
Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5203

 VIRTUAL REALITY ENGINE DEVELOPED IN PANDA 3D
FOR A CAVE BASED SYSTEM

1IBAÑEZ MEJÍA R., 2OLGUÍN-CARBAJAL M., 3RIVERA-ZARATE I.

 4HERNANDEZ-BOLAÑOS M. AND 5CADENA MARTÍNEZ R.
1,2,3,4Profesor of the Instituto Politécnico Nacional, Department of postgraduated

5Profesor of Universidad Tecnológica de México, UNITEC
E-mail: 2molguinc@ipn.mx, 3irivera@ipn.mx 4mbolanos@ipn.mx 5rocadmar@mail.unitec.mx

ABSTRACT

There is now a virtual reality laboratory in CIDETEC, which uses as a primary tool an immersion cabin,
who consists of three projectors, mirrors and a structure of three screens, which display the virtual
environments for educational purposes and simulation. It was noted that the virtual environment to run the
tests did not meet the necessary requirements for optimal performance of immersion cabin. It was proposed
to solve the problem caused by the usage of VRML to create the virtual environment by replacing that tool
for one that also allows the usage of new hardware devices and improve the visual quality of the models
represented. After testing several tools the decision was made to use Panda3D for the development of the
virtual environment, which can load models created in design tools such as Blender and 3ds Max, allowing
the optimal usage of the endless road system, alongside with collision detection, providing a better
alternative to the use of virtual environments.

Keywords: Virtual Reality, Panda3D, Multipersonal VR Cockpit, Endless Road.

1. INTRODUCTION

Multipersonal Virtual Reality Cabin, is a system
to immerse in a virtual environment to one or more
people who can interact in real time making use of
some hardware tools, such as HMD, Gloves, etc.
This can increase the sense of realism. First Cave
Automatic Virtual Environment (CAVE) system
was developed in 1991 at the Electronic
Visualization Lab at the University of Illinois at
Chicago, and is a registered trademark of the
University of Illinois. The CAVE structure is a
multi-screen system, with cubic or panoramic
displays, in which synthetic worlds generated by a
set of computers and network video projectors are
displayed in an integrated environment.

In the CIDETEC of the National Polytechnic
Institute of México an immersive multiuser system
for Virtual Reality was developed, see figure 1,
based on a CAVE system. The entire system as well
as the devices developed to work in conjunction
with the immersion booth were made entirely by
CIDETEC students and teaching staff. The
immersive multipersonal system was built as a
research tool for works and themes of the Thesis of
the Master in Computer Technology.

Figure 1. Multipersonal Cabin Projectors
Configuration.

Currently commercial software exists for the
operation of the CAVE like systems, however
because this Immersion Cabin was developed with
own technology and they have at the moment own
devices developed in the CIDETEC (Road without

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5204

end, Stereoscopic lenses based on anaglyph, RV
gloves adapted video games, and RV engine based
on a distributed processing system).

Also we must add the simulation software
developed in the CIDETEC, like the travel through
a little part of the bottom of the sea, the virtual
reality model of the Graduated building of
UPIICSA Campus, also the various solar system
simulations as well as forest simulations used to test
the Cabin endless road. In addition to simulated
environments, interfaces and software have been
developed for use in conjunction with the booth.
Such developments include:

- Virtual environment for teaching calculation

-Simulator of Shoot training for police forces

-Data Glove as a manipulation interface for virtual
environments

-Endless road as a navigation system for virtual
environments

-Lens passive 3D-based anaglyphs for viewing 3D
images

- Real robotic arm manipulator using 3D virtual
interface.

It is necessary to develop a test environment with
the ability to test such devices in conjunction with
the cabin. Therefore the developed environment
must be able to synchronize three or more
computers of the distributed processing system.
Also the virtual environment must detect collisions
and have the ability to incorporate the use of the
endless road and other developed peripherals to
interact in virtual worlds. Finally the developed
environment must have a better performance than a
VRML environment.

Among the items to be considered for this work
the necessary characteristics of software that were
considered:

1.- Start the virtual environment.

2. Read a virtual scene of a file

3.- Place the three virtual cameras in the
corresponding positions with the real projectors of
the Immersive system

4.- Manage the communication of each of the
three processing cores and distribute the image
corresponding to the projectors: right, center and
left.

5.- Initiate and follow the behavior of virtual
environment animations.

6.- Detect collisions between virtual elements
and other virtual elements as well as between the
user and the rest of the virtual environment.

7.- The software is capable of handling the
following elements of the immersive system:

Number of displays 3

Elements of the processing system 3

Individual Display Resolution 1280x798

Frame rate 30fps

Polygons per second 60,000

8.- Handling particular hardware, such the
students and researchers of the CIDETEC

9.- Easiness of virtual world creation, int this
case the creation of a virtual world is a complex
task in JAVA 3D wile in VRML is an easy task
considering code extension.

10.- Other platforms compatibility, the capability
for use virtual worlds developed for VRML in JAVA
3D or C objects in VRML or JAVA3D.

The immersion cabin needs a virtual environment
that allows adding more devices for the execution
of the same without having to create a special
environment for each new device or make
considerable modifications to be able to use it. This
virtual environment must be generated by a
language for virtual reality modeling that facilitates
the implementation of hardware and in addition to
that it can be used optimally in the virtual
environment, the tools of this language should
allow generating an interactive and immersive
virtual environment.

The aim of the present development is to provide
software that is compatible with the hardware
resources developed for the immersion booth,
which accepts the entry of new devices.

This work is organized as follows. Section II
presents a brief overview of related work. Section
III presents an introduction to endless road. Section
IV offers a brief description of the Virtual
environment development. Section V reports
experimental results. Finally, in Section VII we
draw our conclusions.

2. RELATED WORK
Virtual environments have been used since

the 1990s to date; most were developed to work
using the Internet as entertainment, others for
research purposes, industrial use, educational use
and so many for commercial purposes. Virtual

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5205

environments are designed using multiple virtual
reality modeling tools, these tools over time have
evolved remarkably until they have the current
tools.

The virtual environments are indispensable

to simulate dangerous, inaccessible or nonexistent
environments and their development allows the
human being to experience them without physical
risk and under total control. Since its inception the
virtual environments have undergone an
innumerable number of modifications in order to
improve its performance and increase the sense of
realism for the user. Among the AVs we can
mention the work developed by Constance [6],
which reports the study of the behavior of users
when interacting with other people in this type of
virtual environments and their primary objective is
to develop a deep description of nature that
emerges from The coexistence in team, learning
and objectives in the MMOG. Fengyun [4], points
out the role of computer clusters in order to execute
any MMOG properly, and presents an approach of
simple and effective load balancing that maintains
the flexibility of a cluster when interacting with
users.

Also we can include the work developed by

Costa Castello [2], who designed a model for the
execution of a robot through the Internet, making
use of a virtual environment developed in VRML
and some Java 3D tools. In the case of Thorsten [1]
we report the creation and implementation of a
virtual environment that represents detailed cities
and attached to reality making use of the VRML
language for its design.

Another advance in this respect is presented by
Philip [3], which explains the development of a
mathematical model that allows avoiding obstacles
of the person in the physical environment where the
simulation is developed and at the same time allows
to avoid the obstacles in the Virtual environment.

The most notable reference of virtual educational
environments was developed by Darren [5], who
speaks of the ideal virtual educational environment,
its characteristics, and means and provides a
detailed reference of virtual environments already
developed and that are currently in use.

In 1992 Cruz-Neira et al. They implemented the

world's first CAVE system in the Electronic
Visualization Laboratory, see [8]. CAVE systems
have proven to be useful for a wide variety of
applications in multiple laboratories around the
world, see [9] [10] [11], however these systems are

expensive to implement according to the original
reference. Due to the above, CAVE-type systems
were proposed where the costs of installation,
maintenance and development were reduced. One
of these early CAVE systems where costs were
reduced was from the Department of Information
Sciences at the University of Pittsburgh [12].
Likewise the College of Computing of the Georgia
Institute of Technology designed and built a system
called Nave [13] Multi-screen, multi-user,
stereoscopic and multisensory low-cost; The Nave
is handled by desktop computers that handle three
projectors with three rear projection screens using
mirrors for each screen. Other low-cost cave
systems, such as the University of Sao Paulo in
Brazil [14] and the development of the Virtual
Immersive Simplify System (VISS) developed in
Colombia by Quintero Guerrero et al. [15], that
uses two screens as a minimum CAVE like system,
but very useful for learning and testing purposes.

Each of the cave systems mentioned above has

required the use of specialized software to control
the virtual world control system and the
synchronization of the deployment system. The
team that developed the first CAVE system
generated CAVELib as an API for their CAVE
system. The software was marketed from 1996 as a
low-level Virtual Reality software package as a
support for developers to generate all the graphics
for their respective CAVE and CAVELib systems
display them appropriately changing the point of
view of each camera with respect to the position of
the screens, as well as synchronizing the different
computer systems that integrate the system of rolled
up. Later, other software packages were developed
for CAVE systems such as EON icube, VR Jugler,
Cove, CaveUT, among others.

The development of the CIDETEC Immersive

System, as mentioned above, was developed with
the aim of the students and researchers of the
National Polytechnic Institute of Mexico to
understand and experiment with CAVE-type
systems developing everything from the beginning.
For this, each part of the system was developed by
students and teachers, so that the deployment
system, the distributed processing system, the
communication network, and the peripherals were
designed from scratch. The integration of all the
above could be carried out using commercial
software, however as part of the learning of this
type of systems we proceeded to develop software
that integrated all the elements of the immersive
system. In a first stage it was developed with C

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5206

language and VRML. However, the integration of
navigation controls such as the endless road and the
RV glove showed the need for an update of said
software, which is the objective of this work.

Table 1. Multipersonal Cabin Software Desirable

Chracteristics.
 Software desirable

Characteristic
Platform

VRML C Java3D

1 Start virtual environment x x x

2 Load a scene x x

3 Place tree virtual cameras x

4 Manage multicore communication x x

5 Initiate and follow animations x x

6 Detect collisions x x

7 Handling immersive system
elements

 x x

8 Handling particular hardware x x

9 Easiness of virtual world creation x

10 Other platforms compatibility x

2.1 Introduction To Endless Road

 The endless road system works by using
virtual environments created in VRML, so it is
limited to perform some operations and actions that
if they can be simulated, are not performed
optimally.

The endless road system was designed making use
of the functionality of the mouse plus the
operability of an exercise treadmill. This tool was
created to be used as a navigation tool in the dive
booth.

Figure 2. Treadmill Adapted As A Virtual Reality
Navigation System.

The endless road system consists of a hardware
device with an endless band spin detection system
connected to an optical pickup detector which sends
the data in digital format to the computer. The
forward and backward movement signal is captured
with an LED that is located on the scroll
mechanism of the endless road system and in
conjunction with a motion sensor you get the signal
that is recognized by the computer as if It is a
typical mouse. Left and right movement is handled
using a knob located on the hardware device based
on the movement of the mouse and is also
recognized by the computer as the movement of a
common mouse. Figure 2 shows the endless road
system for the multipersonal VR cabin.

Then the endless road system works as a navigation
system that allows you to recognize the forward,
backward, left and right movement, so you should
handle this device as if it were a typical mouse for
programming purposes. The control and projection
system of the virtual world is a set of personal
computers in a server client scheme, see figure 3.

Figure 3. Client-Server VR Engine Configuration.

One of the important problems observed when
using the endless path is that the displacement
accelerates instead of remaining constant, this
causes that when the user stops moving in the
endless road system, the displacement in the virtual
world still Is observed, which is not correct.

Also the turns to the right and left using the knob of
the device are not suitable. The angle of rotation is
much greater than the optimum and causes that
instead of observing a natural rotation, it becomes a
very forced one that at the same time is affected by
the acceleration already mentioned.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5207

Referring to the tool used for programming the
virtual environments of the endless road system
known as VRML, there are several problems that
limit the performance of the system and do not
allow improving the behavior of the environments
represented in the dive cabin.

One of the notable problems is the constant failure
of VRML-designed environments that have already
been tested and cataloged as functional. When
wanting to execute these environments are
observed errors that did not exist in the past and
that do not have to do with errors of design of the
same ones. Very likely these problems are caused
by incompatibility of the versions or by the lack of
certain components in the system, certainly these
problems can be solved without delay and do not
represent a serious problem, but they waste time
and call into question the functionality of the same.

Another disadvantage that is observed is the
limitation to develop graphics of better quality in
the virtual environments designed in VRML. It is
possible to develop 3D objects using this virtual
modeling tool, but it represents a huge and
unnecessary effort for its design.

Also, this markup language used to model objects
in the virtual environment is limited in the use of
hardware tools that interact with the environment,
usually only supports the devices normally used in
virtual reality, but otherwise, to operate another
device , Is a very difficult task and with little
information available.

The VRML language does not allow to develop
events with the 3D objects, the programming of
simulation of the physics, handling of special
collisions, and other interactive activities, are not
actions that can be developed directly in this
language, but nevertheless, with the support of
Other languages like Java, these activities can be
developed but it consumes time and resources that
with another language of modeling could be
realized without much effort.

Keeping in mind all these current problems, a
solution must be developed to allow the dive booth
to take full advantage of its tools to increase the
immersion sensation.

3 PROGRAM DEVELOPEMENT

Although virtual environments with VRML and
Panda 3D had already been developed, the present
program was developed using Panda 3D. The
developed program allows you to navigate through
a virtual environment, which is in the first person
and was developed with the intention of being used

for the endless road system of the virtual reality
laboratory's CIDETEC immersion booth.

The program starts with a set of libraries that is
used for the start of Panda 3D, this set of libraries
are necessary for the correct start of the
environment and its interface with the virtual
world. The code segment 1 contains such libraries.
Line 1 has the libraries that allow the start of the
Panda3D environment. Next, we import the basic
modules for the operation of Panda 3D, line 2. Also
a library call is necessary for the use of intervals,
line 3. In addition to using text on screen it is
necessary to include a library, line 4. One of the
main elements for this development is the use of
elements that represent 3D elements with
movement (3D animations) which are called by
means of the actors, Line 5. For the management of
tasks such as data entry monitoring, lines 6 and 7
are used. Finally, to generate random values, close
the program and the development of numerical
operations, respectively, we have line 8.

Code Segment 1

1 Import direct.directbase.DirectStart
2 from pandac.PandaModules import *
3 from direct.interval.IntervalGlobal import *
4from direct.gui.OnscreenText import OnscreenText
5 from direct.actor.Actor import Actor
6 from direct.task.Task import Task
7 from direct.showbase.DirectObject import
DirectObject
8 import random, sys, math

There are two functions that are outside the "App"
class, the purpose of each is similar.

The first function called "addInstructions" has two
parameters that are provided at the moment of
sending it to call, the variable "pos" specifies the
value of "Y" for display text display, while "mg"
contains the string Characters that conform the
instructions as the case may be. The function
displays the corresponding text on the screen using
"OnscreenText" with the following parameters:

 Text: Corresponds to the text you want to display
on the screen.

Style: It is used to activate or deactivate the default
values for the unspecified parameters of the
"OnscreenText" instruction, where the value "1"
activates them.

Fg: Used to specify the color of the text to be
displayed, an RGB and alpha format is used.

Pos: Allows you to place in the specified XY
coordinate of the text to be displayed.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5208

Align: Align the text to the left, right or center as
the case may be.

Scale: Here you can change the font size of the text
by specifying the scale in XY.

MayChange: This parameter is used to enable text
modification at runtime and uses a Boolean value
of TRUE or FALSE.

Main Program Pseudocode

1 Initialization of Panda
2 M = mouse position
3 K = Keyboard data
4 C = camera position
5 Align main C
6 Show coordinates of M
7 Start App class
8 Start collision traveser
9 Load 3D elements (Environment and avatars)
10 Start C
11 Start controls
12 Adding Functions to the Task List
13 for n = 1 to NumModels
14 Create a sphere for collision
15 Upload 3D model
16 Cycle animation 3D model
17 Create Walk and Route Intervals
18 end for
19 Create C
20 Collision sphere for C and terrain
21 Processing K and M Events
22 Update C position with K and M data
23 Detect collisions
24 Return values, collision and name
25 Finish class App
26 Run App class
27 Run principal cycle run()

The program starts by initiating the Panda
environment, Code segment 1 corresponding to
Main program pseudocode line 1. Mouse,
Keyboard and Camera variables are initiated at
lines 2, 3 and 4.

The main class "App" represents the start of a
Panda3D program, which contains the entire main
body of the program, main program pseudocode
line 7.

After the main class is the class constructor called
"_init_" where "self" is used to refer to it in the
body of the program, which contains initialization
of variables, declaration of functions and tasks,
among others, line 7.

The variable "p" is initialized with an integer value
of "0", while "base.cTrav" is used to handle
CollisionTraverser type collisions that allow
interaction with all environment objects and
generate an action derived from A collision
between objects. The action that is taken in this
case is to push the object in the opposite direction
to prevent an object from passing through another,

for this we use the variable "pusher" containing
"CollisionHandlerPusher" that performs the
behavior already mentioned, line 8.

The following instructions in the main class "App",
are called to functions, which are executed in
descending order, where the action that is carried
out is to load the models, the terrain, the printed on
the screen of the instructions of use of the Program,
the configuration of the camera for first person and
finally, the assignment of some keyboard buttons to
perform certain actions, main program pseudocode
line 9 to 12.

Then comes the execution of the tasks that are
added to the list of tasks and carried out in a cycle,
which in this case is infinite and only ends when
the program is closed, line 13.

Now we begin to specify the contents of the
functions already mentioned above, where the
objects of the virtual environment are loaded, and
the behavior of each of them is programmed.

The instruction responsible for creating a collision
sphere around the terrain model to limit the user's
movement in the virtual environment, line 14. The
function responsible for loading the model of the
terrain of the virtual environment is the main piece
where all the objects are located in the same initial
point as reference, line 15.

The "loadAvatar" function consists of a set of
instructions needed to load the model,
corresponding to the selected avatar and cycle the
animation so that it Repeat until the program is
finished. To indicate the route that the model must
follow, it is necessary to create a position and
rotation interval, then the sequence is put in order
to represent the motion simulation of the same. The
"initCollisionSphere" instruction, as previously
mentioned, is used to create a collision sphere, but
unlike the previous function, this sphere is placed
around the model, preventing the camera from
traversing it Navigate the virtual environment. All
of this are realized for each 3D animated model
loaded, lines 15, 16 and 17.

All models that have ranges of motion, the spin is
not convincing. This is because it is necessary to
execute a special animation for the turns and to be
more specific with the intervals of movement,
however this is possible but it would need a lot of
time to be designed and to create the appropriate
animation, therefore it was decided to avoid this
solution because it is not of vital importance for the
main objective of this project. Again a collision

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5209

sphere is created around this model to prevent it
from being pierced by the user.

The instructions for the fixed models of the virtual
environment tree, stone, pole and statue specifies
the position in the X, Y and Z axes of the model,
the scale and the corresponding turns in the three
axes. Also for each of these models a collision
sphere is created to prevent them from being
crossed by the user and instead push the camera
towards one of the sides. The function
"show_instructions" is in charge of displaying the
corresponding text on the screen making use of the
function "addInstrucciones" and "addText". The
messages are specified in this part in addition to
providing the X coordinate in the variables in the
course of the execution of the program, in the
"move" function, its value is assigned. The
instructions corresponding to the initial behavior of
the camera are specified in the instruction
"initialize_camara". It tells you which coordinates
to position at the beginning of the program in
addition to the position of the camera with respect
to the Y axis, line 19.

A variable "s" is declared to avoid redundant
writing, a collision sphere is created around the
camera and making use of the masks of bits
specifies that this object can only collide with other
objects that have the value of "1" . The collision is
stored to be handled in the course of program
execution and when a collision of this type is
recognized, the camera is pushed and not allowed
to come into contact with the object, line 20.

The initialization of the controls corresponding to
certain keyboard buttons. These buttons correspond
to the "Esc", "a", and "d" keys that are handled in
Panda3D as events, an event is identified by
pressing a key and another different event is
recognized when the button is released. The "Esc"
key has its default action assigned to the Panda3D
policies, while the action derived from pressing and
releasing the corresponding keyboard buttons is
specified in the "move" function. Basically these
events use the array initialized in "0" called "array"
to store a binary value, where "1" is used to identify
when the button is pressed and "0" for when it is
released, then it is called to call "Keystroke"
function by passing the key name parameters and
event number to store the corresponding values in
the array, line 21.

The "move" function is a task that is repeated
infinitely until the application is closed. Two
variables are declared, where one stores the current
value of the time the task has been running minus

the other variable converts to the character string
the coordinates in which the user is positioned and
displays them using the variable that was left
pending in the function "show_instrucciones". The
variable is used to accelerate movement of the
camera by pressing the key corresponding to the
left or right movement. In the comparison the
corresponding value is analyzed in the arrangement
for "cam-izq" and "cam-der", if "cam-izq" is
different from "0", bone "1", then the camera
moves to the left , Otherwise, it does nothing.
Similarly for "cam-der", if its value is equal to "1",
the camera moves to the right and accelerates the
movement as the key is held down by using the
variable "e". This function is the part of the
program that is responsible for assigning the
camera movement according to the movement of
the mouse. The first three instructions are to hide
the mouse cursor, line 22.

The variables "md", "x", as well as "y", are used to
detect the XY coordinates of the mouse so that the
rotation can be assigned to the Y axis as a reference
point. This allows us to rotate the camera by
moving the mouse To the left or right respectively.
This function is repeated infinitely until the
program ends, thus the position and the availability
of the mouse are constantly being checked to
determine in which direction the camera should
rotate. Again the availability of the mouse is made
to perform the movement forwards and backwards.
If the current value of the Y axis is greater than
zero, then the camera must be moved forward,
however, if the Y value is less than zero, then the
camera must be moved backwards. The function is
called by all the animated or fixed objects of the
virtual environment to create a collision sphere
around them and thus collaborate with the sphere of
the camera and not allow objects to be crossed. The
parameters that are provided by each of the
requesting functions are, the name of the object, the
Boolean value True or False to specify whether the
sphere must be visible or invisible, and the radius
of the sphere. Then proceed to create the sphere
with the requested characteristics of the
corresponding object, line 23.

The remaining functions are also used to create a
collision sphere, with the difference that they have
a fixed value of radius and correspond to the
camera and terrain of the virtual environment
respectively. They have the same parameters
already mentioned in Boolean name and value but
do not handle the radius, since they are special and
necessary for the development of virtual
environment collisions, line 24.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5210

The "App ()" statement executing the "App" class
corresponds to its main cycle. To be able to run the
program and "run ()", lines 26 and 27.

In this section we have explained the program
designed in Panda3D, which constitutes the virtual
environment, allows the use of models designed
with other tools, the detection of collisions and the
correct use of the endless road system.

4. EXPERIMENTS

The first set of experiments were conducted in the
software by using two different virtual worlds, one
with lower computing requirements (Solar system
simulation), and other with middle requirements
(Walk with Dinosaurs), table 2 shows the
requirements for every world.

Table 2. Test Virtual Scenarios.

 Solar system tour Walk with dinosaurs

Resolution ~1 Mpixel screen ~2 Mpixel screen

Field of View 360 degrees 360 degrees

Total number of
objects

90 3000

Number of animated
objects

9 1100

Tracking Guided througth an
endless road

Guided througth an
endless road

Max Polygons per
second

10 thousand 60 thousand

Frames per second 30 60

Collision detection none Always

Because the virtual stage walking with dinosaurs is
the most demanding computationally, is the one
used in the rest of the report. This program,
designed especially for the endless road, is a system
of movement in first person, that is, what moves
within the program is the perspective of the
observer and not an avatar within the environment.
This allows us to increase the sensation of
immersion and realism within the environment.

Figure 4 shows the bootstrap process of the
program from the call to the python interpreter,
once the virtual environment is loaded, and shows
the initial position of the camera within the virtual
environment, at the coordinates (0, 0.2) in the
center of the virtual environment, with an upward
displacement of 2 units representing an arbitrary
height for the user.

Figure 4.1. Application bootstrap process

In this section, it will be checked if the program
works properly in the dive booth with the back-
projection system with which it has, Figure 5 shows
the execution of the program in the node
"LRVIRTUAL01" of the Virtual Reality Lab,
which is directly linked to the projector 1, which
generates the front output of the cab. Figure 6
shows the program being displayed on the front
screen of the cabin.

Figure 5. Virtual Reality Server Screen Executing The
Developed Application.

Figure 6. Front Screen Of The Cabin Executing The
Developed Application.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5211

Figure 7. Application Movement Using The Endless
Road.

It will be verified that the movement is carried out
correctly in the environment. It was initially
specified that a mouse movement or a step on the
treadmill would correspond to a displacement of 1
meter in the environment. Figure 5.5 shows the
movement in the program using the mouse and
Figure 5.6 shows the movement using the treadmill.

Figure 8. The Camera Is Unable To Traverse The Object
(Rock) And Tends To Surround It.

The collision detection system of the virtual
environment was tested, in Figure 8 we show the
process of detection of collisions and the way in
which Is controlled the physics of the viewer,
which will tend to surround the objects in case try
to force the passage through them.

In Figure 8 we the rock but in this case they are in
an environment that detects collisions it is observed
that, although the input device is trying Moving in a
straight way, the movement of the camera is curved
due to the influence of the rock, so in this scheme,
collision detection works in a basic way, at least
preventing the user from passing solid objects,
which Slightly increases the sense of realism.

4.1 Tests in the Cave

Being this the first virtual environment developed
in this center, which does not depend on the VRML
engine, the movement is in general more natural
than in the previous one since its acceleration is
constant according to the turns or steps of the user
in the way without end, whereas in VRML that
same acceleration is incremental according to the
distance of the pointer with the center of the virtual
environment. The Panda3D engine gives better
results when designing virtual environments than
the VRML engine, allowing dynamic import of
three-dimensional design software such as Maya,
3ds Max or Blender, which increases the quality of
the models in Comparison with VRML which does
not have import characteristics, increasing the time
of development, besides the results are much less
showy. In the previous system collisions were fixed
and could not be special, but in the virtual
environment developed in Panda3D there are many
ways to program collision management.

Table 3 shows the result of comparative
evaluation between our proposal system and two of
the common multipersonal cabin systems as we
established it in the related work section.

Table 3. Multipersonal Cabin VR System Comparison.
 Our Cave VISS NAVE

Resolution ~1 Mpixel
screen

~1 Mpixel per
screen

~1 Mpixel per
screen

Immersion immersive Semi-immersive immersive

Field of View 250 degrees 170 degrees 250 degrees

Users multiple
viewers, one
tracked user

multiple
viewers, one
tracked user

multiple
viewers, one
tracked user

Comfort Anagliph
glasses

-- lightweight
glasses, wireless

Screens Three 4:3 (3x
2.5 mts)

Two 4:3 (1.2 x
1.6 mts)

Three 4:3

Tracking/Latency Guided
througth an
endless road
wired
connected,
minimum
latency

much less
sensitive,
simulator
sickness less
likely

Any traking
system

Polygons per
second

60 thousand 60 thousand More than 120
thousand

Frames per
second

60 30 60

Cost 6,000 usd
Low cost

Lowest cost 60,000 usd
middle cost

Also the time in which the environment is loaded is
minimal, the movement of animated and non-
animated objects looks normal and without delays,
allows the integration of new hardware and test the

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5212

existing devices in the immersion cabin as the
system Of endless road. The virtual environment
consists of a source code developed in the Python
programming language, which makes use of the
libraries of Panda3D; All the instructions have
comments that explain the actions that are carried
out respectively.

Test the created software performance by using
the Table 1 (Multipersonal cabin software desirable
chracteristics) as this table is closely linked to the
required software objectives, the result indicates the
level of success of the software developed. It can be
seen, Table 2, that the proposed software meets all
requirements initially requested unlike the
proposals previously tested, table 4.

The present development focuses on the
development of software that integrates all the
dispersed elements that have been developed
around a virtual reality laboratory in the CIDETEC
of IPN. These elements include but are not limited
to:

 A CAVE type system consisting of three
screens with rear projection and optical
reflex system.

 An endless path based on a treadmill.

 A distributed processing system controlled
by a virtual reality engine.

 An anaglyph based 3D visualization
system.

 A 3D object manipulation system based on
a video game controller

 Several virtual reality environments
realized mostly in VRML.

Due to the nature of the development of each of
the elements mentioned above, an element of
integration of all of them is necessary. Among the
options as an integrating element it is possible to
use some of the libraries previously created by the
scientific community such as CAVElib libraries or
packages were developed for CAVE systems such
as EON icube, VR Jugler, Cove, CaveUT among
others. However from the beginning the purpose of
all these elements was to understand the use and
development of these elements in an intimate and
from the beginning. Due to the above, the decision
was taken that the integrating element would also
be developed from scratch to understand and teach
this learning in CIDETEC and IPN.

As a result there is a software with several
limitations regarding the existing commercial and
research software, however it has a set of virtues
that are necessary for the research and student
environment, namely the following:

 It is a development for low cost system

 It is known all the software as well as all
its functions and it has the source code
since it was developed in its entirety by the
staff and students of the IPN.

 It communicates perfectly with all the
software and hardware previously
developed in the virtual reality laboratory
of CIDETEC IPN since it was developed
having previous knowledge and in depth
of said elements that were also developed
here from the beginning.

 Any researcher or student can make new
hardware, software and scenarios that
work with this development since all the
code is freely available for.

 It can be updated constantly because it has
the source code and the equipment and can
be tested in the laboratory as practices or
as current and future research.

 The fundamental difference between other
previous developments and this is the fact
that the present development was made to
cover the particular needs of a research
center with economic and unique
resources, which are covered with this
particular development. The learning
generated in this research can be used by
other educational and research centers
with similar limitations and peculiarities in
terms of requirements of low cost systems
and own development needs.

This system can be used in the medical area for
use by people with visual or hearing impairment,
paraplegic or even elderly. Apply this same system
to other contexts as treatment of phobias or the
training of operation in hazardous environments.

As can be seen the initial objectives of the project
were fulfilled in their entirety because of the ten
points to be covered by the software were all
covered especially the ability to interact with
hardware of particular purpose developed by
researchers and students of CIDETEC. Equally
important is compliance with the minimum
parameters required for immersive systems in terms
of the number of FPS (Frames per second) and PPS

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5213

(Polygons per second) and number of screens that
the system can handle from a minim or one to three
screens simultaneously and with no decrease in
overall system performance due to the use of a
distributed processing system managed by the
developed software.

Table 4. Multipersonal Cabin Software Final Analysis
Results.

 Software
desirable

Characteristic

Platform

VRML C Java3D Panda 3D

1 Start virtual
environment

x x x x

2 Load a scene x x x

3 Place tree virtual
cameras

 x x

4 Manage multicore
communication

 x x x

5 Initiate and follow
animations

x x x

6 Detect collisions x x x

7 Handling immersive
system elements

 x x x

8 Handling particular
hardware

 x x x

9 Easiness of virtual
world creation

x x

10 Other platforms
compatibility

 x x x

5. CONCLUSIONS.

The virtual environment designed in Panda3D
allows the integration of new hardware and test the
existing devices in the immersion cabin as the
endless road system. Regarding the interaction with
the user in the virtual environment was taken into
account and resolved using a collision detection
system, which interacts with the user and does not
allow him to pass through the objects. A series of
behaviors were also programmed in some objects,
where they are specified the intervals of
displacement that allow them to traverse the virtual
environment and to realize animations
corresponding to the natural movement of the same
ones.

The program was successfully tested on several
computers with typical resources where it was only
necessary to install the Panda3D program in order
to run the virtual environment. Subsequently the
program was installed and executed in the
immersion booth obtaining satisfactory results.

It is clear that the developed software has many
limitations respect to greater systems like the
NAVE, but for learning and developing purpose is
quite useful and in that case the developed software
met al the initial requirements.

REFERENCES

[1] Thorsten Bockmühl. Gis and remote sensing for
3d urban modelling by means of VRML
technology. University of the Bundeswehr
Munich, 2006.

[2] Ramon Costa Castelló. Programación y
teleoperación de robots a través de internet.
Institut D Organitzación i Control de Sistemas
Industrials, 2002.

[3] Philip W. Fink. Obstacle avoidance during
walking in real and virtual environments,
2007.

[4] Fengyun Lu. Load balancing for massively
multiplayer online games. Newcastle
University School of Computing Science UK,
2006.

[5] Darren Nonis. 3DSingapore, 2005. virtual
learning environments. Ministry of Education,

[6] Constance A. Steinkuehler. Learning in
massively multiplayer online games, 2004.

[7] Azmi Mohd Yusof, Mohd Ezanee Rusli, Mohd
Zaliman Mohd Yusoff, Ahmad Redza Razieff
Zainuddin, Gamini Perhakaran, Eze Manzura
Mohd Mahidin, Imran Mahalil,
“SnoezelenCAVE: Virtual Reality CAVE
Snoezelen Framework for Autism Spectrum
Disorders”, Proceedings article, Springer
Verlag, Lecture Notes in Computer Science,
p. 443-453, DOI: 10.1007/978-3-319-25939-
0_39

[8] Cruz Neira, C., Sandin, D., Defanti, T., Keynon,
R. y Hart, J.; The CAVE: Surround-Screen
Projection-Based Virtual Reality: The Design
and Implementation of the CAVE. In: ACM
Press, pp. 135 – 142. year 1992.

[9] TUFO, H. M., FISCHER, P. F., PAPKA, M. E.,
BLOM, K.; (1999), Numerical Simulation and
Immersive Visualization of Hairpin Vortices.
En: ACM Press, pp. 62.

[10] PAIR, Jarrell, PIEPO, Diane; (2002),
Flatworld: A mixed reality environment for
education and training. En: International
Conference on Information Systems.

[11] JACOBSON, Jeffrey, LE RENARD, Marc,
LUGRIN, Jean-Luc, CAVAZZA, Marc;
(2005), The CaveUT System: Immersive
Entertainment Based on a Game Engine. En:
ACM Press, pp. 184 – 187.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5214

[12] JACOBSON, Jeffrey, LEWIS, Michael;
(2005), Game engine virtual reality with
CAVEUT. En: IEEE Computer, Vol 38, pp.
79 – 82.

[13] Pair, J., Jensen, C., & Flores, J. (2000). The
NAVE Design and Implementation of a Non-
Expensive Immersive Virtual Environment
249.

[14] ZUFFO, João Antonio, SOARES Luciano
Pereira, ZUFFO Marcelo Knörich, LOPES
Roseli de Deus; (2001), CAVERNA Digital -
Sistema de Multiprojeção Estereoscópico
Baseado em Aglomerados de PCs para
Aplicações Imersivas em Realidade Virtual.
En: IV Symposium on Virtual and
Augmented Reality.

[15] Christian David, Quintero Guerrero, Eduardo
Leonardo, Sierra Ballen, Wilson Javier,
Sarmiento Manrique, “Diseño de un prototipo
de sistema de realidad virtual inmersivo
simplificado”, Ciencia e Ingeniería
Neogranadina, Vol. 18-1, pp. 35-50. ISSN
0124-8170, Bogotá, Junio de 2008.

