
Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5285

A COMPARISON OF EVOLUTIONARY TECHNIQUES FOR
TEST CASE GENERATION AND OPTIMIZATION

1MS. NAMITA KHURANA, 2DR. RAJENDER SINGH CHHILLAR

1Research Scholar, Department Of Comp. Sc. and Applications, M.D.U, Rohtak, Haryana, India

2Professor, Department Of Comp. Sc. and Applications, M.D.U, Rohtak, Haryana, India
E-mail:- 1namitakhurana2@gmail.com , 2chhillar02@gmail.com

ABSTRACT

The key objective of this paper is comparative evaluation of test case generation and optimization for two
bio-inspired algorithms Genetic Algorithm and Ant Colony Algorithm. These Search Optimization
techniques provide the best solution. These algorithms are used to generate test paths and then optimize
them. The case study is being presented using Activity Diagram on Airline Reservation System by applying
both Optimization Algorithms. Activity Diagram is transformed into Activity Graph. The Nodes of the
graph show a test path which is being optimized using Genetic Algorithm and Ant Colony
Optimization.The study done is measured in terms of number of iterations and execution speed. The
empirical results prove that the algorithm for Ant Colony Optimization shows better results as compared to
Genetic Algorithm. The proposed technique gives the comparative results of bio-inspired Algorithms. The
two Algorithms can be combined to get better optimization results. The proposed technique can be used to
develop automated tool.

Keywords: Ant Colony Optimization, Genetic Algorithm, Test path Generation, Test case Optimization,
Activity Diagram

1. INTRODUCTION

 In software development life cycle, half of the
total development cost is due to software testing.
This cost for testing can be reduced to a large
extent if the errors can be filtered at the earlier
stage. It is an important part of SDLC to ensure the
quality of real-time software1. For software testing
following activities are being performed: (1)
Generate the test Data (2) Execution of Test Data
and (3) Evaluation of test results. However it is
very typical to maintain these activities manually.
Automation of testing is desired to reduce the high
cost and to locate the errors. The software testing is
planned to remove maximum available defects

using selected test cases. Exhaustive testing cannot
be performed due to time and cost constraints in
software testing1.
 The major testing strategies are behavioural
testing and white box testing2. White box testing
also known as structural testing is a methodology of
discovering the program structure and deriving the
test data from internal code. Behavioural Testing or
Black-box testing tests the functionality of an
application without checking its internal structures.
Main objective of structural testing is to test all the

code paths with available test data inputs. For path
coverage in software testing, test paths are
generated and then considered for generating
different test scenarios. Next step is to prioritize the
path and generate the test data for that path. After
generating the test path test data is evaluated and
test paths are prioritized [1].

 The Focus of our work in this paper is
comparison of ACO and GA by generation and
optimization of test paths. Ant Colony Optimization
(ACO) is a popular meta-heuristic technique. This
technique is used for combinatorial optimization.
Genetic Algorithm (GA) is heuristic search
algorithm based on natural selection and genetics.
The test paths are evaluated for Airline reservation
system by using both Optimization techniques.
optimized results are then compared to know which
one is better.

 The structure of the paper is as follows. First in
section 2, previous work studied regarding this
paper is being explained. Section 3 is used to
explain some basics of Ant colony Optimization. In
Section 4, Activity diagram for Airline reservation
system is being explained and also Activity
Diagram is transformed into Activity Graph. In
Section 5, case study is being done using Genetic
Algorithm for generation and optimization of test
cases. In section 6, Test cases are generated and

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5286

optimized using Ant colony Optimization. Next
section 7 concludes the paper and Figure out some
important issues regarding future research. Last
section reveals the references used regarding the
work done in the paper.

2. PREVIOUS WORK

 Three different types of techniques are used for
generation of test cases like code based,
specification based and model based. This section
explains the survey of different research papers
based on test case generation with different UML
diagrams and Optimization techniques.
 Biswas and kaiser [3] proposed ant colony
optimization algorithm. In this paper a set of
optimal paths are generated and prioritized using
this algorithm. In this approach test data sequence
is generated within the domain to use as inputs of
the generated paths.
 Maheshwari and Prasanna [4] have reviewed
the literature about Automatic test case Generation.
The major factors involved in test case generation
are UML Diagrams, different testing Types,
different testing tools, different Optimization search
techniques and various other approaches.
 Khandai, Acharya and Mohapatra [5] have
done a literature survey on test case generation
techniques using different UML models. The
survey is done for different UML models for
concurrent and non concurrent systems.
 Srivastava and Rahurama [6] presented an
approach to find all optimal paths via Ant colony
Optimization. The total numbers of scenarios
generated are equal to the Cyclomatic Complexity.

 In Sharma and Kundu [7] proposed an
algorithm, in which sequence diagram is
transformed into sequence graph and then use case
diagram is transformed into use case graph. A
System Graph is formed by integration of the two
graphs. Test cases are generated using the system
graph.

 Whole literature survey presents either only test
case generation or test case generation with
optimization using any algorithm for finding
optimal path. Although evolutionary algorithm
have been widely used for solving different
optimization problem. Here in this paper survey is
done using comparative evaluation between two
Evolutionary Algorithms. The comparison between
the two algorithms depends on the problem. For
different problems one algorithm may perform
better than the other. In this paper test cases are
generated for a problem by using Activity diagram
which will cover operational faults at an early stage
of testing and also comparative evaluation of two

evolutionary algorithms will optimize the test cases
in terms of number of iterations and execution
speed.

3. ANT COLONY OPTIMIZATION

 This Algorithm is encouraged by the
behaviour shown by Ants which are madly
exploring Food. An ant lays a certain amount of
pheromone trail along the path traversed while
hunting for a food source. The two purposes of the
Ants are fulfilled while laying the pheromone trails.
First it defines a path for other randomly moving
ants and also it helps the other ants to return to their
original source. While returning to the original
source it again lays some pheromone trails. Now,
whenever a randomly moving Ant senses
pheromone fragments it will expect to follow the
same path and hence by positive feedback
mechanism new ant also lays pheromones on the
same path. The intensity of the pheromones on the
path increases. Finally the path having maximum
pheromone trails will be followed by the new ant.
Conclusively, the convergence to the local optimal
solution is avoided using the constant evaporation
rate of the pheromone trail [8].
 In any case an ant definitely reaches to its
original source if it randomly chooses the smallest
path. This shortest path will be traversed
repeatedly; this will lay more pheromones trails. In
result that path will become a fair choice for other
ants. Thus that path will converge to the shortest
path. This process of ants moving forth and back
from food source and back to its colony is called
Ant colony Optimization [8].
 Each independent ant on being small in size,
blind and frail is able to find the shortest path and
they are able to search the food source. These ants
use food trails pheromones and antennas to be in
touch with each other.
 Ant Colony Optimization is a probability
based computation problem algorithm which
generates solutions traversing a graph consisting of
different states of system. This algorithm is used in
software testing to generate test sequences. The
algorithm takes a control flow graph as input and
traverses nodes to find optimized paths in the
graph. Here in the paper Activity Graph is used to
find the optimized path.
 In this paper, two algorithms Genetic
Algorithm and Ant Colony Optimization are being
applied. Both are Optimization Algorithms and are
used to find the shortest path. Both the algorithms
are compared by demonstrating the proposed
approach applying on an example of Airline
Reservation System .In this paper, both algorithms

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5287

are applied to generate optimal path in Activity
Graph. The optimal paths will results with
minimum redundancy.
 In both the algorithms, the suits of paths are
prioritized in a way such that the next path can be
decided for testing. The probability of finding
errors in an earlier stage reduces the software
development cost. Both the algorithms are applied
to generate test data sequence which will be used as
input for executing every path that has been
generated previously. In both cases, whole path is
covered through Activity Graph. Also both
algorithms will generate test path as well as test
data, both will ensure effective testing by
prioritizing the paths and finally both will remove
redundancy. In this paper, both the algorithms are
compared in terms of execution speed and number
of occurrences for obtaining the optimal path for
the Activity Graph.

4. ACTIVITY DIAGRAM

This section explains the Activity Diagram for
Airline reservation system. Activity Diagram is
used due to the dynamic aspects of its modeling
[10]. It is basically the graphical representation of
the sequence of activities. Figure1 shows the
Activity Diagram for Airline reservation system
and Figure 2 shows the Activity Graph for Airline
reservation system.

Description:-

a. Enter arrival and departure dates in
Airline Reservation System.

b. Enter personal Information and search
availability.

c. Select flight and add reward points if
any.

d. Hold reservation and Add payment
information.

e. Mark seats as taken and process
payment and confirmation sent on E-
mail.

Figure 1. Activity Diagram (AD) for Airline Reservation

System

Figure 2. Activity Graph (AG) for Airline

Reservation System

This section illustrates the transformation of
Activity Diagram into Activity Graph. AG
works as a directed Graph and is replaced by
each node of the AD.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5288

5. GENERATION AND OPTIMIZATION OF
TEST CASES

5.1 Genetic Algorithm for Generating
 Prioritized Paths

 After gathering all the information in the
Activity Graph, test cases are generated. After the
Generation of test cases, Optimization is done using
any evolutionary algorithm. This section explains
the application of Genetic Algorithm on Activity
Graph for Generation and Optimization of test
cases. Our proposed algorithm is as
follows[12][13]:-

Algorithm 1: GEN-OPT TESTCASES

Input: - Activity Graph (AG)
Output: - Optimized test cases

1. Discover all the scenarios, R= {r1, r2, r3,
r4, r5…..} from start node to the end node
in Activity Graph.

2. Weights are allocated to scenarios in
ascending order from left to right.
Individual nodes are being assigned
weights as the actual weight of the sibling
node is calculated from weight of the
parent node. If case of any sibling having
multiple parents then weight of that node
is calculated by adding the weights of the
parent’s node.

3. Next is to calculate the cost (x) of each
scenario (path) as the cost of any path is
calculated by adding the weights of all
nodes on that path.

4. Genetic Algorithm is being applied to the
AG.

5. Fitness value calculation
a. For each scenario calculate the

value of cost(x).
b. Fitness function is applied as

F(x)=x*x
c. Probability is calculated for

individual as P(i)=F(x)/ƩF(x)
6. For production of new generation of

solutions best individuals are chosen from
existing large initial population for mating
pool.

a. Best individual’s probability
range is partitioned into bins, the
size of the bin depends on the
relative fitness of the solution

b. Random values are generated and
then checked against the bin
where those values related to,
selecting the individuals for the
next generation.

7. Crossover operation is performed on the
chromosome pairs by mating two
individuals together and applying single
point crossover from 4th bit from right.

8. Mutation operation is performed by
mutating every third bit from left where
the random number generated is less than
0.5.

9. This complete process is rehearsed till the
minimization of the fitness value or the
maximum number of generations is
reached or all the scenarios have been
traversed.

10. Test cases are optimized by generating the
best scenario as output.

11. End.

5.2 Demonstration of the proposed
Algorithm (Using Genetic Algorithm):-

 The Airline reservation system is used as an
example. Next part shows the arithmetic
representation[9][12] of Genetic Algorithm on
Activity Graph for Airline Reservation System
Tables 1-9.The possible scenarios generated from
the above graph are:-

Scenario1:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>end, cost=55

Scenario2:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V11=>end, cost=78

Scenario3:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V12=>end, cost=79

Scenario4:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=> V6=>V7=>V8=>V9=>end, cost=64
Scenario5:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V11=>end,
cost=87

Scenario6:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V12=>end,
cost=88

These different scenarios become different
chromosomes in the population.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5289

Table 1:- Fitness Of Initial Population

Table2:- Selection Of New Generation

Random No. Falls into
bin

Selection Crossover Mutation

0.8924 6 1011000 1010111 1010111
0.7187 5 1010111 1011000 1011000
0.4376
0.6097
0.3967

3
5
2

1001111
1010111
1001110

1000111
1011111
1001000

1010111
1011111
1011000

0.9126 6 1011000 1011110 1011110

Table 3:-Fitness Of New Generation

Sce
nari

o
No.

Chromos
ome

X X*X Probabili
ty

Cumulati
ve

Probabilit
y

Associat
ed bin

1 1010111 87 7569 0.1561 0.1561 0-0.2
2 1011000 88 7744 0.1597 0.3158 0.2-0.4
3
4
5

1010111
1011111
1011000

87
95
88

7569
9025
7744

0.1561
0.1861
0.1597

0.4719
0.6580
0.8177

0.4-0.5
0.5-0.7
0.7-0.9

6 1011110 94 8836 0.1822 1 0.9-1
 Sum 48,487

Table 4:- Selection Of New Generation

Random No. Falls into
bin

Selection Crossover Mutation

0.3896 2 1011000 1011000 1001000
0.8846 5 1011000 1011000 1011000
0.4290 3 1010111 1011111 1001111
0.6714
0.8761
0.9128

4
5
6

1011111
1011000
1011110

1010111
1011110
1011000

1010111
1011110
1011000

Table 5:-Fitness Of New Generation

Scen
ario
No.

Chromos
ome

X X*X Probabi
lity

Cumulati
ve

Probabilit
y

Associat
ed bin

1 1001000 72 5184 0.1196 0.1196 0-0.2
2 1011000 88 7744 0.1787 0.2983 0.2-0.4
3 1001111 79 6241 0.1440 0.4423 0.4-0.6
4
5
6

1010111
1011110
1011000

Sum

87
94
88

7569
8836
7744

43,318

0.1747
0.2039
0.1787

0.6170
0.8209

1

0.6-0.8
0.8-0.9
0.9-1

Scen
ario
No.

Chrom
osome

X X*X Probabi
lity

Cumulati
ve

Probabilit
y

Associat
ed bin

1 0110111 55 3025 0.0870 0.0870 0-0.2
2 1001110 78 6084 0.1750 0.2620 0.2-0.4
3 1001111 79 6241 0.1795 0.4415 0.4-0.5
4
5
6

1000000
1010111
1011000

Sum

64
87
88

4096
7569
7744

34,759

0.1178
0.2177
0.2227

0.5593
0.7770

1

0.5-0.6
0.6-0.8
0.8-1

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5290

Table 6:- Selection Of New Generation

Random No. Falls into
bin

Selection Crossover Mutation

0.4120
0.9265
0.7635

3
6
4

1001111
1011000
1010111

1001000
1011111
1011000

1001000
1011111
1011000

0.3127 2 1011000 1010111 1000111
0.9745
0.6793

6
4

1011000
1010111

1010111
1011000

1010111
1011000

Table 7:-Fitness Of New Generation

Sce
nari

o
No.

Chromos
ome

X X*X Probab
ility

Cumulati
ve

Probabilit
y

Associat
ed bin

1
2
3

1001000
1011111
1011000

72
95
88

5184
9025
7744

0.1225
0.2133
0.1830

0.1225
0.3358
0.5188

0-0.2
0.2-0.4
0.4-0.6

4 1000111 71 5041 0.1191 0.6379 0.6-0.8
5
6

1010111
1011000

87
88

7569
7744

42,307

0.1789
0.1830

0.8168
1

0.8-0.9
0.9-1

Table 8:- Selection Of New Generation

Random No. Falls into
bin

Selection Crossover Mutation

0.8635 5 1010111 1011000 1011000
0.5127 3 1011000 1010111 1010111
0.9745 6 1011000 1010111 1010111
0.8793
0.4120
0.9265

5
3
6

1010111
1011000
1011000

1011000
1011000
1011000

1011000
1001000
1011000

Table 9:-Fitness Of New Generation

Sce
nari

o
No.

Chromos
ome

X X*X Probab
ility

Cumulati
ve

Probabilit
y

Associat
ed bin

1 1011000 88 7744 0.1778 0.1778 0-0.2
2 1010111 87 7569 0.1737 0.3515 0.2-0.4
3 1010111 87 7569 0.1737 0.5252 0.4-0.6
4
5
6

1011000
1001000
1011000

88
72
88

7744
5184
7744

43,554

0.1778
0.1190
0.1778

0.7030
0.8220

1

0.6-0.8
0.8-0.9
0.9-1

 After every generation the difference between
the values of chromosomes started decreasing. This
shows the survival of the fittest chromosomes. The
algorithm terminates with the cost value 88. By
further calculations it is observed that Scenario 6
with cost value 88 is the Optimal Path traversed.

6. GENERATION AND OPTIMIZATION
OF TEST CASES (USING ANT COLONY
OPTIMIZATION)

6.1 Ant colony Algorithm for Generating
 Prioritized paths

 In this section Ant colony algorithm has been
proposed. This algorithm takes Activity Graph as
an input and generates optimal and prioritized
paths. Then ACO is applied to optimize those
generated paths. The main objective of algorithm is

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5291

to generate paths in Activity Graph by traversing
nodes. These nodes are selected based on the
probability. The node having more probability will
be chosen first. The probability is calculated using
pheromone value (τij) and heuristic information
(ηij). The pheromone value is used by other ants to
decide the path in future and the visibility of the
path is indicated by heuristic information.
Whenever an ant selects a node, two parameters,
the pheromone value and heuristic information are
updated. Finally all the possible paths are covered
in the program module.

Figure 3:- A Standard Process Flow Of Ant Colony

Optimization3

 There is an ant q which is at a vertex ‘x’ and
if there is another vertex ‘y’ and vertex ‘y’ is
directly linked to vertex ‘x’, then there will exist a
path between the vertices ‘x’ and ‘y’ i.e. (x->y).
The description of all the sets and variables used in
the proposed algorithm is given in Figure 3[3][6]:-

a) Node Set: N = {x,y,z,…….} represent the
set of all nodes in the AG.

b) Edge Set: E = {(x,y),(y,z),….}represent
all the edges in the AG.

c) Feasible Track Set: F = The direct link of
current node ‘x’ and neighboring node ‘y’
is represented by {Fxy (q)}. So if there is a
connection then an edge exists from ‘x’ to
‘y’ .

 If Fxy =1 then feasible path exists
between the nodes ‘x’ and ‘y’.

 If Fxy =0 then no feasible path
exists between the nodes ‘x’ and
‘y’.

d) Pheromone value: τ =The value of the
pheromone level on the feasible path (x-
>y) for an ant ‘q’ is represented by
{τxy (q)}. After traversing an edge (x,y)

pheromone level ,τ is updated ,then the
decision will be taken by the other Ants
on the basis of this updated value.

e) Heuristic Value set : η= The visibility of
a path (x,y) for an ant ‘q’ is being shown
by {ηxy(q)}.

f) Visited status set :Vs = The information
about the node ‘x’ which is already
traversed by the ant q or not is
represented by {Vs(x)} .

 If Vs(x)=0 then ant q has not
traversed vertex ‘x’ .

 If Vs(x)=1 then ant q has already
traversed vertex ‘x’.

g) Probability set: Probabilistic Value
inspired by the
Ant behavior is the basis for selecting the
path. The heuristic information ηxy (q),
feasibility of the path Fxy (q), and
pheromone trace value τxy(q) of path for
ant q are used for calculating the
probabilistic value of the path. The
Probabilistic value of the path is associated
with the two parameters α and β. Where α
means pheromone value and β means
heuristic value of the paths.

h) Cyclomatic Complexity (CC) : It
indicates different
possible scenarios in Activity Graph.

i) Weight: Weight is used to calculate the
strength of
each path so that total number of paths can
be prioritized.

Algorithm 2: For Ant ‘q’

Step1: Initialize all the parameters

1.1 Initialize Pheromone level (τ): The
pheromone level is initialized as (τ=1) for
every edge in Activity Graph.

1.2 Initialize Heuristic Value (η): The
heuristic value is initialized as (η=2) for
every edge in Activity Graph.

1.3 Initialize Probability (P): The Probability
is initialized as (P=0).

1.4 Initialize visited status (Vs): The visiting
status is initialized as (Vs=0) that means
Ant has not visited any state yet.

1.5 Initialize α=1, β=1, where α, β are the
parameters used to check the terms
desirability and visibility where
desirability stands for the wish of an ant to
traverse any particular route depending on
the pheromone value and visibility stands

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5292

for the solution which an Ant has on the
basis of prior experience for that particular
route. This parameter is associated with
the heuristic value.

1.6 Initialize Sum: Sum represents the
Cyclomatic Complexity, which calculates
the different possible scenarios in Activity
Graph.
Initialize key: the value of the key is
initialized as the end_node, this variable
stores the value of the last node.

Step 2: Run the Algorithm
2.1 While (sum>0)

2.1.1 Initialize: x= start, weight=0, visit=0.
 The variable Weight is used for calculating
 the strength of the path, Later on the
 variable Strength is used for prioritizing
 the paths. Next variable Visit is used to

 discard the redundant paths.
 2.1.2 Update the Visited status: If Ant has
 traversed any node ‘x’ then the value of the
 visited status of that vertex ‘x’ is updated.
 If the visited status for the any
 vertex ‘x’ is (Vs[x]=0) then it will be
 updated to (Vs[x]=1), also the value of
 variable ‘visit’ is updated to Visit=Visit+1.
 2.1.3 Evaluate Feasible track set: The feasible
 path F(q) for the current vertex ‘x’ is
 determined, This part also evaluates the
 available possible routes from the current
 vertex ‘x’ to all the adjacent vertices using
 Activity Graph. If no feasible path exists
 then go to step 3.
 2.1.4 Observe the path: The probability of each
 node is calculated in the feasibility set F(q)
 to observe the path. Now the probability for
 each non-zero element belongs to feasible
 set F(q) is calculated, with the help of
 following formula.

 (τxy)α * (ηxy)-β
 P xy =
 z
 Ʃ1 ((τxz) α * (ηxz)-β)

 where every z belongs to feasible set F(q).
 2.1.5 Traverse to next vertex: for visiting the
 next vertex use the following rules:-

 R1: Choose the path(xy) having maximum
 probability (Pxy).
 R2: If Probability of two or more paths are
 equal e.g., for paths xy and xz , (Pxy
 = Pxz) then rule 2.1is being followed.
R2.1: In case of self transition choose that path;
 otherwise below:

R2.2 : Each feasible set node is compared with
 the end node, if (feasible set node = =
 end_node) then choose end_node as the
 next node otherwise follow rule below:
R2.3 : Select that node with visiting status,Vs=0
 that means a node which has not been
 visited yet. Choose the nodes randomly
 in case two or more states are having
 same visited status i.e. Vs[y]=Vs[z] .

 2.1.6 Update pheromone value:
 Pheromone value is updated for the path
 (x->y) through the following rule:
 (τxy) = (τxy)α + (ηxy)-β

 2.1.7 Update Heuristic value:
 Heuristic information for an ant is being
 kept up to date by the formula:
 ηxy = 2* (ηxy)

 2.1.8 Evaluate strength: This factor contains
 the values related with each path and it is
 calculated as:-.

 weight = weight + τxy
 strength [sum]=weight.
 start = next_vertex.

2.1.9 If (start != end_node) then
 go to step 2.1.3
 else
 if (visit = = 0) then reject the path it is
 superfluous path otherwise add new path.
 Sum=Sum-1(decrement sum by one each
 time).
 3. END //end of Algorithm

 Here Sum is being represented as Cyclomatic
complexity of a method, and the value sum =0
means that all the decision nodes being traversed.
In two cases algorithm can be stopped, first
unavailability of feasible path for the Ant and the
second when at least once, all feasible paths has
been traversed.

6.2 Illustration of the proposed Algorithm

 (Using Ant Colony Algorithm):-

 All generated paths should be tested with suitable
input values so that the software defects can be
removed at early phases of testing. After gathering
all the information in the Activity Graph, Ant
colony Algorithm is applied to generate and
optimize the test cases.
 The possible scenarios (paths) generated from
the graph in Fig 2 are already shown in part 6(ii).

The Table 10 illustrates different paths and
associated values of the parameters corresponding

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5293

 to each path. Priority of the path is calculated using
the parameter ‘strength’ of the path. Priority of the
path is directly proportional to the strength. With
increase in the value of strength, priority of the path

will also be increased and also probability to get the
desired result will also remain high for that path.

Table 10:- Path Strength Value for first Ant

Path Node Strength Priority
Path1 Start:=>V1=>V2=>V3

=>V4=>V5=>V6=>V7=>V8
=>V9=>end

15 6

Path2 Start:=>V1=>V2=>V3
=>V4=>V5=>V6=>V7
=>V8=>V9=>V10=>
V11=>end

20.25 5

Path3 Start:=>V1=>V2=>V3
=>V4=>V5=>V6=>V7
=>V8=>V9=>V10=>
 V12=>end

21.6 4

Path4 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>end

24.625 3

Path5 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>V10=>V11
=>end

28.8 2

Path6 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>V10=>V12
=>end

29.19 1

 For path1 Ant ‘q’ is being kept at start node
by the tester and it keeps on moving and updating
the values. After node 9 it go for the end node. For
path 3, Ant ‘q’ is being kept at node start, generate
the possible set for start node F(start) = moving on
to node ‘9’, during the movement towards end node
it updates the parameters. Next it will choose vertex
V10 again it is a decision node, ant can go for
V11or V12 both are having equal probability and
same visited status P(p10-11) = P(p10-12). These
two are the path1 and path2. In both the cases, ant
will choose V9, V10 and then end node. For path 4,
Again Ant is being kept at the source node and
then move to the next node 1and then node 2 as a
decision node is available at node 3,

Ant has two paths F[3]={1,4} either back to node1
or to node 4 and both are having equal probability
P(p3-1)=P(p3-4). Ant while moving update all the
values as per the Algorithm. At vertex 9 there are
two ways F[9] = {10,end} to go. Both paths having
equal probability and same visited status P (p9-10)
= P (p9-end). From V9,

next vertex is V[end]. Ant selects the vertex V9 and
then end node. After that Ant update the parameter
and also calculate the value for strength. This was
the result of path 4. Path 1 will not generate any
desired output. Similarly all the six paths are
constructed. Table 11 shows the Path traversed by
second Ant where the path2 is interchanged with
path3 because both are having the same probability.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5294

Table 11:- Path Strength Value for second Ant

Path Node Strength Priority
Path1 Start:=>V1=>V2=>V3

=>V4=>V5=>V6=>V7
=>V8 =>V9=>end

15 6

Path2 Start:=>V1=>V2=>V3
=>V4=>V5=>V6=>V7
=>V8=>V9=>V10=>
V12=>end

20.25 5

Path3 Start:=>V1=>V2=>V3
=>V4=>V5=>V6=>V7
=>V8=>V9=>V10=>
V11=>end

21.6 4

Path4 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>end

24.625 3

Path5 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>V10=>V11
=>end

28.8 2

Path6 Start:=>V1=>V2=>V3
=>V1=>V2=>V3=>V4
=>V5=>V6=>V7=>V8
=>V9=>V10=>V12
=>end

29.19 1

 The proposed approach calculates the strength
and then priority of that path. Strength is calculated
according to the ant colony algorithm. Strength not
only depends on the updated pheromone value, it
also depends on the updated heuristic value.

The proposed algorithm is good 1) at removing
redundant paths 2) it prioritizes the paths 3) covers
full path 4) capable of finding errors at earlier stage
of testing.

7. CONCLUSION AND FUTURE WORK

 This paper presents Generation and
Prioritization of test cases using two different
algorithms Genetic Algorithm and Ant Colony
Optimization. Both these algorithm are
evolutionary search based algorithms. Both the
algorithms are applied on the same example. The
performance of both the algorithms has been
studied and the results showed that Genetic
Algorithm captures more number of iterations as
compared to Ant colony optimization. Ant Colony
Optimization gives fast results in lesser time as
Compared to Genetic Algorithm. Also in G.A there
is a need to select Fitness function, Best value for
Chromosome population, probability for Crossover
and Mutation operators. In ACO the pheromone
value and heuristic value need to be updated but
still ACO takes less number of iterations as

compared to G.A. In all cases Ant Colony
Optimization is better as compared to Genetic
Algorithm in reference to number of occurrences
and execution speed. Two Algorithms can be
combined to get best results and performance in
Future. The limitation of this work is that
Comparison between evolutionary algorithms
depends on the problem. It will vary from one
problem to another. Probably one evolutionary
algorithm gives good results for one problem and
not for another one.

REFERENCES

[1] D. Kundu , M. Sharma , D. Samanta ,R. Mall

“System testing for object-oriented systems
with test case prioritization”, Journal of
Software Testing, Verification and Reliability,
Willey online Library,2009,volume 19, pp.
297-333.

[2] A. Aditya, P. Mathur , Foundation of
software testing, First Edition, Pearson
Education, 2007.

[3] S. Biswas , M.S. Kaiser and S.A Mamun,
“Applying Ant Colony Optimization in
software Testing to Generate Prioritized
Optimal Path and Test Data” Bangladesh
2015

[4] V. Maheshwari and M. Prasanna, “Generation
of test case using Automation in Software
Systems-A Review”, Indian Journal of
Science and Technology, 2015 ,8(35), pp.1-9.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5295

[5] M. Khandai, A.A. Acharya, D.P. Mohapatra
“A Survey on Test Case Generation from
UML Model” International Journal of
Computer Science and Informational
Technologies,2011, 2(3), pp. 1-8.

[6] P.R. Srivastava, K.M Baby, G. Raghurama
“An approach of Optimal Path Generation
using Ant Colony Optimization” IEEE INDIA
2009

[7] M. Sharma, D. Kundu, R. Mall, “Automatic
Test Case Generation from UML Sequence
Diagrams” the proceeding of IEEE conference
on software maintenance @2007.

[8] S. Singh, Y. Yogesh, A. Kaur , B. Suri “Test
case prioritization using Ant colony
Optimization” , ACM SIGSOFT Software
Engineering Notes, 2010, 35(4) pp. 1-7.

[9] Ajay K. Jena, Santosh K. Swain, Durga K.
Mohapatra, “Test case generation and
prioritization based on UML Behavioral
Models”, Journal of Theoretical and applied
Information Technology, Vol 78, No. 3,pp.
336-352.@2015

[10] D. Kundu and D. Samant. “A Novel
Approach to Generate Test Cases from UML
Activity Diagrams” Journal of Object
Technology, 2009, 8(3), pp. 65-83.

[11] Phill Mcminn, “Search based software test
data generation: A Survey” Journal of
Software Testing, Verification and Reliability,
Willey online Library, Volume 14, issue 2,
June 2004,pp. 105-156.

[12] N. Khurana, R.S Chhillar “Test case
generation and Optimization using UML
models and Genetic Algorithm” Procedia
Computer Science, Elsevier Volume - 57, pp,
pages 996-1004. (ICRTC 2015)

[13] N. Khurana, R.S Chhillar, Usha Chhillar “A
Novel technique for Generation and
Optimization of test cases using Use Case,
Sequence, Activity Diagram and Genetic
Algorithm @March 2016 Journal of Software,
pp 242-250.

