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ABSTRACT 

The key objective of this paper is comparative evaluation of test case generation and optimization for two 
bio-inspired algorithms Genetic Algorithm and Ant Colony Algorithm. These Search Optimization 
techniques provide the best solution. These algorithms are used to generate test paths and then optimize 
them. The case study is being presented using Activity Diagram on Airline Reservation System by applying 
both Optimization Algorithms. Activity Diagram is transformed into Activity Graph. The Nodes of the 
graph show a test path which is being optimized using Genetic Algorithm and Ant Colony 
Optimization.The study done is measured in terms of number of iterations and execution speed. The 
empirical results prove that the algorithm for Ant Colony Optimization shows better results as compared to 
Genetic Algorithm. The proposed technique gives the comparative results of bio-inspired Algorithms. The 
two Algorithms can be combined to get better optimization results. The proposed technique can be used to 
develop automated tool. 

Keywords:  Ant Colony Optimization, Genetic Algorithm, Test path Generation, Test case Optimization, 
Activity Diagram 

 
1. INTRODUCTION  

     In software development life cycle, half of the 
total development cost is due to software testing. 
This cost for testing can be reduced to a large 
extent if the errors can be filtered at the earlier 
stage. It is an important part of SDLC to ensure the 
quality of real-time software1. For software testing 
following activities are being performed: (1) 
Generate the test Data (2) Execution of Test Data 
and (3) Evaluation of test results. However it is 
very typical to maintain these activities manually. 
Automation of testing is desired to reduce the high 
cost and to locate the errors. The software testing is 
planned to remove maximum available defects  
 
 
using selected test cases. Exhaustive testing cannot 
be performed due to time and cost constraints in 
software testing1. 
       The major testing strategies are behavioural 
testing and white box testing2. White box testing 
also known as structural testing is a methodology of 
discovering the program structure and deriving the 
test data from internal code. Behavioural Testing or  
Black-box testing tests the functionality of an 
application without checking its internal structures. 
Main objective of structural testing is to test all the 

code paths with available test data inputs. For path 
coverage in software testing, test paths are 
generated and then considered for generating 
different test scenarios. Next step is to prioritize the 
path and generate the test data for that path. After 
generating the test path test data is evaluated and 
test paths are prioritized [1]. 

       The Focus of our work in this paper is 
comparison of ACO and GA by generation and 
optimization of test paths. Ant Colony Optimization 
(ACO) is a popular meta-heuristic technique. This 
technique is used for combinatorial optimization. 
Genetic Algorithm (GA) is heuristic search 
algorithm based on natural selection and genetics. 
The test paths are evaluated for Airline reservation 
system by using both Optimization techniques. 
optimized results are then compared to know which 
one is better. 

     The structure of the paper is as follows. First in 
section 2, previous work studied regarding this 
paper is being explained. Section 3 is used to 
explain some basics of Ant colony Optimization. In 
Section 4, Activity diagram for Airline reservation 
system is being explained and also Activity 
Diagram is transformed into Activity Graph. In 
Section 5, case study is being done using Genetic 
Algorithm for generation and optimization of test 
cases. In section 6, Test cases are generated and 
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optimized using Ant colony Optimization. Next 
section 7 concludes the paper and Figure out some 
important issues regarding future research. Last 
section reveals the references used regarding the 
work done in the paper. 

      
2. PREVIOUS WORK 

  Three different types of techniques are used for 
generation of test cases like code based, 
specification based and model based. This section 
explains the survey of different research papers 
based on test case generation with different UML 
diagrams and Optimization techniques. 
        Biswas and kaiser [3] proposed ant colony 
optimization algorithm. In this paper a set of 
optimal paths are generated and prioritized using 
this algorithm. In this approach test data sequence 
is generated within the domain to use as inputs of 
the generated paths.                
       Maheshwari and Prasanna [4] have reviewed 
the literature about Automatic test case Generation. 
The major factors involved  in test case generation 
are UML Diagrams, different testing Types, 
different testing tools, different Optimization search 
techniques and various other approaches.  
        Khandai, Acharya and Mohapatra [5] have 
done a literature survey on test case generation 
techniques using different UML models. The 
survey is done for different UML models for 
concurrent and non concurrent systems. 
        Srivastava and Rahurama [6] presented an 
approach to find all optimal paths via Ant colony 
Optimization. The total numbers of scenarios 
generated are equal to the Cyclomatic Complexity. 

        In Sharma and Kundu [7] proposed an 
algorithm, in which sequence diagram is 
transformed into sequence graph and then use case 
diagram is transformed into use case graph. A 
System Graph is formed by integration of the two 
graphs. Test cases are generated using the system 
graph.  

 Whole literature survey presents either only test 
case generation or test case generation with 
optimization using any algorithm for finding 
optimal path. Although evolutionary algorithm 
have been widely used for solving different 
optimization problem. Here in this paper survey is 
done using comparative evaluation between two 
Evolutionary Algorithms. The comparison between 
the two algorithms depends on the problem. For 
different problems one algorithm may perform 
better than the other. In this paper test cases are 
generated for a problem by using Activity diagram 
which will cover operational faults at an early stage 
of testing and also comparative evaluation of two 

evolutionary algorithms will optimize the test cases 
in terms of number of iterations and execution 
speed.  

 
3. ANT COLONY OPTIMIZATION 

         This Algorithm is encouraged by the 
behaviour shown by Ants which are madly 
exploring Food. An ant lays a certain amount of 
pheromone trail along the path traversed while 
hunting for a food source. The two purposes of the 
Ants are fulfilled while laying the pheromone trails. 
First it defines a path for other randomly moving 
ants and also it helps the other ants to return to their 
original source. While returning to the original 
source it again lays some pheromone trails. Now, 
whenever a randomly moving Ant senses 
pheromone fragments it will expect to follow the 
same path and hence by positive feedback 
mechanism new ant also lays pheromones on the 
same path. The intensity of the pheromones on the 
path increases. Finally the path having maximum 
pheromone trails will be followed by the new ant. 
Conclusively, the convergence to the local optimal 
solution is avoided using the constant evaporation 
rate of the pheromone trail [8].  
         In any case an ant definitely reaches to its 
original source if it randomly chooses the smallest 
path. This shortest path will be traversed 
repeatedly; this will lay more pheromones trails. In 
result that path will become a fair choice for other 
ants. Thus that path will converge to the shortest 
path. This process of ants moving forth and back 
from food source and back to its colony is called 
Ant colony Optimization [8].  
         Each independent ant on being small in size, 
blind and frail is able to find the shortest path and 
they are able to search the food source. These ants 
use food trails pheromones and antennas to be in 
touch with each other. 
         Ant Colony Optimization is a probability 
based computation problem algorithm which 
generates solutions traversing a graph consisting of 
different states of system. This algorithm is used in 
software testing to generate test sequences. The 
algorithm takes a control flow graph as input and 
traverses nodes to find optimized paths in the 
graph. Here in the paper Activity Graph is used to 
find the optimized path. 
         In this paper, two algorithms Genetic 
Algorithm and Ant Colony Optimization are being 
applied. Both are Optimization Algorithms and are 
used to find the shortest path. Both the algorithms 
are compared by demonstrating the proposed 
approach applying on an example of Airline 
Reservation System .In this paper, both algorithms 
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are applied to generate optimal path in Activity 
Graph. The optimal paths will results with 
minimum redundancy.  
          In both the algorithms, the suits of paths are 
prioritized in a way such that the next path can be 
decided for testing. The probability of finding 
errors in an earlier stage reduces the software 
development cost. Both the algorithms are applied 
to generate test data sequence which will be used as 
input for executing every path that has been 
generated previously. In both cases, whole path is 
covered through Activity Graph. Also both 
algorithms will generate test path as well as test 
data, both will ensure effective testing by 
prioritizing the paths and finally both will remove 
redundancy. In this paper, both the algorithms are 
compared in terms of execution speed and number 
of occurrences for obtaining the optimal path for 
the Activity Graph. 
 
 
4.  ACTIVITY DIAGRAM 
 
This section explains the Activity Diagram for 
Airline reservation system. Activity Diagram is 
used due to the dynamic aspects of its modeling 
[10]. It is basically the graphical representation of 
the sequence of activities. Figure1 shows the 
Activity Diagram for Airline reservation system 
and Figure 2 shows the Activity Graph for Airline 
reservation system. 
 
Description:- 

a. Enter arrival and departure dates in 
Airline Reservation System. 

b. Enter personal Information and search 
availability. 

c. Select flight and add reward points if 
any. 

d. Hold reservation and Add payment 
information. 

e. Mark seats as taken and process 
payment and confirmation sent on E-
mail. 

 
 

 
Figure 1. Activity Diagram (AD) for Airline Reservation 

System 

 
Figure 2.  Activity Graph (AG) for Airline 

Reservation System 

 
This section illustrates the transformation of            
Activity Diagram into Activity Graph. AG            
works as a directed Graph and is replaced by            
each node of the AD.           
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5. GENERATION AND OPTIMIZATION OF 
TEST CASES         

5.1  Genetic Algorithm for Generating    
      Prioritized Paths 

          After gathering all the information in the 
Activity Graph, test cases are generated. After the 
Generation of test cases, Optimization is done using 
any evolutionary algorithm. This section explains 
the application of Genetic Algorithm on Activity 
Graph for Generation and Optimization of test 
cases. Our proposed algorithm is as 
follows[12][13]:- 
 
Algorithm 1: GEN-OPT TESTCASES 
 
Input: - Activity Graph (AG) 
Output: - Optimized test cases 

1. Discover all the scenarios, R= {r1, r2, r3, 
r4, r5…..} from start node to the end node 
in Activity Graph. 

2. Weights are allocated to scenarios in 
ascending order from left to right. 
Individual nodes are being assigned 
weights as the actual weight of the sibling 
node is calculated from weight of the 
parent node. If case of any sibling having 
multiple parents then weight of that node 
is calculated by adding the weights of the 
parent’s node.  

3. Next is to calculate the cost (x) of each 
scenario (path) as the cost of any path is 
calculated by adding the weights of all 
nodes on that path. 

4. Genetic Algorithm is being applied to the 
AG.  

5. Fitness value calculation  
a. For each scenario calculate the 

value of cost(x). 
b. Fitness function is applied as 

F(x)=x*x 
c. Probability is calculated for 

individual as P(i)=F(x)/ƩF(x)  
6. For production of new generation of 

solutions best individuals are chosen from 
existing large initial population for mating 
pool. 

a. Best individual’s probability 
range is partitioned into bins, the 
size of the bin depends on the 
relative fitness of the solution  

b. Random values are generated and 
then checked against the bin 
where those values related to, 
selecting the individuals for the 
next generation. 

7. Crossover operation is performed on the 
chromosome pairs by mating two 
individuals together and applying single 
point crossover from 4th bit from right.  

8. Mutation operation is performed by 
mutating every third bit from left where 
the random number generated is less than 
0.5. 

9. This complete process is rehearsed till the 
minimization of the fitness value or the 
maximum number of generations is 
reached or all the scenarios have been 
traversed. 

10. Test cases are optimized by generating the 
best scenario as output. 

11. End.      
 

5.2  Demonstration of the proposed 
Algorithm (Using Genetic Algorithm):- 

         The Airline reservation system is used as an 
example. Next part shows the arithmetic 
representation[9][12] of Genetic Algorithm on 
Activity Graph for Airline Reservation System 
Tables 1-9.The possible scenarios generated from 
the above graph are:- 
 
Scenario1:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>end, cost=55 
 
Scenario2:- 
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V11=>end, cost=78 
 
Scenario3:-
Start:=>V1=>V2=>V3=>V4=>V5=>V6=>V7=>V
8=> V9=>V10=>V12=>end, cost=79 

Scenario4:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=> V6=>V7=>V8=>V9=>end, cost=64 
Scenario5:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V11=>end, 
cost=87 
 
Scenario6:-
Start:=>V1=>V2=>V3=>V1=>V2=>V3=>V4=>V
5=>V6=>V7=>V8=>V9=>V10=>V12=>end, 
cost=88 
 
These different scenarios become different 
chromosomes in the population. 
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Table 1:- Fitness Of Initial Population 
 

 
 
 
 
 
 
 
 
 
 

Table2:- Selection Of New Generation 
 

Random No. Falls into 
bin 

Selection Crossover Mutation 

0.8924 6 1011000 1010111 1010111 
0.7187 5 1010111 1011000 1011000 
0.4376 
0.6097 
0.3967 

3 
5 
2 

1001111 
1010111 
1001110 

1000111 
1011111 
1001000 

1010111 
1011111 
1011000 

0.9126 6 1011000 1011110 1011110 
 

Table 3:-Fitness Of New Generation 
 

Sce
nari

o 
No. 

Chromos
ome 

X X*X Probabili
ty 

Cumulati
ve 

Probabilit
y 

Associat
ed bin 

1 1010111 87 7569 0.1561 0.1561 0-0.2 
2 1011000 88 7744 0.1597 0.3158 0.2-0.4 
3 
4 
5 

1010111 
1011111 
1011000 

87 
95 
88 

7569 
9025 
7744 

0.1561 
0.1861 
0.1597 

0.4719 
0.6580 
0.8177 

0.4-0.5 
0.5-0.7 
0.7-0.9 

6 1011110 94 8836 0.1822 1 0.9-1 
 Sum  48,487    

 

 
 

Table 4:- Selection Of New Generation 
 

Random No. Falls into 
bin 

Selection Crossover Mutation 

0.3896 2 1011000 1011000 1001000 
0.8846 5 1011000 1011000 1011000 
0.4290 3 1010111 1011111 1001111 
0.6714 
0.8761 
0.9128 

4 
5 
6 

1011111 
1011000 
1011110 

1010111 
1011110 
1011000 

1010111 
1011110 
1011000 

 
Table 5:-Fitness Of New Generation 

 
Scen
ario 
No. 

Chromos
ome 

X X*X Probabi
lity 

Cumulati
ve 

Probabilit
y 

Associat
ed bin 

1 1001000 72 5184 0.1196 0.1196 0-0.2 
2 1011000 88 7744 0.1787 0.2983 0.2-0.4 
3 1001111 79 6241 0.1440 0.4423 0.4-0.6 
4 
5 
6 

1010111 
1011110 
1011000 

Sum 

87 
94 
88 

7569 
8836 
7744 

43,318 

0.1747 
0.2039 
0.1787 

0.6170 
0.8209 

1 

0.6-0.8 
0.8-0.9 
0.9-1 

 

Scen
ario 
No. 

Chrom
osome 

X X*X Probabi
lity 

Cumulati
ve 

Probabilit
y 

Associat
ed bin 

 
 

1 0110111 55 3025 0.0870 0.0870 0-0.2 
2 1001110 78 6084 0.1750 0.2620 0.2-0.4 
3 1001111 79 6241 0.1795 0.4415 0.4-0.5 
4 
5 
6 

1000000 
1010111 
1011000 

Sum 

64 
87 
88 
 

4096 
7569 
7744 

34,759 

0.1178 
0.2177 
0.2227 

0.5593 
0.7770 

1 

0.5-0.6 
0.6-0.8 
0.8-1 
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Table 6:- Selection Of New Generation 
 

Random No. Falls into 
bin 

Selection Crossover Mutation 

0.4120 
0.9265 
0.7635 

3 
6 
4 

1001111 
1011000 
1010111 

1001000 
1011111 
1011000 

1001000 
1011111 
1011000 

0.3127 2 1011000 1010111 1000111 
0.9745 
0.6793 

6 
4 

1011000 
1010111 

1010111 
1011000 

1010111 
1011000 

 
Table 7:-Fitness Of  New Generation 

 
Sce
nari

o 
No. 

Chromos
ome 

X X*X Probab
ility 

Cumulati
ve 

Probabilit
y 

Associat
ed bin 

1 
2 
3 

1001000 
1011111 
1011000 

72 
95 
88 

5184 
9025 
7744 

0.1225 
0.2133 
0.1830 

0.1225 
0.3358 
0.5188 

0-0.2 
0.2-0.4 
0.4-0.6 

4 1000111 71 5041 0.1191 0.6379 0.6-0.8 
5 
6 

1010111 
1011000 

87 
88 

7569 
7744 

42,307 

0.1789 
0.1830 

0.8168 
1 

0.8-0.9 
0.9-1 

 
 

Table 8:- Selection Of New Generation 
 

Random No. Falls into 
bin 

Selection Crossover Mutation 

0.8635 5 1010111 1011000 1011000 
0.5127 3 1011000 1010111 1010111 
0.9745 6 1011000 1010111 1010111 
0.8793 
0.4120 
0.9265 

5 
3 
6 

1010111 
1011000 
1011000 

1011000 
1011000 
1011000 

1011000 
1001000 
1011000 

 

 
 

Table 9:-Fitness Of New Generation 
 

Sce
nari

o 
No. 

Chromos
ome 

X X*X Probab
ility 

Cumulati
ve 

Probabilit
y 

Associat
ed bin 

1 1011000 88 7744 0.1778 0.1778 0-0.2 
2 1010111 87 7569 0.1737 0.3515 0.2-0.4 
3 1010111 87 7569 0.1737 0.5252 0.4-0.6 
4 
5 
6 

1011000 
1001000 
1011000 

88 
72 
88 

7744 
5184 
7744 

43,554 

0.1778 
0.1190 
0.1778 

0.7030 
0.8220 

1 

0.6-0.8 
0.8-0.9 
0.9-1 

 
 
         After every generation the difference between 
the values of chromosomes started decreasing. This 
shows the survival of the fittest chromosomes. The 
algorithm terminates with the cost value 88. By 
further calculations it is observed that Scenario 6 
with cost value 88 is the Optimal Path traversed.  
 
 
 

6.  GENERATION AND OPTIMIZATION  
OF TEST CASES (USING ANT COLONY 
OPTIMIZATION) 
 

6.1 Ant colony Algorithm for Generating  
     Prioritized paths 
 

         In this section Ant colony algorithm has been 
proposed. This algorithm takes Activity Graph as 
an input and generates optimal and prioritized 
paths. Then ACO is applied to optimize those 
generated paths. The main objective of algorithm is 
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to generate paths in Activity Graph by traversing 
nodes. These nodes are selected based on the 
probability. The node having more probability will 
be chosen first. The probability is calculated using 
pheromone value (τij) and heuristic information 
(ηij). The pheromone value is used by other ants to 
decide the path in future and the visibility of the 
path is indicated by heuristic information. 
Whenever an ant selects a node, two parameters, 
the pheromone value and heuristic information are 
updated. Finally all the possible paths are covered 
in the program module.  

 
Figure 3:- A Standard Process Flow Of Ant Colony 

Optimization3 

 
         There is an ant q which is at a vertex ‘x’ and 
if there is another vertex ‘y’ and vertex ‘y’ is 
directly   linked to vertex ‘x’, then there will exist a 
path between the vertices ‘x’ and ‘y’ i.e. (x->y). 
The description of all the sets and variables used in 
the proposed algorithm is given in Figure 3[3][6]:- 

a) Node Set:  N = {x,y,z,…….} represent the 
set of all nodes in the AG. 

b) Edge Set:  E =  {(x,y),(y,z),….}represent 
all the edges in the AG. 

c) Feasible Track Set: F = The direct link of 
current node ‘x’ and neighboring node ‘y’ 
is represented by {Fxy (q)}. So if there is a 
connection then an edge exists from ‘x’ to 
‘y’ .  

 If  Fxy =1 then feasible path exists 
between the nodes ‘x’ and ‘y’. 

 If  Fxy =0 then no feasible path 
exists between the nodes ‘x’ and 
‘y’. 

d) Pheromone value: τ =The value of the 
pheromone level on the feasible path (x-
>y) for an ant ‘q’ is represented by      
{τxy (q)}. After traversing an edge (x,y) 

pheromone level ,τ is updated ,then the 
decision will be taken by the other Ants 
on the basis of this updated value. 

e) Heuristic Value set : η= The visibility of  
a path (x,y) for an ant ‘q’ is being shown 
by {ηxy(q)}. 

f) Visited status set :Vs = The information 
about the node ‘x’ which is already 
traversed by the ant q or not    is 
represented by {Vs(x)} . 

 If Vs(x)=0 then ant q has not 
traversed vertex ‘x’ . 

 If Vs(x)=1 then ant q has already 
traversed vertex ‘x’. 

g) Probability set:  Probabilistic Value 
inspired by the  
Ant behavior is the basis for selecting the 
path. The heuristic information ηxy (q), 
feasibility of the path Fxy (q), and 
pheromone trace value  τxy(q) of path for 
ant q are used for calculating the 
probabilistic value of the path. The 
Probabilistic value of the path is associated 
with the two parameters α and β. Where α 
means pheromone value and β means 
heuristic value of the paths. 

h) Cyclomatic Complexity (CC) :  It 
indicates different  
possible scenarios in Activity Graph. 

i) Weight: Weight is used to calculate the 
strength of  
each path so that total number of paths can 
be prioritized. 

 
 
Algorithm 2: For Ant ‘q’ 
 
Step1: Initialize all the parameters 
 

1.1 Initialize Pheromone level (τ): The 
pheromone level is initialized as (τ=1) for 
every edge in Activity Graph.  

1.2 Initialize Heuristic Value (η): The 
heuristic value is initialized as (η=2) for 
every edge in Activity Graph.  

1.3 Initialize Probability (P): The Probability 
is initialized as (P=0). 

1.4 Initialize visited status (Vs): The visiting 
status is initialized as (Vs=0) that means 
Ant has not visited any state yet. 

1.5 Initialize α=1, β=1, where α, β are the 
parameters used to check the terms 
desirability and visibility where 
desirability stands for the wish of an ant to 
traverse any particular route depending on 
the pheromone value and visibility stands 
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for the solution which an Ant has on the 
basis of prior experience for that particular 
route. This parameter is associated with 
the heuristic value. 

1.6 Initialize Sum: Sum represents the 
Cyclomatic Complexity, which calculates 
the different possible scenarios in Activity 
Graph.  
Initialize key: the value of the key is 
initialized as the end_node, this variable 
stores the value of the last node.  
 

Step 2:   Run the Algorithm 
2.1   While (sum>0) 

2.1.1 Initialize: x= start, weight=0, visit=0. 
         The variable Weight is used for calculating  
          the strength of the path, Later on the  
          variable Strength  is used for prioritizing  
          the paths.  Next variable Visit is used to  

              discard the redundant paths. 
 2.1.2     Update the Visited status: If Ant has  
             traversed any node ‘x’ then the value of the  
             visited status of that vertex ‘x’ is updated.  
             If the visited status for the any             
             vertex ‘x’ is (Vs[x]=0) then it will be  
             updated to (Vs[x]=1), also the value of  
             variable ‘visit’ is updated to Visit=Visit+1.  
 2.1.3    Evaluate Feasible track set: The feasible  
             path F(q) for the current vertex ‘x’ is  
             determined, This part also evaluates the  
             available possible routes from the current  
             vertex ‘x’ to all the  adjacent vertices using      
             Activity Graph. If no feasible path exists  
             then go to  step 3. 
 2.1.4    Observe the path: The probability of each  
             node is calculated in the feasibility set F(q)  
             to observe the path. Now the probability for  
             each non-zero element belongs to feasible  
             set F(q) is calculated, with the help of  
            following formula. 

 
    (τxy)α     *   (ηxy)-β 
             P xy  =       
                                      z   
     Ʃ1 ((τxz) α    *    (ηxz)-β ) 
                                           

          where every z belongs to feasible set F(q). 
   2.1.5 Traverse to next vertex: for visiting the  
                 next vertex  use the following rules:- 

   R1:   Choose the path(xy) having maximum   
             probability (Pxy).  
  R2:    If Probability of two or more paths are  
            equal e.g., for paths xy and xz , (Pxy   
             = Pxz) then rule 2.1is being followed. 
R2.1:   In case of self transition choose that path;  
            otherwise below: 

R2.2 :  Each feasible set node is compared with  
            the end node, if (feasible set node = =  
            end_node) then choose end_node as the  
            next node otherwise follow rule below:   
R2.3 :  Select that node with visiting status,Vs=0  
            that means a node which has not been  
            visited yet. Choose the nodes randomly  
            in case two or more states are having   
            same visited status i.e.  Vs[y]=Vs[z] . 

   2.1.6     Update pheromone value: 
            Pheromone value is updated for the path  
            (x->y)  through the following rule: 
               (τxy) = (τxy)α + (ηxy)-β 

   2.1.7     Update Heuristic value: 
            Heuristic information for an ant is being  
             kept up to date by the formula: 
             ηxy = 2* (ηxy) 

   2.1.8     Evaluate strength:  This factor contains  
                the values related with each path and it is  
                calculated  as:-. 

             weight = weight + τxy  
             strength [sum]=weight. 
             start = next_vertex. 
 
2.1.9    If (start != end_node) then 
            go to step  2.1.3 
            else 
            if (visit = = 0) then reject the path it is  
            superfluous path otherwise add new path. 
            Sum=Sum-1(decrement sum by one each  
             time). 
  3.       END //end of Algorithm 

  
      Here Sum is being represented as Cyclomatic 
complexity of a method, and the value sum =0 
means that all the decision nodes being traversed. 
In two cases algorithm can be stopped, first 
unavailability of feasible path for the Ant and the 
second when at least once, all feasible paths has 
been traversed.  
 
6.2  Illustration of the proposed Algorithm     

     (Using Ant Colony Algorithm):- 
      
 All generated paths should be tested with suitable 
input values so that the software defects can be 
removed at early phases of testing.  After gathering 
all the information in the Activity Graph, Ant 
colony Algorithm is applied to generate and 
optimize the test cases.  
         The possible scenarios (paths) generated from 
the graph in Fig 2 are already shown in part 6(ii).  
 
The Table 10 illustrates different paths and 
associated values of the parameters corresponding 
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 to each path. Priority of the path is calculated using 
the parameter ‘strength’ of the path. Priority of the 
path is directly proportional to the strength. With 
increase in the value of strength, priority of the path 

will also be increased and also probability to get the 
desired result will also remain high for that path. 

 
 
 

 
Table 10:- Path Strength Value for first Ant 

 
Path  Node Strength Priority 
Path1 Start:=>V1=>V2=>V3 

=>V4=>V5=>V6=>V7=>V8 
=>V9=>end 

15 6 

Path2 Start:=>V1=>V2=>V3 
=>V4=>V5=>V6=>V7 
=>V8=>V9=>V10=> 
V11=>end 

20.25 5 

Path3 Start:=>V1=>V2=>V3 
=>V4=>V5=>V6=>V7 
=>V8=>V9=>V10=> 
   V12=>end 

21.6 4 

Path4 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>end 

24.625 3 

Path5 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>V10=>V11 
=>end 

28.8 2 

Path6 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>V10=>V12 
=>end 

29.19 1 

 
         For path1 Ant ‘q’ is being kept at start node 
by the tester and it keeps on moving and updating 
the values. After node 9 it go for the end node. For 
path 3, Ant ‘q’ is being kept at node start, generate 
the possible set for start node F(start) = moving on 
to node ‘9’, during the movement towards end node 
it updates the parameters. Next it will choose vertex 
V10 again it is a decision node, ant can go for 
V11or V12 both are having equal probability and 
same visited status P(p10-11) = P(p10-12 ). These 
two are the path1 and path2. In both the cases, ant 
will choose V9, V10 and then end node. For path 4, 
Again Ant is being kept at the source node  and 
then  move to the next node 1and then node 2 as a 
decision node is available at node 3,  
 
Ant has two paths F[3]={1,4} either back to node1 
or to node 4 and both are having equal probability 
P(p3-1)=P(p3-4). Ant while moving update all the 
values as per the Algorithm. At vertex 9 there are 
two ways F[9] = {10,end} to go. Both paths having 
equal probability and same visited status P (p9-10) 
= P (p9-end). From V9,  
 

 
next vertex is V[end]. Ant selects the vertex V9 and 
then end node. After that Ant update the parameter 
and also calculate the value for strength. This was 
the result of path 4. Path 1 will not generate any 
desired output. Similarly all the six paths are 
constructed. Table 11 shows the Path traversed by 
second Ant where the path2 is interchanged with 
path3 because both are having the same probability.  
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Table 11:- Path Strength Value for second Ant 
 

Path  Node Strength Priority 
Path1 Start:=>V1=>V2=>V3 

=>V4=>V5=>V6=>V7 
=>V8 =>V9=>end 

15 6 

Path2 Start:=>V1=>V2=>V3 
=>V4=>V5=>V6=>V7 
=>V8=>V9=>V10=> 
V12=>end 

20.25 5 

Path3 Start:=>V1=>V2=>V3 
=>V4=>V5=>V6=>V7 
=>V8=>V9=>V10=> 
V11=>end 

21.6 4 

Path4 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>end 

24.625 3 

Path5 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>V10=>V11 
=>end 

28.8 2 

Path6 Start:=>V1=>V2=>V3 
=>V1=>V2=>V3=>V4 
=>V5=>V6=>V7=>V8 
=>V9=>V10=>V12 
=>end 

29.19 1 

 
 
         The proposed approach calculates the strength 
and then priority of that path. Strength is calculated 
according to the ant colony algorithm. Strength not 
only depends on the updated pheromone value, it 
also depends on the updated heuristic value. 
 
The proposed algorithm is good 1) at removing 
redundant paths 2) it prioritizes the paths 3) covers 
full path 4) capable of finding errors at earlier stage 
of testing. 
 
7.  CONCLUSION AND FUTURE WORK 

 
         This paper presents Generation and 
Prioritization of test cases using two different 
algorithms Genetic Algorithm and Ant Colony 
Optimization. Both these algorithm are 
evolutionary search based algorithms. Both the 
algorithms are applied on the same example. The 
performance of both the algorithms has been 
studied and the results showed that Genetic 
Algorithm captures more number of iterations as 
compared to Ant colony optimization. Ant Colony 
Optimization gives fast results in lesser time as 
Compared to Genetic Algorithm. Also in G.A there 
is a need to select Fitness function, Best value for 
Chromosome population, probability for Crossover 
and Mutation operators. In ACO the pheromone 
value and heuristic value need to be updated but 
still ACO takes less number of iterations as 

compared to G.A. In all cases Ant Colony 
Optimization is better as compared to Genetic 
Algorithm in reference to number of occurrences 
and execution speed. Two Algorithms can be 
combined to get best results and performance in 
Future. The limitation of this work is that 
Comparison between evolutionary algorithms 
depends on the problem. It will vary from one 
problem to another. Probably one evolutionary 
algorithm gives good results for one problem and 
not for another one. 
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