller network size, wavelet neural network is 
capable to perform satisfactory and can 
approximate most functions arbitrarily well. This 
advantage makes the wavelet neural network more 
efficient and easier to train. 

Therefore, against the above background, the 
objective of the present paper is to investigate the 
application of wavelet neural network in designing 
adaptive control coordination of power system 
stabilizers for enhancing system stability. The 
wavelet neural network-based adaptive stabilizer is 
trained offline with a wide range of credible power 
system operating conditions and configurations, and 
therefore, it can identify online the optimal 
controller parameters. The performance of the 
adaptive stabilizer in improving power system 
stability and dynamic performance is validated by 
eigenvalues analysis and time-domain simulations 
of the power system. 

 
2. POWER SYSTEM STABILIZER (PSS) 

Figure 1 shows the general structure of a PSS 
[19] which is adopted in this paper. The structure 
consists of a gain block, a washout, lead-lag blocks 
and a limiter. A washout term/filter (i.e. with a time 
derivative operator) in the PSS structure is needed 
to guarantee that the PSS responds only to 
disturbances, and does not respond to any steady-
state condition, when speed or power is input. Here, 
the rotor speed is used for the PSS input. The PSS 
output is added to the exciter voltage error signal 
and served as a supplementary signal. 

 

 

 

 
Figure 1: PSS control block diagram 

 
The state equation derived by examining the PSS 

transfer functions can be arranged in the following 
form: 

rpppp


 CxAx   (1) 

where  TPSS2P1Pp Vxxx  is the vector of 

state variables of the PSS; Ap and Cp are matrices 
the elements of which depend on the gains (KPSS) 
and time constants (TPSS) of the PSS controllers. 
 

3. WAVELET NEURAL NETWORK (WNN) 

3.1 Neural Network 

Artificial neural networks are composed of 
elements (which imitate the nerve cells or neurons 
of the biological nervous system) operating in 
parallel [20, 21]. The neural network function is 
determined largely by the connections between the 
elements. The neural network can be trained to 
perform a particular function by adjusting the 
values of the connections (weights) between the 
elements. The neural network is usually 
implemented by using electronic components or is 
simulated in software on a digital computer. 

In terms of their architectures, the neural 
networks can broadly be classified into: (i) the 
feedforward neural network, and (ii) the recurrent 
neural network. In feedforward neural network 
(FNN), the inputs to the neurons in each layer of 
the network are the output signals from the 
preceding layer only. A recurrent neural network 
(RNN) distinguishes itself from a FNN in that it has 
at least one feedback loop. In RNN, the neurons 
feed their output signals back to their own inputs 
(self-feedback) or to the inputs of other neurons. 

The multilayer feedforward neural network or 
multilayer perceptron, trained by backpropagation 
algorithm, is the most widely used neural network. 
Figure 2 shows a feedforward neural network with 
two layers, the first layer is sigmoid and the second 
layer is linear. Most practical neural networks have 
just two or three layers. Four or more layers are 
used rarely. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Multilayer feedforward neural network 
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3.2 Neural Network Training 

In neural network training stage, the network 
parameters (weights and biases) are adjusted to 
optimize the performance of the neural network 
[20, 21]. This optimization process consists of two 
steps. The first step is to determine a quantitative 
measure of the network performance and usually 
refers to as performance index. The performance 
index should be small when the network performs 
well and large when the network performs poorly. 
The second step of the optimization process is to 
search the network parameters in order to reduce 
the performance index. 

Training the multilayer feedforward neural 
network is usually carried out using optimization 
methods by which the difference between the 
network response and target output is minimized. 
The network is presented with a set of pairs of input 
and output patterns: 

     QQ2211 t,p,.....,t,p,t,p         (2) 

In (2), pi is an input vector to the network, and ti 
is the corresponding target output vector, for i = 1, 
2,.…., Q, where Q is the number of training cases. 
As each input is applied to the network, the 
network output is formed, and then compared to the 
target. The algorithm should adjust the network 
parameters which are the weights and biases in 
order to minimize the mean squared error: 

 


Q
T

Q

1
F

1i
()( )iiii atatδ ()       (3) 

In (3), δ and a are the vectors of network weights 
and outputs respectively. 

3.3 Wavelet Neural Network (WNN) 

Wavelet neural network is a combination of 
wavelet and neural network. A wavelet neural 
network generally consists of a feedforward neural 
network, with one hidden layer, whose activation 
functions are based on wavelet functions as shown 
in Figure 3 [22, 23]. 

Wavelet function is a class of function that can 
be used to localize the position and scaling of a 
function. This wavelet function is defined as: 







 




 tu
u)(                              (4) 

where  and t are the dilation and translation 
parameters respectively. Wavelet function (4) is 
known also as mother wavelet. Other wavelets can 

be generated by changing the dilation and 
translation of the mother wavelet. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Wavelet neural network 

Wavelet Haar, Lemarie, Daubechies, and 
wavelets derived from Gaussian functions are the 
most common mother wavelets. However, for 
function approximation, Gaussian functions-based 
wavelets are usually used as the activation 
functions in a wavelet neural network. 

As can be seen in Figure 3, the wavelet neural 
network has M wavelet neurons (wavelons). These 
wavelons consists of multidimensional wavelet 
activation functions. Therefore, the output of 
wavelet neural network of Figure 3 will be the 
linear combinations of the multidimensional 
wavelets and is given by: 
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The training of wavelet neural network is similar 
to that of neural network. In wavelet neural network 
training, the parameters dan    ,, twy are to be 

adjusted to minimize the performance index. 
 
4. WNN-BASED STABILIZER 

4.1 Basic Principle 

There are two key issues that need to be 
addressed in relation to the design of adaptive 
stabilizers: 

(i) Optimal control coordination. 
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It is required to achieve online control 
coordination of multiple stabilizers in a multi-
machine power system. The requirement is to 
maximize the damping ratio for 
electromechanical modes for each and every 
credible system operating condition or 
configuration. 

(ii) Representation of power system configuration. 
The optimal controller parameters also depend 
on power system configuration. Due to load 
demand variation and switching control, 
including that in protection operation for fault 
clearance, power system configuration is time-
varying during system operation. There is then 
a need to represent directly and systematically 
the changes in system configuration in online 
tuning and coordination of multiple controllers 

 
This section discusses an adaptive control 

coordination scheme for power system stabilizers 
that addresses the above two issues. The scheme is 
based on the use of a wavelet neural network which 
identifies online the optimal controller parameters. 
The inputs to the wavelet neural network include 
the active- and reactive- power of the synchronous 
generators which represent the power loading on 
the system, and elements of the reduced nodal 
impedance matrix for representing the power 
system configuration. It is, therefore, not required 
to form and store a range of system models for 
subsequent online use. The outputs of the wavelet 
neural network are the parameters of the power 
system stabilizers which lead to optimal oscillation 
damping for the prevailing system configuration 
and operating condition. 

The relationship among the optimal controller 
parameters and power system operating condition 
including system configuration is, in general, a 
nonlinear one. The present paper draws on the key 
property of the multilayer wavelet neural network, 
which is that of nonlinear multi-variable function 
representation. The wavelet neural network is used 
for the mapping between the power system 
configurations and/or operating conditions and 
optimal controller parameters. Figure 4 shows the 
general structure of the wavelet neural network 
which is adopted to represent the nonlinear 
relationship between the optimal controller 
parameters and power system operating condition 
together with configuration. 

There are two separate sets of nodes in the inputs 
layer in Figure 4. The first set has n nodes the 
inputs to which are obtained from the real and 
imaginary parts of the reduced nodal impedance 

matrix. These inputs represent power system 
configuration. If there are Ng generator nodes, the 
number of input nodes in the first set is Ng2+Ng, 
when the symmetry in the nodal impedance matrix 
is exploited. The second set of inputs comprises 
active- and reactive-power of each and every 
generator. There will be 2Ng input nodes in the 
second set. These inputs in the second set represent 
power system operating condition. Therefore, the 
total number of inputs is Ng2+3Ng. If the real parts 
of the reduced nodal impedance matrix are 
discounted, then the total number of inputs will be 
0.5Ng2+2.5Ng. The nodes in the output layer of the 
neural network structure in Figure 4 give the 
optimal values of the parameters of PSSs. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Structure of the wavelet neural network 

The structure in Figure 4 assumes that there are 
K controller parameters to be tuned online. On this 
basis and with the controller in Figure 1, the 
number of output parameters from the wavelet 
neural network in Figure 4 is 6Nc, where Nc is the 
number of PSSs. If only the PSS gains are to be 
tuned online, than the number of output parameters 
will be Nc. 

4.2 Overall Stabilizer Structure 

In Figure 5 is shown the overall structure of 
which the wavelet neural adaptive controller 
described in Section 4.1 is a part. For online tuning 
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of the parameters of PSSs, the inputs required are 
as follows: 

- circuit-breaker and isolator status data 
- power network branch parameters 
- generator active- and reactive-power 

 
The response of the trained wavelet neural 

network gives the optimal parameters for the PSSs. 
The feedback inputs to these controllers are 
generator speeds, as in the case of fixed-parameter 
controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: WNN-based stabilizer 

5. RESULTS AND ANALYSIS 

5.1 Power System Structure 

The system in the study is based on the 3-
machine 9-node power system of Figure 6 [24]. 
Initial investigation, where the damping controllers 
(PSSs) are not included in the system, has been 
carried out to determine the system oscillation 
damping and stability without the controllers. 
Modal analysis used in the investigation shows that 
there are two electromechanical modes of 
oscillations. 

The investigation also confirms that the system 
has poor damping. This low system damping 
indicates poor system dynamic performance and 
stability. Stabilization measure is, then, required for 
improving the damping of the oscillations. 
Therefore, in order to improve the stability, it is 
proposed to install PSSs in the system (each 
generator is equipped with PSS). 

5.2 Design of the Adaptive Stabilizer 

The key requirement is to design an adaptive 
controller that has the capability of generalizing 
with high accuracy from the training cases. This 
requirement is achieved through the wavelet neural 
network training and testing based on the selection 
of the training and testing data sets. The wavelet 
neural network training set should be representative 
of the cases described by credible system 
contingencies and changes in system operating 
conditions. 

The possible contingencies of the system in 
Figure 6 for line outages and load variations are 
shown in Tables 1 and 2 respectively. The input 
and output pairs for wavelet neural network training 
and testing cases are generated from the 
combinations of these contingencies and operating 
conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: 3-machine 9-node power system 

Table 1: Line outages cases 

No. Line 
1.1 No Line Outage 
1.2 One of Line L4 
1.3 One of Line L5 
1.4 One of Line L6 
1.5 One of Line L7 
1.6 One of Line L8 
1.7 One of Line L9 
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For the system in Figure 6, the number of 
wavelet neural network inputs, as determined on 
the basis of Section 4, is 18. As mentioned also in 
Sections 2 and 4, because each PSS controller has 6 
parameters, then the number of wavelet neural 
network outputs will be 18. 

The load demands in the system are varied in the 
representative range between minimum and 
maximum values. It has been taken that the load 
demands at all nodes follow similar patterns. 
However, any different patterns of load demand 
variations, for example, in areas with different time 
zones, when they arise, can be included in the data 
set without difficulty. 

Table 2: Load variations 

No. Load Demand at All Nodes
2.1 100% of Base Load
2.2 101% of Base Load
2.3 102% of Base Load
2.4 103% of Base Load
2.5 104% of Base Load
2.6 105% of Base Load
2.7 106% of Base Load
2.8 107% of Base Load
2.9 108% of Base Load

2.10 109% of Base Load
2.11 110% of Base Load
2.12 111% of Base Load
2.13 112% of Base Load
2.14 113% of Base Load
2.15 114% of Base Load
2.16 115% of Base Load
2.17 116% of Base Load
2.18 117% of Base Load
2.19 118% of Base Load
2.20 119% of Base Load
2.21 120% of Base Load
2.22 121% of Base Load
2.23 122% of Base Load
2.24 123% of Base Load
2.25 124% of Base Load
2.26 125% of Base Load
2.27 126% of Base Load
2.28 127% of Base Load
2.29 128% of Base Load
2.30 129% of Base Load
2.31 130% of Base Load

 
For each contingency, the reduced nodal 

impedance matrix for the generator nodes 1 – 3 
(including the slack bus) is formed. The power 
generations including those at the slack bus and the 
reactive-power which are obtained from load-flow 
studies and the elements of the reduced nodal 

impedance matrix are used as the neural network 
input data. The optimal controller parameters are 
also determined for each case using the method 
described in [5]. These optimal controller parameter 
values are used as the specified network output 
data. 

In applying the optimal control coordination [5] 
for training and test data generation, the sum of the 
squares of the real parts of all of the eigenvalues of 
the electromechanical modes is maximized, with 
the constraints that the minimum damping ratio of 
the electromechanical modes is 0.1. The minimum 
value of 0.1 is chosen because, as mentioned also in 
[25, 26], the damping ratio lower than 0.1 is 
considered unacceptable. 

The cases generated from Tables 1 and 2 are sub-
divided into the training set and test set. For the 
training set, line outage cases 1.2 – 1.6 together 
with load demand variations in cases 2.2 – 2.15, 
and 2.17 – 2.30 are selected. The remaining cases 
of line outages and load demand variations in 
Tables 1 and 2 are used for the test set 

In the present work, the performance goal in 
terms of the error function F() of 0.004 (for 
training) and 0.006 (for testing) are used. Also, the 
network size of eight hidden neurons is used in the 
investigation. These features indicate that by using 
smaller size network, the WNN-based stabilizer is 
able to give results with the same accuracy as those 
obtained by NN-based stabilizer proposed in [15].  

5.3 Dynamic Performance of the Stabilizer 

Tables 3-6 show the comparisons of modal 
response characteristics (electromechanical mode 
eigenvalues, frequencies and damping ratios) 
between non-adaptive (fixed-parameter) and 
adaptive (wavelet neural network-based) controllers 
of the system in Figure 6 for a range of 
contingencies and operating conditions. For non-
adaptive controller, the controller parameters 
derived from the base case design are used for all of 
the contingency cases and load change. 

Table 3 shows the controller dynamic 
performances at the base case. The base case is the 
case with the full system (no line outages) in Figure 
6, and load demands at all nodes are at their base 
load values. The comparison in Table 3 confirms 
that the damping ratios for the electromechanical 
modes achieved by the adaptive controller are 
closely similar to those obtained from the fixed-
parameter controllers (i.e. non-adaptive) designed 
with the system configuration and operating 
condition specified in the base case. 
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Table 4 shows the controller dynamic 
performances at the load change case. In this case, 
the load demands at all nodes are increased to 
130% of base load while the system configuration 
remains as that of the base case. With non-adaptive 
controllers, the damping ratios of the 
electromechanical modes decrease noticeably in 
comparison with those in the base case (there is 
mode with unacceptable damping ratio or lower 
than 0.1). However, with the adaptive controller, 
the damping ratios are maintained at the levels 
similar to those of the base case. 

Table 3: Controller dynamic performance at base case 

Controller 
Eigenvalues 

Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-2.2582 ± J10.4730 1,67 0,21 
-0.8279 ± J7.5043 1,19 0,11 

Adaptive 
-2.2185 ± J10.3355 1,64 0,21 
-0.8153 ± J7.5051 1,19 0,11 

 
Table 4: Controller dynamic performance at load change 

case 

Controller 
Eigenvalues 

Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-1.4320 ± J10.6266 1,69 0,13 
-0.5915 ± J7.2426 1,15 0,08 

Adaptive 
-2.0189 ± J11.2149 1,78 0,18 
-0.8207 ± J7.6322 1,21 0,11 

 
Further comparison of Table 5 focuses on 

contingency where one of transmission circuit of 
L6 is disconnected. The load demands are those in 
the base case. It can be seen that from Table 5 there 
is a reduction in the mode damping in comparison 
with the base case. The damping ratio of this mode 
is reduced to 0.09, compared to 0.11 in the base 
case. With the adaptive controller, the damping 
ratios of all of the electromechanical modes are 
almost not affected by the outage, in comparison 
with those in the base case, as indicated in Table 5. 

Table 5: Controller dynamic performance at line outage 
case 

Controller 
Eigenvalues 

Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-2.0357 ± J10.1895 1,62 0,20 
-0.6327 ± J7.0723 1,13 0,09 

Adaptive 
-2.3278 ± J10.2918 1,64 0,22 
-0.7218 ± J7.1246 1,13 0,10 

 
Table 6 focuses on contingency where one of 

transmission circuit of L6 is disconnected during 
higher system load (load demands at all nodes are 
at 130% of base load). This contingency affects the 
damping of the electromechanical modes 
significantly when the non-adaptive controllers are 
used. The damping ratio of 0.11 in the base case is 

now reduced to 0.07. The robustness of the 
adaptive controller in this outage case is confirmed 
by the results of Table 6. The controller parameters 
determined by the trained wavelet neural network 
are able to adapt to the new system condition for 
maintaining the modal damping ratios at the levels 
similar to those in the base case. 

Table 6: Controller dynamic performance at line outage 
and load change case 

Controller 
Eigenvalues 

Freq. 
(Hz) 

Damping 
Ratio 

Non-
Adaptive 

-1.3338 ± J10.3947 1,65 0,13 
-0.4491 ± J6.6472 1,06 0,07 

Adaptive 
-1.8975 ± J11.0529 1,76 0,17 
-0.7415 ± J6.9765 1,11 0,11 

 
5.4 Time Domain Simulations 

In order to further validate the performance of 
the wavelet neural network-based stabilizer, time-
domain simulations are carried out for the selected 
contingency case (i.e. load change case). The time-
step length of 50 ms is adopted for the simulations. 
The disturbance that initiates the transients is a 
three-phase fault on a busbar section connected to 
node N8 via bus coupler. The fault is initiated at 
time t = 0.10 second, and the fault clearing time is 
0.05 second with the bus coupler tripping. 

In Figures 7 and 8 are shown the system 
transients following the disturbance for the selected 
contingency. It is to be noted that for this 
contingency, the damping ratio of the weakest 
mode is 0.08 when the non-adaptive controller is 
used (see Table 4).  As the participations of 
generators G1 and G2 to this mode are more 
dominant, then the relative speed and torque angle 
transients between generators G1 and G2 are used 
in forming the responses in Figures 7 and 8. 

 
Figure.7: Relative speed (G1-G2) transients 

 

0 1 2 3 4 5 6 7 8 9 10
-4

-3

-2

-1

0

1

2

3

4

time, s 

re
la

tiv
e 

sp
ee

d 
tr

a
ns

ie
nt

s,
 r

ad
/s

 ___ : Adaptive 

-----: Non-adaptive



Journal of Theoretical and Applied Information Technology 
15th October 2017. Vol.95. No 19 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195  

 
4990 

 

From the responses in Figures 7 and 8, it can be 
seen that, with non-adaptive controller, the system 
oscillation is poorly damped and takes a 
considerable time to reach a stable condition. With 
the wavelet neural network-based (adaptive) 
controller, the system reaches steady-state 
condition in 5 – 6 s subsequent to the disturbance 
for the contingency case considered (see Figures 7 
and 8). 

 
Figure 8: Relative torque angle (G1-G2) transients 

 

6. CONCLUSION 

An adaptive control algorithm and procedure 
have been derived and developed for online tuning 
of the PSSs. The procedure is based on the use of a 
wavelet neural network. For a representative power 
system, the wavelet neural network-based adaptive 
stabilizer is trained offline with a wide range of 
credible power system operating conditions and 
configurations, and therefore, it can identify online 
the optimal controller parameters. 

The developed adaptive stabilizer has been 
comprehensively tested to verify its dynamic 
performance. Both eigenvalue calculations and 
time-domain simulations are applied in the testing 
and verification. Many comparative studies have 
been carried out to quantify the improved 
performance of the adaptive stabilizer in 
comparison with that achieved with fixed-
parameter stabilizers. The results confirm that, by 
using the wavelet neural network-based stabilizer, 
the decrease in system dampings and dynamic 
performances arising from the use of fixed-
parameter stabilizers will be removed and the 
system stability is improved. It is also to be noted 
that with smaller size network, the performance of 
the proposed stabilizer is similar to that of the NN-
based stabilizer. 
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