
Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5237

IMPLEMENTATION OF SOFTWARE SYSTEMS PACKAGES
IN VISUAL INTERNAL STRUCTURES

AHMAD ABDULQADIR AlRABABAH

Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University,
Rabigh 21911, Kingdom of Saudi Arabia, e-mail: aaahmad13@kau.edu.sa

ABSTRACT

This manuscript discusses the visualization methods of software systems architecture with composition of
reverse engineering tools and restoration of software systems architecture. The visualization methods and
analysis of dependencies in software packages are written in Java. To use this performance graph it needs
to describe the relationships between classes inside the analyzed packages and between classes of different
packages. This article discusses system visualization with using matrices of incoming and outgoing packet
dependencies, allowing analyzing existing dependencies between classes within a package, and between
classes of different packages. Obtaining such Information allows us to understand the reason for the
emergence of dependencies between packages that determine architecture of the system, and also if
necessary refactoring systems. In the manuscript also described the possibility of tools to provide the
infrastructure for subsequent detection and error correction design in software systems and its refactoring.

Keywords: Software Visualization, Reverse Engineering, Software Architecture, Dependency, Package.

1. INTRODUCTION

The task of reverse engineering in program system
is very important in the development of a software
system using libraries with source codes. Building
and visualizing the UML model for the newly
developed Program system [3], and for the libraries
it uses, greatly simplifies the understanding of their
structure and functionality [2,7], the choice of the
required version and developer of the library. Ways
Construction and visualization of the software
system model were considered in previous works of
the author [5]. This manuscript discusses the
analysis and visualization of dependencies between
classes in software systems packages written in
Java language. This task is very important for
restoration architecture of the software system
when solving the problem of reverse engineering.

The size of information obtained in solving these
problems can be too large for their perception by
the user, reception and visualization of all
relationships can require too much time [4,13].
Therefore, visualization of the software system is
only necessary for the most significant part of its
architecture. For the constructed UML-model it is
necessary to calculate and visualize the values of
object-oriented metrics allowing evaluating the

design of qualified systems [2,5,6]. In previous
works, the methods of visualizing the system
architecture and results of quality visualization
were measured using Object- Oriented metrics
[1,11]. Also an overview and analysis of object-
oriented metrics was made, the simplest object-
oriented metrics for analysis and design of
individual classes, and then it was considered the
class- structure metrics, allowing assessing the
quality of the design in the class structure [9,14].

2. MATERIALS AND METHODS

2.1. Problem In Understanding Structure
Dependence Packages

The structuring of complex software systems by
packages can be affected by a variety of factors.
Packages can identify system code modules that
will be used to propagate the system. Packages may
reflect the ownership of the program code obtained
from external developers [15]. Packages can reflect
the organizational structure of the team that
developed the system, and the architecture of the
system or the partitioning of the system into levels.
At the same time, the correct structuring system
should minimize dependencies between packets
[8,10].

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5238

Errors in designing of system packages structure
often affect the system as well. A recursive
dependency of a package on other packages
requires loading the code of these packets into
memory devices with limited resources. To solve
this problem it is necessary to apply package
restructuring and to identify the package classes
that have the maximum number of incoming and
outgoing relationships to classes of other packages,
also to determine the possibility of class moving to
an external package that minimizes the dependency
between packets.

Correspondingly important is the analysis of the
relationships between the classes located inside the
packages. Minimization dependencies between
classes of large packages will allow you to
restructure the package, breaking it into several
smaller packages. Total number of dependencies
between packages of the system in this case can be
decreased [16]. To solve the problems of package
restructuring as special visualization packages,
allowing analyzing in detail the dependencies
between packages and classes of packages. In
previous works it was examined the analysis and
visualization of dependencies of packets using
matrices of the structure in the reverse engineering
tool. This method of analyzing system packages
allows simplifying the system structuring to levels
and simplifying the extraction of the system
architecture. To analyze and visualize the
relationships between pair's packages of the system,
a detailed visualization of the dependency matrix
cells was used, showing relationships between a
pair of packets represented by this cell. However,
often the information in the matrix cells of
structural dependencies is not enough. To remove
the cyclic dependencies between packets and
reducing the number of relationships between
systems packages, matrices can be useful, showing
the reasons for the dependency of the package with
all other packages of the system.

To understand the interrelationships of packages, an
essential visualization of packet metrics can help.
Visualization of package nesting and the impact of
such nesting on the software system architecture
were discussed. Visualization and analysis of
packet coupling, as well as joint the use of packets
by classes was considered. Analysis of software
system architecture with the help of matrices of
structural dependencies is considered in the work.

2.2 Visualization For Understanding The Role
Of The Package In The System

A. Choosing the way to visualize the package
Although the visualization of all the relationships of
the package may need to show a very large amount
related to the information package, however, it
should simplify the analysis of the package. For
visualization graphs, the most widespread are the
visualization in the form of nodes and edges
between nodes, and also visualization in the form of
matrices. As was noted in [15], the representation
in the form of knots and edges is easier to read and
intuitively understood with a small number of
nodes and edges in the graph. But the matrix
representation has no problems associated with
crossing the edges of the graph and superimposing
nodes graph with a large number of connections
between the bonds. Therefore, the matrix
representation is more suitable for visualization of
complex graphs.

B. Basic principles of package visualization

For the detailed package visualization regardless of
the graph dependency complexity offered, use the
matrix representation of the graph. The package is
represented by a rectangle, whose sides form
contact areas called surfaces. Each row / column
represents the inner class of the analyzed package
or the class of the external package with which
interacts inner class of the analyzed package. The
surface has a heading representing the relationship
between the inner classes of the packet under
consideration, and the body representing the
interaction of internal classes for the analyzed
package with external classes. To represent
incoming and outgoing dependencies of the
package are used separate types of packages.

Consider the package dependency matrix in more
detail. Figure 1 shows an example of visualization
packages and their dependencies using nodes and
edges. The P1 package shown in this figure will be
then represented by the matrices of the incoming
and outgoing dependencies of this package.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5239

Figure 1. Visualization Of Package Dependencies

As A Graph

A group of matrix rows related to a single packet
form the surface of the bag. The first surface, related
to the packet under consideration, is the package
header. The E1 class refers to the inner classes C1
and D1. In classes B1, H1, I1, and F1, no classes of
the P1 package refer, because there are no completed
cells in the corresponding rows of these classes. The
classes from the surface of the packet P3 is
referenced from the packet P1 under consideration.
These are classes A3, B3 and C3. The surface of the
packet P3 is located in the matrix above the surfaces
of the packages P2 and P4, since it includes more
classes than the surfaces of packages P2 and P4.

To order the columns, surfaces and lines in surfaces,
a single rule is used. Closer to the header are the
surfaces packages that have the most links. Inside
the surface closer to the header there are those
classes on which the most links from the classes of
the package considered. The background color
brightness for the class name specified for the
referring class shows how many links comes from
the referring class in the cell of the column, in the
package represented by the cell surface. Dark cell
has more links. Both the horizontal position of the
class and its brightness represent the number of
Links. However, the position shows the number of
references for the entire matrix, and the brightness
for a particular surface of the matrix.

To separate the classes represented in the matrix into
categories, the class color can be used. Matrix color
might be used to separate the classes of the classes
that have links and do not have a link. Non-
referenced classes are painted in lighter colors,
referencing in a darker color. In the matrix body, it is
possible to allocate color packets and classes that are
not included in the analyzed application. For
example, in this way, classes can be painted in

packages from libraries received from external
developers.
Consider now the package matrix showing the
incoming dependencies of the package. For this
purpose, a similar matrix with slight differences: the
surfaces of the matrix of incoming dependencies are
located horizontally. Thus, it will be easier to
distinguish between matrices of incoming and
outgoing dependencies, if they are located on the
screen side by side.

3. EXPERIMINTS

3.1 Analysis of the packet structure with the

matrix
Now we illustrate the use of the matrix package to
study the matrix structure and examine package
dependencies. To analyze the packet structure of a
matrix package, it is a necessitating for
selecting/marking classes or packages (surfaces
representing package). When we select a class, the
class nodes and associated links are colored red.
Also the most happens when the class is marked
with the specified color at the request of the
instrument user. Selecting/marking a surface means
that all relationships are selected/ marked in the
same way which enters the package represented by
this surface. Figure 2 shows the matrix of output
dependencies of the protocols package with the
class which selected in the matrix.

Figure 2. Visualization Of The Selected Class HTTP
Socket In Matrix Package Protocols

The red color in Figure 2 shows both the HTTP
socket class in the first line of the first column, and
classes to which it refers (the second column of the
matrix of output dependencies). An example of

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5240

marking classes in the matrix of outgoing
dependencies of the network kernel package is
shown in the figure 3. Blue in Figure 3 is the socks
socket class, green – class Internet configuration,
and the crimson color - the class password. Also in
Figures 2 and 3 were the surface of the packages is
marked with an orange color as network kernel, and
the surface of the protocols package is marked in
yellow. Blue color is marked classes that do not
belong to the application being analyzed (classes
from external libraries).

Figure 3. Classes In The Matrix Of Output Dependencies
Of The Network Kernel Package

Packet classes and surfaces are represented in the
dependency matrices in a compact form. More
Detailed about the class or package appears as a
tooltip, as shown in Figure 4. The user tool can
filter information with the displayed matrix of the
packet. It is possible to display links referring only
to the analyzed application, or to the described
group packages. After excluding all classes of
libraries used, the array of incoming dependencies
of the package protocols takes a compact view, as
shown in Figure 5.

Figure 4. A Pop-Up Tip For The Class HTTP Socket In
Matrix Outgoing Dependencies Of The Packet Network

Kernel

Figure5. The Matrix Of Incoming Dependencies Of The

Protocol Package After Filtering The Classes

The user can also use the filter to remove classes of
unrelated relationships with external class packages
or hide in the header of the matrix package,
concentrating on analysis only dependencies
between classes of different packages Figure 6.

Figure 6. Packets With A Large Matrix Of Packets

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5241

3.2 Analysis Of The Package Using A Matrix Of
Output Package Dependencies

Consider how the matrix of outgoing dependencies
can be used for packet analysis. Such a quick look
through the matrix on the "draft" package allows
evaluating with the implementation of the package.

3.3 Analysis Of Large Packages

Consider packages that have a large size matrix of
outgoing dependencies. The reasons for this may be
different. Figure 6 shows three packets with a large
packet matrix. The HTML parser entities package
has a large number of its own classes, because it
has a large Header. On the other hand, the remote
directory and protocols packages have a large
matrix, because contains a large number of
references to classes in other packages (a large
body) with a relatively small header of the matrix.
A large number of matrix surfaces characterize
closely coupled packages. Thus, the last two
packages have a strong connection with their
external environment.

3.4 Small Packages with Complex

Implementation

The TelNetWordNet class, shown in Figure 7, has
only four classes of its own.

Figure 7. Telnetwordnet - A Small Package With A
Complex Implementation

In addition, the package has a large matrix body
and a large number of matrix surfaces. Based on
this, we can conclude that loading this small
package into memory will also require loading the
large number code of their packages. This may lead

to problems on devices with a small memory. The
remote directory class also has a small number of
classes. However, its implementation is much more
complicated Implementation of the TelNetWordNet
class, since the dependencies of its classes are
distributed among the larger number of outer
classes and surfaces.

3.5 Sparse Packages

The package Html Parser Entities in Figure 6 and
the package TelNetWordNet in Figure 7 have
sparse Headers. This means that the coupling
between classes inside these packages is small. It is
possible that they are candidates for the
decomposition of these packages (Distribution of
package classes for other packages). At the same
time, it can be noted that the package Html Parser
Entities has not only a sparse title, but also a sparse
body. For this reason its decomposition is more
probable.

3.6 Packages With Internal Cohesion

The URL packet shown in Figure 8 has a large
number of outgoing dependencies filled nodes.
However, Figure 8 also shows that the URL
package has many references to external packages
in the body. Here, it's more important to link to
classes of external packages than to classes inside
packages.

Figure 8. URL - Package With Strong Internal Clutch

3.7 The choice of the position of the class

Using the outbound dependency matrix, you can
easily find classes for which you have
unsuccessfully selected containing their package.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5242

So shown by the crimson rectangle in Figure 9, the
password class does not have neither incoming nor
outgoing dependencies within the header of the
NetworkKernel matrix. Thus, the identified class
becomes a candidate for moving it into packages;
with classes which it has such dependencies.
Moving a class to a using package will increase the
cohesion of both packages.

Figure 9. An Incorrect Position Selection Of The
Password Class In The Network Kernel Package

3.8 Analysis Of The Package Using The Matrix

Of Incoming Dependencies

The incoming dependencies matrix shows how the
package is used by other application packages.
When analysis of packages is using such matrices,
you can identify, for example, packet templates.

Leaf packages and insulated bags
Figure 10 shows the mail reader filters package list
referenced by only one package mail reader. Also,
using the matrix of incoming dependencies of the
package, it is easy to identify in the system such
fully isolated packages, as shown in Figure 10 of
the Squeak Page package.

Figure10. Leaf Packages And Fully Insulated Packages

4. RESULTS AND DISCUSSIONS

To illustrate coupled Packages, consider the matrix
of incoming dependencies of the kernel package,
shown in Figure 11. The classes that have the most
links are classes that are in the body packets with
large surfaces, like socket and net name resolver
located in the top two rows of the matrix. However,
the string for the net name resolver class is darker
than the string of the socket class. This means that
the net name resolver class has more internal
incoming dependencies than the socket class. And
the socket class has more incoming external
dependencies, since the brightness is represented by
the number of references to the package classes in
the body of the packet.

Figure 11. Intensively Used Package Classes

4.1 Related Packages

To assess the impact of a change in one package on
another package, it is often necessary to identify
system closely related packages. A sign of the close
cohesion of packets is a large surface package in
the body of the packet required, close to the header
of the packet. Example, closely related packets are
shown in Figure 10 with the matrix of incoming
dependencies for the package mail reader filter.
Closely related package, in accordance with the
above criteria is a mail reader package. Another
example of close bundling of packets is shown in
the figure 11. The Protocols package is closely
related to the Kernel package. Changes in the
Kernel package will significantly affect to classes
in the protocols package.

4.2 Kernel Packages
When analyzing a software system, it is important
to identify packages that define the core of the
system. These are packages from which depends on
most other packages of the system. Figure 12 shows
two packages of URL and protocols that are such a
kernel. Identify the kernel packages of the system
might also be by the largest number of surfaces in

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5243

the matrix of incoming dependencies for these
packages.

Figure 12. Packages URL And Protocols From The

System Kernel

5. CONCLUSION

The manuscript considers methods for visualizing
dependencies using a matrix representation of a
graph describing the relationships between the
classes within the parsed package, and the
relationships between the classes of the different
packages. Showing use this method to visualize the
dependencies between packages in the inverse tool
design and restoration of architecture. This tool is
based on the UML modeling language and it is
implemented as an extension of the eclipse
environment and the manuscript is considered
effectively as an implementation of the life cycle
phases in software engineering and application of
the modeling language UML.

ACKNOWLEDGEMENT

I thank King Abdulaziz University- KSA for
providing me with needed resources for carrying
out this work.

REFERENCES:

[1] Addy Osmani, Learning JavaScript Design
Patterns: A JavaScript and jQuery Developer's
Guide, O'Reilly Media, 2012.

[2] Colin Ware, Information Visualization, Third
Edition: Perception for Design (Interactive
Technologies) 3rd Edition, Morgan Kaufmann,
2012.

[3] S. Ducasse, M. Lanza, L. Ponisio, Butterflies: A
visual approach to Characterize packages, in:
Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS'05),
IEEE Computer Society, 2005, pp. 70-77.

[4] Stephanie D. H. Evergreen, Effective Data
Visualization: The Right Chart for the Right
Data 1st Edition, SAGE Publications, Inc. 2016.

[5] Saikat Das Gupta , Rabindra Mukhopadhyay ,
Krishna C. Baranwal , Anil K. Bhowmick,
Reverse Engineering of Rubber Products:
Concepts, Tools, and Techniques, CRC
Press,2013.

 [6] Bruce Dang , Alexandre Gazet , Elias
Bachaalany , Sebastien Josse, Practical
Reverse Engineering: x86, x64, ARM, Windows
Kernel, Reversing Tools, and Obfuscation 1st
Edition. Wiley, 2014.

[7] Dhanji R. Prasanna, Dependency Injection:
With Examples in Java, Ruby, and C#, Manning
Publications, 2009.

[8] M. Lungu, M. Lanza, T. Girba, Package
patterns for visual architecture recovery, in:
Proceedings Of CSMR2006 (10th European
Conference on Software Maintenance and
Reengineering), IEEE Computer Society Press,
Los Alamitos, CA, 2006, pp. 185-196.

[9] Vinesh Raja and Kiran J. Fernandes, Reverse
Engineering: An Industrial Perspective
(Springer Series in Advanced Manufacturing),
Springer; Softcover reprint of hardcover, 2010.

[10] Kyran Dale, Data Visualization with Python
and JavaScript: Scrape, Clean, Explore &
Transform Your Data 1st Edition, O'Reilly
Media, 2016.

[11] H. Abdeen, I. Alloui, S. Ducasse, D. Pollet, M.
Suen, Package reference fingerprint: a rich and
Compact visualization to understand package
relationships, in: Europe an Conference on
Software Maintenance and Reengineering
(CSMR), IEEE Computer Society Press, 2008,
pp.213-222.

[12] N. Sangal, E. Jordan, V. Sinha, D. Jackson,
Using dependent models to Manage complex
software architecture, in: Proceedings of
OOPSLA'05, 2005, pp. 67-176.

[13] H. Abdeen, S. Ducasse, D. Pollet, I. Alloui,
Package fingerprints: A visual summary of
package Interface usage, Inf. Softw. Technol.
52 (12) (2010) 1312-1330.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5244

[14] M. Ghoniem, J. D. Fekete, P. Castagliola, A
comparison of the read ability of graphs using
Node-link and matrix-based representations, in:
Proceedings of the IEEE Symposium
InformationVisualization, INFOVIS'04, IEEE
Computer Society, Washington, DC, USA,
2004, Pp.17-24.

[15] A. A. AlRababah, Lempel - Ziv
Implementation for a Compression System
Model with Sliding Window Buffer",
International Journal of Advanced Computer
Science and Applications (IJACSA), Volume
6, Issue10, 2015.

[16] A. A. AlRababah, Ranjit Biswas, Rough
Vague Sets in an Approximation Space".
International Journal of Computational
Cognition (HTTP://WWW.IJCC.US, VOL. 6,
NO. 4, DECEMBER 2008, pp.60-63

