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ABSTRACT 
 

Abnormal detection refers to infrequent data instances that come from a diverse cluster or distribution than 
the majority normal instances. Owing to the increasing demand for safety and security, discovery 
abnormalities from video streams has attracted significant research interest during recent years. By 
automatically finding abnormal actions, it significantly decreases the cost to label and annotate the videos of 
a huge number of hours. The current advancements in computer vision and machine learning have a 
remarkable role in enabling such intelligent frameworks. Different algorithms that are specially designed for 
building smart vision frameworks seek to scene understanding and building correct semantic inference from 
observed dynamic motions caused by moving targets. Unfortunately, although there are many algorithms 
have been proposed in this interesting topic, the research in this area still lacks strongly to two important 
things: comparative general assessment and public-accessible datasets. This study addresses these 
inadequacies by presenting an overview of most recent research algorithms that concentrate significantly on 
abnormal behavior detection in surveillance applications. This study extensively presents state-of-the-art 
algorithms in a way that enables those interested to know all the key issues and challenges relevant to the 
abnormal behavior detection topic and their applications as well as their specific features. Additionally, there 
are five important evaluation benchmarks from 2007 to 2017. The performance and limitations of those 
benchmarks are discussed, which will help largely research in this area.   
 
Keywords: Video Surveillance, Abnormal Detection, Feature Extraction, Learning Methods, Clustering, 

Spatio-temporal Compositions, Sparsity. 
  
1. INTRODUCTION  

Nowadays, because of the pervasiveness of 
CCTV, there is a considerable research effort to 
improve analysis methods for surveillance videos 
together with machine learning techniques for the 
sake of autonomous analysis of such data sources. 
Although video capturing devices are extremely 
common in today’s world, available human 
resources to observe and analyze the video clips are 
very limited and mostly not cheap [1-3]. In many 
cases where surveillance cameras are used, there are 
some human factors such as fatigue and tiredness, 
which lead to bad monitoring. In addition, the people 
who work on CCTV monitoring suffer monotony 
because in most cases, unusual or strange events 
occur rarely [4-8]. Automated anomaly detection is 
very beneficial in decreasing the amount of data to 
be handled manually by drawing attention to a 
particular portion of the data and to ignore the 
massive amounts of not pertinent data [9]. Figure 1  

 
represents the flow cycle for the main parts of the 
abnormal detection processes in automated    
surveillance. However, we explain each process 
separately in the upcoming sections.   

Sensors are the eyes of a video-based surveillance. 
The positioning of sensors at precise location assists 
in viewing surveillance targets without occlusion. 
Moreover, we must choose the sensors according to 
the requirements of the surveillance application. For 
example, high-resolution cameras are used for 
surveillance applications which demand videos with 
high quality. Video analysis is utilized to optimize 
storage and study human behavior. Because video 
storing needs a large storage space, storage may be 
optimized by recording only animated scene, which 
is not static [10]. This can be achieved by triggering 
camera to record video sequence just in case there is 
a motion in a scene and thus lowering cost of storage. 

Anomaly [11-12], abnormal [13-14], outlier [15-
16], or novelty [17-18] detection is a broadly studied 
topic, which has been utilized in many vital areas 
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such as network intrusion, medical diagnoses [19], 
marketing [20], automated surveillance [21] and 
many other fields. To the best of our knowledge, 
there are few review studies that have focused 
particularly on abnormalities of human behavior. 
The previous studies have sought to discuss the 
abnormal detection in a general way. In this review 
paper, we look forward to creating a more 
concentrated review which includes recent 
publications relevant to abnormal human behavior 
detection in surveillance systems. Therefore, we 
discuss comprehensively the problems and 
challenges in this interesting topic.  

This paper is organized across ten sections. Some 
significant related work to abnormal behavior 
detection review papers is presented in section 2. 
Section 3 addresses different surveillance goals that 
are commonly known in abnormal detection studies. 
Significant definitions and suppositions about 
abnormal concepts that are applied in different 
research are discussed in section 4. Sections 5 to 8 
address the main processes for abnormal behavior 
detection framework in details with an emphasis on 
algorithms reported in the last few years. A set of 
public-accessible evaluation benchmarks with their 
characteristics and limitations is given in section 9. 
Finally, the prime challenges in this area and our 
conclusion are given in section 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. RELATED WORK 

Figure 2 presents the frequency of publications 
in "abnormal human behavior detection" topic 
published during the last 14 years. It is noted that the 
number of publications in this topic from 2012 till 
now is more than all the publications during the 

whole period from 2003 to 2011.   Interestingly, this 
indicates that this topic is still a hot area for 
researchers. Video-based surveillance, which 
requires acquisition and processing visual data from 
a scene to detect object(s) a long time and space for 
purpose of recognizing interesting cases and 
possibly generate alarms, has been a subject 
undergoing intense study by scientific researchers. It 
normally starts with detecting changes and capturing 
motion information for moving object(s) by utilizing 
tracking and non-tracking approaches, to employ 
successive high-level event analysis.  

In [22-25], comprehensive reviews of research 
on human motion analysis is presented. The focus on 
three key issues concerned with human motion 
analysis applications, namely human detection, 
tracking and activity understanding. Various 
approaches for each issue were presented. In [26], 
the main methods in human activity recognition 
from 3D data are condensed with an attention on 
methods that utilize depth data. Extensive categories 
of algorithms are discovered based upon the use of 
various features.  The upsides and downsides of each 
algorithm in each category are addressed and 
analyzed. Most of the existing review papers 
relevant to abnormal detection either concentrate on 
a single research area or on a specific application 
domain. Papers in [1,9, 27-29] are related works that 
organize abnormal detection into multiple categories 
and discuss algorithms under each category. This 
review builds upon these works by essentially 
expanding the search in several directions. Different 
problems and challenges relevant to the abnormal 
behavior detection algorithms as well as their 
specific features are discussed comprehensively in 
the next sections. In addition, this study addresses 
five important evaluation benchmarks of abnormal 
behavior detection from 2007 to 2017 with their 
distinct characteristics and limitations to evaluate the 
performance of abnormal detection algorithms. 
Details about them are in section 9. 
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Figure 1: The Flow Cycle for All Anomaly Detection 
Processes. 
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Figure 2: Presents the Frequency of Publications in " 
Abnormal Human Behavior Detection" Topic 
Published During the Last 14 Years. This Information 
Was Taken from Web of Science Website 
(webofknowledge.com) 
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3. ABNORMAL SURVEILLANCE GOAL 

The surveillance goal is the entity or entities 
upon which the surveillance works. Instances of 
popular goals comprise individuals, crowds, and 
vehicle traffic. Most of the works on abnormal 
detection for individuals have been utilized to 
guaranteeing the health and safety of elderly or 
impaired people in an infirmary, hospital, or nursing 
home [30-32]. In addition, a large body of studies 
concentrates on distinguishing anomalies in 
behavior indicating breaking the law or breach of 
security or events referring to a safety problem [33-
35]. A few other studies are applied to unspecified 
applications and focus on detection of events that are 
infrequent. 

The second goal of abnormal detection in 
surveillance is the crowds. Using social force model, 
authors in [36] introduce an approach to detect 
abnormalities in crowd scenes. They address the 
ability of the approach to capture the crowd behavior 
dynamics depend on the interaction forces of 
individuals Without needing to do segmentation or 
track objects individually. Authors in [37] make use 
of both optical flow and mixture of gaussian model 
for detecting abnormalities in crowd scenes.  Further 
studies [38-41] present other significant works 
related to abnormal crowd behavior detection.  

The researches involved with vehicle traffic 
intend to detect either violations of the traffic law 
or safety considerations like congestion and 
accidents [42-44]. 
 
4. DEFINITIONS AND SUPPOSITIONS OF 
ABNORMALITY 

Designing a method to detect abnormalities for 
a specific application demands some significant 
definitions as well as suppositions about abnormal 
behavior [9,45]. The definitions and suppositions 
might differ depending on the goal from the 
surveillance and the main aims considered by the 
researchers. However, the definitions and 
suppositions influence the approaches later applied 
to accomplish the abnormal detection and the 
selection process for the suitable sensors. The 
mission of defining the abnormality may be 
intrinsically a challenging and critical to the 
robustness and success of the abnormal detection 
algorithm. In general, there are three popular 
definitions and suppositions of abnormal behavior 
found in studies:  
 Abnormal events do not occur frequently 

compared with normal events [46-48]. Authors 
in [49] state that the abnormalities of this type 
should be differentiated from noise, which may 

cause a similar impact resulting in a false 
positive. 

 Abnormal events have crucially different 
characteristics from normal events [50-51]. An 
important limitation of this supposition is the 
incapability to detect abnormalities, which are 
not significantly distinguished from normal 
events. This is a specific matter when an object 
is specifically attempting to hide an abnormal 
action like a behavior accompanying a 
concerted crime or terrorist activity [9]. 

 Abnormal events have essentially a distinctly 
different meaning [52-53]. Although this 
supposition achieved success in detecting 
abnormalities which are difficult to identify 
from normal events, this supposition has the 
disadvantage of being very narrow in the range 
of events which are detectable. This kind of 
abnormal detection can detect only the single 
event that it is designed for. In addition, it is 
unable to detect unexpected or diverse types of 
abnormalities. 

 
5. TYPES OF SENSORS USED FOR 
CAPTURING FEATURES 

Generally, sensors are chosen in accordance 
with the steps involved in the anomaly detection 
process such as feature extraction and modeling 
approach. For instance, given the task of detecting 
screams and cries for humans in an urban 
environment [54], it may be easier to detect those 
events using audio sensors than using visual sensors. 
Without a doubt, some anomalies cannot be detected 
by using some sensors; for instance, facial 
expression may not be detected using low-resolution 
sensors [9]. Besides that, reliability, cost and 
availability affect the decision of choosing the 
suitable sensor. This section describes in detail the 
range of sensors that have been utilized for anomaly 
detection in surveillance applications.  

 
5.1 Visible-Light Camera (VLC) 

In general, the visible-light camera considers 
the most well-known sensor used to detect 
abnormalities in automated surveillance, because of 
its wide availability and its affordable price. 
Nevertheless, preprocessing of data is considerably 
indispensable to extract the useful information from 
a visible light camera and the applications are 
constrained to detect abnormal behavior that is 
obviously discernible from normal. In addition, 
visible-spectrum cameras are sensitive to lighting 
conditions, which may lead to errors in detecting the 
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abnormalities. It is worth mentioning that anomaly 
detection methods using a visible spectrum camera 
are influenced by two factors: the field of view 
(FOV) and the resolution of the camera. The FOV 
refers to the horizontal (or vertical or diagonal) 
length that the lens will cover a specific distance 
[55]. However, one significant but often ignored 
consideration in video surveillance applications is 
the trade-off between field of view and resolution. 
The vaster the resolution is spread, the lower the 
pixel density, the lower the resolution [9, 56]. 

 
5.2 Thermal Camera (TC) 

Thermographic cameras are inactive sensors 
that capture the infrared radiation released by all 
objects with a temperature above zero. This sort of 
camera was primarily invented as a night vision 
instrument for the military purposes, but lately the 
price has declined, outstandingly opening up a wider 
field of applications. Since the gray-level value of 
the objects in thermal imaging describes the 
temperature and radiated heat, which is independent 
from illumination conditions. Employing this sort of 
sensors in vision systems eradicate the illumination 
problems which exist in visible-spectrum cameras. 
Therefore, thermal camera is preferred in many 
applications. Bear in mind that the radiation is 
released by the objects themselves in the medium 
and long wavelength infrared spectrum (3–14 μm) 
contingent upon the temperature [57-58]. On the 
other hand, the sensitivity and resolution of thermal 
videos are very low compared to visible spectrum 
videos. Therefore, thermal videos are noisy with low 
video quality [59].  

 
5.3 Forward Looking Infrared (FLIR) Camera 

Several recent studies of FLIR in the landmine 
detection domain have broadly concentrated on 
developing abnormal detection approaches [60]. 
FLIR based detection frameworks utilize from larger 
standoff distances and quicker rates of advance than 
other detecting modalities, but they also cause many 
significant challenges in designing the detection 
algorithms [61]. Authors in [62] proposed an 
approach using FLIR imaging to generate cues of 
potential abnormal objects represented in the field of 
view of an Infrared Camera settled on a moving 
object. Studies in [63-65] are other noteworthy 
studies that have benefited from FLIR Camera.  

 
5.4 Others 

Other approaches to detect anomaly utilize 
sensors other than visible-light and thermal cameras. 
Some of these approaches employ many simple 

sensors scattered throughout the environment to 
collect information. The main advantage of using 
many sensors in these approaches is the ability to 
cover a broader region than is conceivable by the 
limited field of view of a camera [9, 66-67]. 

 
6. FEATURE EXTRACTION METHODS 

Feature extraction is a task which includes 
extracting both spatial and motion information from 
a video that is distinctive in relation to specific 
activities within a scene [68-69]. Feature extraction 
methods in researches, which use a visible-spectrum 
camera as the essential sensor, can be divided into 
two major categories:  
1. Methods that extract low-level features at the 

pixel-level directly from the image. For 
instance, a system that obtains the frequency 
and change rate for each pixel in consecutive 
frames to construct a map of motion levels in a 
scene. 

2. Methods which extract high-level features for a 
detected object after applying object tracking or 
detection. For instance, a system that detects 
and tracks individual's vehicles from a motion 
video. 

More recently, there is an integrated pipeline, which 
combines the low-level features and high-level 
features for abnormal behavior inference. This 
enables to identify abnormal behaviors for object 
trajectories relevant to speed and direction, and 
additionally complex behaviors relevant to the finer 
movement of each object [70]. Generally, kind of 
method employ for feature extraction depends on the 
type of surveillance target. All state-of-the-art papers 
which deal with crowd anomaly detection use some 
form of low-level pixel-based feature extraction, 
whilst object extraction and tracking is the most 
popular method to be implemented to anomaly 
detection in individuals [9]. 
 
6.1 Low-Level Feature Extraction (LLFE) 

Low-level Feature Extraction is the process of 
detecting the low-level information in a 2D video 
frame, which consists of color, shape, texture and 
other substantial image properties. The main 
advantage of low-level feature extraction methods 
lies on their robustness to different image processing 
problems such as occlusion.  These methods can 
work effectively even with large number of object(s) 
in a scene, because there is no need to extract 
object(s) from the image. Nevertheless, these 
methods represent less specific information about 
the view. Therefore, they have been used mostly to 
detect abnormalities whether the target is crowd or 
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non-crowd. Whereas, low-level features can be 
utilized directly as inputs to abnormal detection 
algorithms [68, 71].  

As shown in Figure 3, there are four main 
categories for low-level feature extraction methods 
to be utilized in different applications: Background 
Subtraction Blobs, Optical flow, Point trajectories, 
and filter responses [72-73]. Background subtraction 
is the most common technique to recognize the 
moving parts of the view. The resulted silhouette 
shape for an object is mostly utilized to characterize 
object(s) and their activities [68, 74-77]. Optical 
flow gives a succinct description about the regions 
of the video frame undergoing motion and their 
velocity. We refer to the reference in [78] for a 
comprehensive study and comparison of optical flow 
computation approaches. [79-81] are interested 
studies utilizing optical flow technique.  

Point trajectories for moving objects have been 
employed as features to deduce the activity of an 
object. In fact, the picture-plane trajectory itself is 
not extremely valuable since it is sensitive to some 
image processing operations such as rotations, 
translations, and scale changes. Extracting 
unequivocal trajectories from video streams is 
intricate by different factors like noise, background 
clutter, and occlusions as well. To obtain motion 
trajectories well, accurate tracking algorithms 
should be used. Filter responses methods depend on 
filtering a video volume employing a large filter 
bank. The reactions of the filter bank are further 
processed to infer activity features [82].  

 
 
 
 
 
 
 
 
 

6.2 High-Level Feature Extraction (HLFE) 

Considering that some event detection strategies 
use only low-level feature extraction methods and 
classify events according to their distribution across 
temporal and spatial dimensions. Other methods use 
higher level representations, which necessitate more 
accurate information about the event than the low-
level representation [68, 83]. To extract more 
particular data about an object than could be done 
with low-level feature extraction methods, features 
extraction strategy from object(s) is utilized. The 
decision to choose the features that will be extracted 
from an object relies on the goal from the 
surveillance, the kind of expected anomalies and the 

environment itself. The decision to choose the 
features that will be extracted from an object relies 
on the goal from the surveillance, the kind of 
expected anomalies and the environment itself.    In 
addition, resolution and field of view are other 
fundamental factors to choose the further required 
features. The position and the trajectory of the 
object’s centroid are the most well-known features 
to be extracted from objects. The two mentioned 
features are adequate in many researches, which 
their goal is only individuals to discover the 
violation in a specific area [84-85], certain unusual 
behaviors like falling and running [86-87], 
uncommon paths elucidating loitering or distraction 
[88]. 

 
7. TRAINING AND LEARNING METHODS 

This section discusses briefly the training and 
learning approaches utilized to behavior modeling 
and anomaly detecting. Based on the amount of prior 
knowledge and human intervention, the training and 
learning approaches can be widely classified into 
three main categories [1, 89, 90]: 
 
7.1 Supervised Learning (SL) 

This approach constructs normal/abnormal 
behavior models depending on the labeled/ training 
data and then use them to foresee abnormalities. This 
approach for anomaly detection is useful in the case 
that there are enough training data and the anomaly 
events are well-known in advance [68]. The 
disadvantages of this approach lie on how to 
integrate a long-term scene adaptation. On the other 
hand, the existence of a comprehensive set of all 
potential scenarios is unpractical in reality [1, 91]. 
Owing to these reasons, this approach is not 
commonly used to detect anomalies [68]. C4.5, k-
Nearest Neighbor, Multi-Layer Perceptron, 
Regularized discriminant analysis, Fisher Linear 
Discriminant and Linear Programming Machine and 
Support Vector Machine are the most popular 
algorithms in supervised Learning [92]. 

 
7.2 Unsupervised Learning (USL) 

This approach is the most widely applicable 
[93]. It employs the co-occurrence statistic concepts 
on extracted features from unlabeled frames data. It 
learns normal/abnormal patterns based on statistical 
properties of the extracted data. On other words, 
repeatedly occurred patterns consider normal and the 
pattern that does not look like the majority of normal 
patterns consider as abnormal [94-95]. ʎ-algorithm, 
K-Means Clustering, Single Linkage Clustering, 

Figure 3: Low-level Feature Extraction 
Methods 
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Quarter-sphere Support Vector Machine are the 
common unsupervised algorithms [92].  

 
7.3 Semi-Supervised Learning (SSL) 

This approach falls in the middle of the former 
two. Semi-supervised anomaly detection supposes 
that the training data has labeled instances for only 
the normal patterns. Because they do not need labels 
for the anomaly patterns, they are more broadly 
applicable than supervised algorithms [93]. 
 
8. MODELING AND CLASSIFICATION 

ALGORITHMS USED FOR ANOMALY 
DETECTION 

The majority of the models for activity 
recognition may be used also for the purpose of 
abnormality detection [96]. Figure 4 presents the 
most common modeling and classification 
algorithms that utilize in abnormal behavior 
detection. Details about each model will be 
addressed in the following subsections. 
 
8.1 Hidden Markov Models 

The Hidden Markov Model (HMM) can be 
described as a simplest dynamic Bayesian network 
(DBN) [97]. HMM is a statistical model that can be 
utilized to analyze complex behaviors. HMM 
describes a time series of states, which are supposed 
to follow a distribution with uncertain parameters by 
using observations. Since HMM has a powerful 
mathematical theory, it has been successfully 
implemented in different research areas. It is used in 
automatic speech recognition, computational 
molecular biology applications, data compression, 
artificial intelligence and pattern recognition [21]. 
Moreover, because HMM can take into 
consideration the inherently dynamic nature of the 
observed features, it is applicable in video event 
detection and anomaly detection applications as well 
[9, 98].  

The HMM represents a structure of nodes joined 
by transition links illustrating time series of states. 
Where each node represents a state that is not 
directly observable. The observation identifies a set  

 
 
 
 
 
 
 
 
 

of probabilities of states. The HMM is determined 
by matrices encoding the possible states (known as 
the state transition matrix) and the probabilities of 
observations (known as the emission matrix). 
The related research papers to anomaly detection 
using HMM modeling approaches vary mainly in the 
states allotted to HMM nodes, observations 
meanings and the type of the model. Nodes may pose 
objects’ positions [99], accelerations, velocities 
[100], crowd behavior [101], postures [102], or local 
behaviors such as standing, leaning, walking, etc. 
[103]. Authors in [104] had mentioned two 
drawbacks of traditional anomaly detection 
approaches. Firstly, the inability of predicting future 
trends (future anomalies) leads to failure of detecting 
disease’s sudden attack. Secondly, the incorporating 
of single context for decision making had led to high 
false alarm rate. Thus, they have developed an 
“integrated system” using both HMM and Fuzzy 
Logic to detect “multiple contextual activities” and 
to predict the outcome by gathering all the 
information. Depending on the availability of 
anomaly data instance as a sample for training, the 
authors used two techniques for anomalies detection. 
The first one is 1-class HMM, which used when 
anomaly data instance is not available and the entire 
data set is used as normal data (Profile). A specific 
threshold value is determined to decide 
normal/abnormal boundary. The second one uses 
both normal and anomaly data instances to model 
two hidden states HMM (2-HMM). 
 
8.2 Bayesian topic Models  

Methods employing Bayesian topic models 
[105-106] can evaluate the normality of each local 
event (word) while considering interactions (topic) 
between them. Nevertheless, these approaches do 
not require explicit spatial temporal dependencies 
between local events and only run in a batch mode 
[107]. Latent Dirichlet Allocation (LDA) and 
Hierarchical Dirichlet Process (HDP) are 
hierarchical Bayesian models for language 
processing [105]. Authors in [105] proposed a 
hierarchical Bayesian model based to improve 
existing models such as LDA and HDP by modeling 

 
 
 
 
 
 
 
 
 

Figure 4: Illustrates the Most Common Modeling and Classification Algorithms That Are Utilized in 
Abnormal Behavior Detection 
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 interactions without supervision. Under this model, 
surveillance missions such as clustering video clips 
and anomaly detection have a nice probabilistic 
explanation. Since the data is hierarchical, a 
hierarchical model can have sufficient parameters to 
suit the data well while avoiding overfitting issues. 
However, because only plain local motion features 
are taken into account for behavior representation, 
their approach has limited capability to model 
behavior correlations between fixed and moving 
objects and neglected any global context to be used 
in modeling complex behaviors in a vast scene [106]. 

 
8.3 Clustering-Based Models  

Clustering is the process of gathering data that 
have identical features into groups (clusters). 
Abnormal detection using clusters is made by 
employing a clustering algorithm to the data and 
then the classification is made by one of the 
following principles [91, 108] 
 Normal data instances should belong to a cluster 

and anomaly instances do not: in this situation, 
the clustering algorithm should not compel every 
instance to belong to a cluster. Since if it does it 
will not appear any abnormal case, which results 
in no anomaly instances. 

 Normal data instances are nearer to clusters 
centroid and anomaly instances are far away. 

 Normal data instances should belong to denser 
clusters and anomaly instances are in less dense 
clusters: In this situation, the density of each 
cluster of data should be measured. A threshold 
value is defined to obtain the density value where 
a cluster belongs to each one of the classes. 
Since these methods do not require the data to be 

labeled, clustering is mostly an unsupervised 
technique. Semi-supervised clustering has also been 
researched lately [109-110]. Though the abnormal 
detection is plain and swift after the cluster have 
been applied, the clustering procedure is very slow 
and computationally costly. The performance of the 
abnormal detection algorithm relies primarily on the 
clustering process; thus, bad clusters lead to bad 
detection [111]. 

The k-means is a broadly used algorithm to 
cluster features. Further improvements are achieved 
to overcome the limitations of k-means when 
implemented for behavior clustering like k-medoids 
[88], radius-based clustering [112], and ant-based 
clustering [113]. 

Generally, model-based clustering algorithms 
don't require determining the number of clusters 
beforehand. These algorithms might be hard to 
implement without previous knowledge of the 

distribution of the data [114-115]. An outstanding 
method is the Gaussian mixture model (GMM) 
[116]. The number of clusters in the GMM is 
supposed to be obtained from a Gaussian distribution 
[9]. However, [47,117-121] are some researches that 
used GMM to detect abnormalities in automated 
surveillance.   

 
8.4  Decision Tree  

Decision tree is a common technique for 
representing classifiers [122].  A decision tree 
considers a classification or regression tree based on 
the target variables. It is called a classification tree if 
the target variables are discrete and a regression tree 
if the target variables are continuous [123]. A 
decision tree comprises of successive nodes. One of 
the nodes considers as a parent node and all the other 
nodes are its children. Each node constitutes a 
decision and branch (connection) constitutes a state 
and a probability of entering that state [9, 124-126].  

Duarte et al. [127] proposed a novel method to 
predict abnormal behaviors using an N-ary tree 
classifier. In which, the classifier's tree is organized 
by layers and each layer characterizes a period of 
time.  Thus, every track should be presented by a 
sequence of nodes. The probabilities of the tree links 
are learned in a supervised way from both normal 
and anomaly training instances.  After the process of 
training, a formerly unseen behavior is located on the 
tree and its probability of entering each connecting 
state is computed. Afterwards, if there is a high 
probability of entering an abnormal state, then the 
behavior is flagged as abnormal. 

 
8.5 Spatio-Temporal Composition (STC) 

The spatio-temporal composition technique 
(STC) takes into consideration a spatio-temporal 
array of tiny volumes of videos and implements a 
modeling using a probabilistic approach. In this 
technique, abnormal events are those with a low 
probability of occurrence. Another feature of STC is 
that it can be trained on-line, being able to adjust as 
environmental conditions change and demanding 
small or even no pre-settings for anomalies 
detection. Furthermore, the STC technique is swift 
to be applied in real-time [128]. Authors in [129] use 
STC to find abnormal events in a video. In their 
method, new samples of video are divided into tiny 
volumes, which are represented by codewords from 
a generated codebook. After that, the probabilities of 
occurrence of spatio-temporal compositions created 
by these codewords are computed. Compositions 
with low probability are candidates to be abnormal. 
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8.6 Sparsity-Based Abnormality Detection 
Models 

Lately, sparse-based models have been widely 
and successfully utilized in a lot of multi-
disciplinary research [130-131]. Present research 
related to sparse modeling can be divided into two 
main sets: Sparse coding and Dictionary Learning. 
On one hand, Sparse coding focus on finding 
coefficients for a given dictionary, which requires 
that each input signal is represented sparsely. On the 
other hand, Dictionary learning concerns with 
finding suitable basis vectors that build the 
dictionary [132]. In spite of the progress of existing 
dictionary algorithms, it is hard to apply them 
directly on anomaly event detection. This is because 
of the unavailability of labels, where only normal 
videos are utilized in a training data process. Authors 
in [133-134] introduce their sparsity-based 
dictionaries, which are intended especially and 
efficiently for anomaly detection purpose. In these 
two methods, an over-complete dictionary or frame 
(a concatenation of dictionaries) and sparse 
coefficient matrix are generated during the learning 
according to visual features. A new testing feature is 
recognized as an abnormal if its reconstruction error 
from the dictionary/frame is larger than a certain 
threshold. However, the relationship between atoms 
does not take part in the final detection, that means 
an abnormal event is recognized on whether it can be 
represented by a few atoms or not, regardless of how 
far away representing atoms are. Therefore, in this 
case, it is difficult to distinguish between infrequent 
features and real abnormalities, consequently, has a 
high false alarm rate. 
 
9. VIDEO EVALUATION BENCHMARKS 

To evaluate the performance of abnormal 
detection algorithms, the algorithms should be tested 
on several public-accessible datasets. However, 
these datasets have distinct characteristics and 
limitations in terms of saliency of the anomalies, 
size, evaluation criteria, etc. In this section, we will 
list five widely used datasets from 2007 to 2017: 
University of Minnesota (UMN), Live Videos (LV), 
Subway, University of California San Diego 
(UCSD), and Avenue Datasets.  
UMN Dataset: The UMN dataset [36] is a 
commonly used benchmark. It comprises from 
eleven video footages for three different escape 
views, one indoor view, and two outdoor views.  The 
total length for this dataset is 7,739 frames. In 
addition, the resolution of the frames is 320*240 
pixels. The main limitations of this dataset are that 
a) It is comparatively simple and small. b) has no 

pixel-level ground truth. c) presents quite salient 
changes in the average motion intensity of the scene. 
LV Dataset: This is the newest anomaly detection 
dataset proposed by Leyva et al. [135]. The LV 
dataset contains 30 video footages.  It is 
characterized by the following: a) Its events are 
realistic where no actors performing predefined 
scripts. b) Extremely has unpredictable 
abnormalities in different views, c) has challenging 
and difficult environmental conditions.	
Subway Dataset: The subway dataset [136] 
includes two video clips for entrance and exit gates. 
Whereas entrance gate has 144,249 frames and exit 
gate has 64,900 frames.  In comparison with UMN 
dataset, Subway dataset considers much more 
natural. Authors in [137] demonstrate two major 
limitations for this dataset: a) Most of the frames in 
the video clips are redundant as no motion appears 
in them. (b)  The assessment metric is excessively 
coarse due to the absence of exact ground truth 
annotation.  
UCSD Dataset: The UCSD [38] consists of two 
sub-sections, Ped1 and Ped2.  Each sub-section 
contains a number of training and testing video clips, 
in which training sets have only normal events and 
testing sets have both normal and abnormal events. 
It is worth mentioning that Ped1 is greater 
challenging than Ped2 because the angle of camera 
produces larger perspective distortion. Moreover, 
anomalous events in Ped1 involves not only 
abnormalities resulted by small carts, bikers and 
skateboarders etc., but also contextual abnormalities 
such as a person walking over the grass.  
Avenue Dataset: This dataset [133] has 16 and 21 
video clips for both training and testing, 
respectively. The total frames are 30,652 frames. 
There are fourteen irregular events comprising 
loitering, running, throwing objects, and walking in 
opposite direction. The main difficulties of this 
dataset comprise camera shakes as well as a few 
abnormalities in the training data. Additionally, 
some normal pattern rarely appears in the training 
data [130]. More Details of each dataset are provided 
in Table 1. Figures [5-6] show sample frames for 
both normal and abnormal events in UMN and LV 
datasets. Also, figures [7-9] demonstrate some 
frames for only abnormal events such as jumping 
from the entrance gate, running, walking in the 
wrong direction, throwing objects…etc. 

 
10. CONCLUSION AND CHALLENGES 

Obviously, based on the state-of-the-art research 
in the previous sections, there are several significant 
challenges that abnormal human behavior detection 
algorithms may face with [63,91, 138]: 
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UMN (2009) 

[36] 
LV (2017) [135] 

Subway (2010) 
[136] 

UCSD (2010) 
[38] 

Avenue (2013) 
[133] 

URL 

mha.cs.umn.edu
/Movies/Crowd-
Activity-All.avi 

 

cvrleyva.wordpr
ess.com/2017/0
4/08/lv-dataset/ 

 

vision.eecs.york
u.ca/research/an

omalous-
behaviour-data/ 

svcl.ucsd.edu/pr
ojects/anomaly/

dataset.htm 

cse.cuhk.edu.hk/
leojia/projects/d
etectabnormal/d

ataset.html 

No. of Video 
Clips 

11 30 2 

Ped1: 34 
training and 36 
testing  
Ped2: 16 
training and 12 
testing 

16 training and 
21 testing video 

clips 

No. of Frames 7,739 frames 
68,989 

anomalous 
frames 

Entrance gate: 
144,249 frames 
Exit gate: 
64,900 frames 

Ped1: 14,000 
frames 

Ped2: 4,560 
frames 

15,328 training 
frames and 

15,324 testing 
frames 

Frame 
Resolution 

320×240 pixels 

minimum: QCIF 
(176 × 144) 
maximum: 
HDTV 720 
(1280 × 720) 

512×384 pixels 
Ped1: 158×238  
Ped2: 240×360   

120×160 pixels 

Duration  4.299 minutes 3.93 hours 

Entrance gate: 
96 minutes 
Exit gate: 43 

minutes   

-- 

less than a 
minute to two 

minutes for each 
clip 

Table 1: Benchmarks for Evaluating Anomaly-Detection Algorithms 

                 (a)                                           (b)                                             (c) 

                (d)                                             (e)                                            (f) 

Figure 5: Illustrates Sample Frames from UMN Dataset. (a), (b) and (c) Show Three Different Normal 
Frames (Individuals Wandering Around) from the Three Views; While (d), (e) and (f) Represent Three 
Abnormal Frames (Escaping in Panic) in UMN Dataset.
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(a)                                        (b)                                           (c)

(d)                                        (e)                                           (f)

Figure 7: Shows Some Frames from Subway Dataset. Frames in The First and Second Rows 
Are Abnormal Frames from The Entrance And Exit Subway Video Clips, Respectively. 

       (a)                                       (b)                                       (c)                                        (d)  

       (e)                                       (f)                                       (g)                                        (h)  

Figure 6: Presents Sample Frames from LV Dataset. [(a), (e)], [(b), (f)], [(c), (g)], [(d), (h)] Are Eight 
Sample Frames from Fell_down, Kidnap, Fighting, and Robbery0 Video Clips, Respectively. Where the 
Top Row Represents Normal Frames and The Bottom Row Corresponds Abnormal Frames in The Lv 
Dataset. 

              (a)                                        (b)                                         (c)                                         (d) 
Figure 8: Four Different Abnormal Events from Ped1 UCSD Dataset. 

   
 

                (a)                                        (b)                                         (c)                                         (d) 

Figure 9: Four Different Abnormal Events from Avenue Dataset. 
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 One of the prime challenges for abnormal 
detection techniques is that defining a normal 
area, which comprises every potential normal 
behavior is very complicated. 

 The other difficulty is that availability of labeled 
data for training/validation of models, which 
employed by abnormal detection techniques is 
typically a considerable issue. 

 The conception of abnormality differs based on 
different applications. For instance, in the 
medical field, a slight deviation from normal may 
be an abnormality, whilst the same deviation in 
the stock market field may be considered as 
normal. Consequently, applying a technique 
developed in a certain field to another is not easy. 

 Even though noise is handled as "abnormal", it is 
not an interesting abnormality. In addition, its 
existence makes the task of finding the 
interesting ones more complicated. 

 Nowadays, since many applications deal with 
high volume of input and output data as well as a 
variety of activities and services that are being 
provided. High computational complexity has 
become a big challenge to many abnormal 
detection algorithms. 

 The more challenging task is to build up real-
time intelligent surveillance frameworks. Video 
clips which have complex scenes, take more time 
to process it at the time of features extraction and 
detecting abnormal events. 

 Additionally, quality of the video, illumination 
condition, camera motion, the complexity of 
backgrounds, blurring and shadows are other 
significant challenges, particularly with a single-
camera view. 
Owing to these difficulties, the abnormality 

detection issue is not straightforward to solve. As a 
matter of fact, most of the present abnormality 
detection approaches resolve a particular 
formulation of the matter. The formulation is 
inferred by several factors like nature of the data, 
labeled data availability, kind of abnormalities to be 
identified. 

Besides all the mentioned challenges above, the 
presence of only a few datasets forms a challenge to 
the researchers in this area. This is due to the scarcity 
and roughly infinite variety of anomalous behaviors 
in reality. However, the large quantity of clips that 
are captured by the CCTV cameras spread 
everywhere can offer an excellent resource for 
standard datasets. Those real datasets should let 
researchers to evaluate how well an abnormal 
detection method fulfills in two critical 
responsibilities: abnormal detection (i.e., does this 

video sequence consist of an abnormal event or not?) 
as well as abnormal localization (where does an 
abnormal event occur?).  

It is of note that, many abnormal detection 
methods address distinctly highly complex 
structured scenes. In fact, there is need to examine 
the performance of such methods in unstructured 
cases. More work should be devoted to evolution of 
frameworks that can cope with the scalability of 
video analysis in an effective way particularly in the 
real videos of cluttered environments, which 
contains a lot of moving objects and activities.  
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