
Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5070

 HAND WRITTEN CHARCTER RECOGNITION USING
NEURAL NETWORK AND DEEP BELIEF NETWORK

1MAJID HAMEED KHALAF, 2BELAL AL-KHATEEB, 3RABAH NORY FARHAN
1Msc. student, Department of Computer Science, College of Computer Science and

 Information Technology, University of Anbar, Ramadi, Iraq
2Assistant Professor, Department of Computer Science, College of Computer Science and

 Information Technology, University of Anbar, Ramadi, Iraq
3Assistant Professor, Department of Computer Science, College of Computer Science and

 Information Technology, University of Anbar, Ramadi, Iraq

E-mail: 1majid_h91@yahoo.com, 2belal@computer-college.org,3rabahalobaidy@gmail.com

ABSTRACT

In this paper a comparison is done between two classification architectures, those are Standard Neural
Networks (NN) that contain one hidden layer and Deep Learning concept using Deep Belief Networks
(DBN). Both algorithms are applied on Capital English Character with same architectures and parameter
for comparison purpose. The Standard Neural Network was trained as a supervised learning using Back
Propagation (BP) algorithms while Deep Belief Network was trained using two phases of learning, the first
phase as unsupervised learning using Contrastive Divergence (CD) algorithm and the second phase as a
supervised learning using Back Propagation algorithms for fine tuning the network. Each character
represented as an image in grayscale pixels. The features are extracted depending on the intensity of pixel
in image that white color represents as a 0’s and black color represent as a 1’s. DBN is represented as a
stack of Restricted Boltzmann Machines (RBM). The DBN learning procedure undergoes a pre-training
stage and a fine-tuning stage. DBN gave a higher performance as compared with the Standard neural
networks with an accuracy of approximately 92.3% for a classification of Capital English handwritten
characters.
Keywords: Backpropagation, Supervised Learning, Contrastive Divergence, Character Recognition, Deep

Belief Networks.

1. INTRODUCTION

Machine learning is widely used to solve practical
problems by learning from a given input. The center
qualities of machine learning are to keep a good
representation of data and create a generalized
algorithm to predict inconspicuous information
appropriately [1]. Deep learning (DL) is a branch of
machine learning in light of an arrangement of
calculations that endeavor to model abnormal state
reflections in information by utilizing model
designs, with complex structures or something else,
made out of multiple non-linear transformations
[2][3]. Deep of the architecture indicates to the
number of phases of arrangement of non-linear
operations in the service learned [4]. Deep learning
permits computational models that are made out of
numerous preparing layers to learn representations
of information with various levels of deliberation.

These methods have significantly improved the
state-of-the-art in speech recognition, visual object
recognition, object detection and many other
domains such as drug discovery and genomics
[1][5]. Facebook is also planning to empower its big
data with deep learning methods to make predictions
about its users. Deep learning finds complex
structure in large data sets by using the
backpropagation algorithm to describe how a
machine should change its internal parameters that
are used to calculate the representation in each layer
from the representation in the previous layer [5].

There are many algorithms of machine learning
such as supervised learning, semi-supervised
learning and unsupervised learning [3]. Supervised
learning generates a classifier or relapse capacity
from labeled data, semi-supervised learning make
use of both labeled and unlabeled data, and

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5071

unsupervised learning use unlabeled data [3,5]. In
this paper, we are focusing to comparing between
Standard Neural Network and Deep Belief Network
approaches to solve a classification problem of
recognizing Capital English Characters.

2. RELATED WORKS

The main problems of computer vision is the image
classification that is concerned with determining the
visual structures of an input image. The ability of
object recognition system using the neural networks
in some particular tasks like digit recognition, face
recognition is claimed to be near to human
performance.

Geoffrey E. Hinton, Simon Osindero, Yee-Whye
(2006) introduced how to use the complementary
priors to remove the explaining way impact that
makes difficult deduction in violently connected
belief nets with many hidden layers. They used
complementary priors and proposed a fast greedy
algorithm. It can train deep learning belief networks
in a one by one layer for each time. The fast greedy
algorithm is used to initialize a slower learning
procedure that fine-tuning the weights by contrastive
divergence algorithm, the network is modeled as
three hidden layers. It produces a good generative
model of common distribution of handwritten digit
images and its labels. This obstetric model produces
a better classification than the best discriminative
learning algorithms [6].

Yoshua Bengio, Pascal Lamblin, Dan Popovici and
Hugo Larochelle (2006) introduced a supervised
learning of the constructive methods and auto-
encoders to get a better comprehension of the
possible use of the greedy layer wise. They suppose
that three steps of the learning Deep Belief
Networks (DBN) are especially important: the first
step is to pre-training phase one layer in each time
with greedy way using unsupervised learning at
each layer is well-arranged to maintain information
from the input and fine-tune the complete network
with regard to the eventual standard of interest.
However, they discover when the DBN is used for a
supervised classification task possibly helpful to use
the target information at least to the last layer. The
second step is to implement an experience to
superior understand the advantage of the brought by
the greedy unsupervised learning. Finally, they talk
about the problem that occurs with the layer-wise
greedy unsupervised procedure when the input
distribution is not revealing enough of the
conditional allocation of the targets vector that gives
the input vector. They extended the Restricted
Boltzmann Machine and Deep Belief Networks in

continuous valued inputs and they performed
experiments which support the hypothesis that the
greedy layer-wise training strategy helps to optimize
deep networks with unsupervised training to train
each layer in the networks, except the last to be
trained as supervised learning [7].

Dan Ciresan, Ueli Meier, Jonathan Masci and
Jurgen Schmidhuber (2012) they describe method
that is applied on the German traffic signals. They
use DNN that does not seek accurate design of pre-
wired feature extractions, which are rather learned in
a supervised learning way. The method achieved a
higher recognition than human recognition. They
combined our methods trained on directly
preprocessing data into a MCDNN further assistance
recognition performance, making the system more
insensitive also to the change in the intensity of
brightness and contrast [8].

Dumitru Erhan, Aaron Courville, and Yoshua
Bengio (2010) they enhance tools for discovering
good qualitative version of high level features
learned by such models of deep learning. They also
request to gain shrewdness into the invariances
learned by deep networks and disparity and compare
several techniques for finding such interpretations.
They apply methods on Deep Belief Networks and
Stack de-noising Auto-Encoders that are trained on
some machine learning datasets and show that
harmonious filter-like interpretation is potential and
simple to achieve at each level. The tools are
developed to analyze deep models in many depth
and achieve the tracing of invariance manifolds for
the hidden layers. This study will help the
researchers to understand more about how deep
architectures work [9].

3. NURAL NETWORK

Artificial Neural Network (ANN) is a branch of
artificial intelligence which relies on its work on the
intelligence in the human brain that contain a large
number of neurons. Those neurons are arranged in
the form of interconnected layers with each other
through the weights [10] [11].

The exploration of manufactured neural networks
was inspired by the research and models of how the
brain works in human and other creatures. Analysts
think about the human brain as a highly complex,
nonlinear and parallel computer or data preparing
system that is capable of performing profoundly
complex errands. It is a fact that the brain consists
of a set of structures called neurons [12]. These
neurons are in charge of performing complex

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5072

calculations as pattern recognition. It is faster than
the speediest computerized PCs accessible today.
For the human brain, it can take some of
milliseconds to understand a familiar face. The
human brain adapts new assignments and how to
take care of issues through experience furthermore,
adjusts to new circumstances. Due to this
adjustment the brain is considered to be plastic,
which implies that neurons learn to make new
connections. Plasticity means that it is necessary for
the working of neurons as data processing units in
the human brain. This also seems to be the case for
the neural networks of artificial neurons [12] [13].

2.1 Multilayer Neural Networks

Models in form of one neuron are called
perceptron, which have serious restrictions. As
described by Minsky and Papert [14], a perceptron
cannot be implemented in model data that isn't
linearly separated like solving a simple XOR
operator. Then, as shown by Hornik et al. [15],
multi-layer neural networks are a global
approximate that can approximate any quantifiable
capacity to any desired degree of accuracy.

A Multi-Layer Neural Network (MLP) consists of
a number of neurons layers as shown in figure (1).
The first layer represents the inputs signals to the
neural network, the second layer is the hidden layers
that confirm the non-linearly of the model and the
last layer that contains the outputs of the network. In
the simplest arrangement, each layer in hidden part
is connected with the previous layer and the next
layer finally will produce an output vector from the
previous layers.

 The output of a layer is computed by applying
the neuron activation function for all neurons on the
layer as in equation:

Y = bwxf (1)

Where w represents a weight assigned to each pair
of neurons from layer input to hidden layer or from
hidden to output layer and b is a vector of bias terms
for each neuron in layers and x is the input from the
previous layer [16].

 In a classification task the output neuron uses the

Softmax activation function to generate a good
probability distributions on the outputs. Equation (1)
is applied from the first layer up to the last layer
(output layer) in sequence (feed forward).

Figure 1: Three Layers of Neural Network

When train MLP an error function used to show if
the network is understanding the data or not. There
are two error functions that can be used: the first one
is Square Error Function (Equation (2)) and the
second function is the Cross-Entropy Error Function
(Equation (3)). Those two equations are described
the error of a one pattern in the dataset [17].

E =

i
i

t

i
ty

2

2

1
 (2)

E =

i

t

i
yti

2

log (3)

Where y is the output in the last layer of the
model and t is the identity of the example in dataset.

The main objective of the training model is to
minimize the proportion and minimize the mean of
error function applied to all cases in the dataset.
This process is completed by using stochastic
gradient decent [18]. It works with the derivative of
the error function concerning the model parameter
of the gradient as in equation:

hj

h

h

i

ihj w

z

z

y

y

E

w

E

 (4)

Where yi represents the output of the neuron, zh
represents the output before applying the activation
function, and whj are the weights.

The effective learning algorithm to do this process is
a backpropagation algorithm. To use the
backpropagation algorithm, we need to:

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5073

Usually, computing starts from the last layer, first
calculating the derivative of the error function with
regard to zi:

 i

t

it
i

t
Z

E y

 (5)

For the derivatives with respect to the weights,
we obtain the formula:

y
t

it
ij

t
i

w

Z 1

 (6)

For the derivatives with respect to the biases,
we obtain the formula:

1
t
i

t
i

b

Z

 (7)

For the derivatives with respect to the inputs و
we obtain the formula:

w
y

l

ijt

i

t
iZ

1

 (8)

The equations (6 and 7) are adequate to calculate the
derivatives with respect to the weight and bias of a
last layer, and the derivative with respect to the
output of the layer L -1. The other equation is the
derivative of the activation function of the layers 1
until L − 1. The derivative of sigmoidal function is
described below:

 yy

y l

i

l

il
i

l

i

Z
1

 (9)

The speed and accuracy of the learning process
of updating the weights also depends on a learning
rate as shown figure (2).

Figure 2: Factor of Learning Rate and Momentum

Figure (2) show the ability of training with
deference parameter of learning rate which is 0.03
and 0.3. When the x-axis represent a number of
epochs and y-axis represent an error rate of the
learning.

 The learning rate specifies how fast the neural
network will learn. This is usually a value around
one as percent. Another factor of training is the
momentum that specifies how much of an effect the
previous training iteration will effect on the current
iteration. The momentum is also a percent and is
usually a value near one [12].

Step 1:

Compute the derivative of errors in the last
layer.

Step 2:

Compute the derivative of outputs before
computed the activation function.

Step 3:

Compute the derivative of weights wij.

Step 4:

Compute the derivative of bias bj.

Step 5:

Then compute the derivative its inputs.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5074

3. DEEP BELIEF NETWORKS

A Deep Belief Networks is a generative learning
models that have been introduced by Hinton &
Salakhutdinov [19]. They described a DBN as a
stacked of restricted Boltzmann machines [19].
DBN aimed to learn structures of the inputs given as
a dataset and one or more layers for features
detectors.

 A DBN is a mix of two representations: directed
and undirected graphical models, the top layer of the
network is an undirected RBM, and the lower layers
are directed as shown in figure (3).The training in
deep belief networks is done by one layer at a time.
The learning strategy consists of two phases;

 The first is unsupervised learning, which is
called pre-training phase.

 The second phase is a refinement phase,
the network is unfolded as a feed forward
neural network in which the weights of
hidden units are initialized using the
forward weights of the conforming RBMs.

 A competitive layer is added as final output layer of
the feed forward network, which is trained using a
supervised algorithm, to classify the inputs into the
appropriate class type [19].

Figure 3: Describe Deep Belief Network

3.1 Restricted Boltzmann Machines
Restricting the connections between nodes in a

Boltzmann machine to only those between visible
and hidden nodes gives elevation to the Restricted
Boltzmann Machine (RBM). Figure (4) describes a
simplicity ordering of an RBM within six visible
nodes and four hidden nodes.

Figure 4: Restricted Boltzmann Machine

RBMs can themselves be used as regression,
classification, or generative models attaching either
a single regression label or a SoftMax class label to
the visible units that are used for supervised
learning and a training models. They can generate a
sample of the data distribution that gives a clamped
visible label unit. The need of describing a RBM in
this study to constructing of a DBN, and training it
with an unsupervised learning model [11][12][16].

3.2 Training a Restricted Boltzmann Machine

Training of an RBM keeps track of the same
basics in any case of its purposed use. The energy
function used as a particular state of stochastic
binary visible and hidden units is:

 (10)

Where θ is the model parameters and the value of

a and b are the visible and hidden unit biases,
respectively, and the w refers to the weights of
networks that connect the two layers.

The restriction of RBM connection layers

inherent very simplification of the Gibbs sampling
used in learning and generation model. Since the
hidden units and visible units factorize completely,
Gibbs sampling for the whole hidden or visible
layers that can be executed in a parallel way.

To compute the gradients of the log-likelihood in

a training stage, at the beginning we need to find the
derivative of the log-likelihood of a one training
sample (v) with regards to the weight wij:

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5075

 (11)

Averaged over the training set, we find the often-
seen rule:

(12)

Unfortunately, finding this precisely is

unmanageable, so samples can be gotten by using
Gibbs sampling. Sampling takes less time, however
achieving an appropriate stationary circulation is
frequently still undesirable because of the need to
achieve the stationary dispersion of the Markov
chain. A breakthrough in speeding up this learning
procedure was sketched out by Hinton and named
Contrastive Divergence that computing the log-
likelihood gradient of RBM specifically is regularly
not done straightforwardly because of the parcel
capacity, so approximations are utilized. Hinton
presented Contrastive Difference (CD) [20] as a
technique to get estimated samples without a larger
number of Gibbs sampling steps.
Hinton found that augmenting the log-likelihood
over the information dissemination is equivalent to
minimizing the Kullback-Leibler uniqueness
between the information distribution and the balance
dispersion of the model after Gibbs sampling.

The general thought behind CD is that even only a
few steps of the Markov chain will give a heading to
the slope in the state space for the Markov chain,
and provide the training algorithm with the suitable
redress to the gradient. Running the chain for an
infinite number of steps would give us the accurate
redress for the model parameters. However, this is
clearly recalcitrant too.

 Typically, the CD algorithms is running for one
full steps of Gibbs sampling. The visible units are
initialized with the training data (v0), h0 is sampled
from p (hj v0), and v1 is sampled from p (vj h1).
Then, the log-likelihood for v0 is approximated by
[19][20]:

(13)

Even with this approximation and the variance
that it introduces to the learning process, empirical
results show that this is an effective and efficient
learning algorithm.

4. EXPERIMENTAL SETUP
In this section the experimental setup used for

English Character Recognition is described.

4.1. Dataset
The dataset is composed of 260 images of size 10

by 10 pixels in gray scale which is representing
characters (A-Z) at which there are 10 images for
each character in different write shape. Some
examples are shown in figure (5). The dataset is
divided into two parts, one for training that take
70% from dataset (182 images), and others take
30% for testing (78 images). Images have been
stochastically binaries according to their pixel
intensity as:

Y=
3

pixel.Bpixel.Gpixel.R
 (14)

F(Y) =

otherwise

Yif

0

1281
 (15)

Figure (5): Sample Images in Dataset

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5076

4.2. Methodology
In this section we describe the methodology of the

paper which is shown as figure (6).

Figure: (6) Describe the Methodology

 The preprocessing stage is to extract the features

that the first step take the picture from drawing
panel and resize the image to 10 x 10 pixel as shown
figure (7).

Figure: (7) Resize Image

After that the resized step the image will convert

to white and black depending of the intensity of the
pixel. The threshold of convert the image to binary
set to 128 and if the value of the pixel greater than
threshold then set one otherwise set zero as shown
figure (8).

Figure: (8) Binaries Image

After complete the previous step the input will
generate by build vector that take row by row of the
image to build the final representation of the feature
of the character. As shown figure (9).

Figure: (9) Feature Extraction

All samples of dataset take the same processing

and the final presentation of the dataset as a 250
rows, each one refer to one sample as shown in
figure (10).

Figure: (10) Samples Features

The architecture of Standard Neural Network in

figure (6) contain of 100 neurons (image 10 by 10)
as an inputs layer that represent as vector of zero
and one and hidden layer within variable number (v)
that change in each training network to produce the
best neural network . On the side of hidden layer the
network have weights that connected the input to
hidden and hidden to output layers. These weights
initialize to small number at the beginning with
range of [0.3,-0.3] then adjusted in training phase to
produce the best weights. The adjusting weight
completed by supervised learning using the
backpropagation algorithm. In the end of networks
the 26 neurons represented as an output layer (26
Characters). Each neuron in output layer represent
as a class of character depend on the index of these
character as shown figure (11).

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5077

Figure: (11) Neural Network Architecture

The algorithms of BP describe bellow:

Also in the architecture of the Deep Belief

Networks in figure (6) we use the same input
contain of 100 neurons (image 10 by 10) as an
inputs layer that represent as vector of zero and one
and hidden layer within variable number (v) that
change in each training network to produce the best
Deep Belief Network. In the end of networks the 26
neurons represented as an output layer (26
Characters).

 Each neuron in output layer represent as a class
of character depend on the index of these character
as shown figure (12).

Figure: (12) Deep Belief Network Architecture

The parameter input, hidden and output layers as

the same as Standard Neural Networks parameter
for comparing purpose between them. But the
training be in two phases the first phase adjusting
the weight between the input and hidden neurons by
unsupervised learning using contrastive divergence
algorithm. And the second phase by supervised
learning using the backpropagation algorithm. The
training in Deep Belief Network learn each layer at
one time.

The learning will work in the first phase as
unsupervised using CD algorithms and adjust the
weight for all epoch then move to the next phase as
supervised learning using backpropagation
algorithms.
The algorithms of CD describe bellow:

Algorithm 1: Backpropagation (BP)

Input: Training inputs, training outputs.
Output: Best weights.
Goal: Optimize the weights to make the neural

network correctly mapping arbitrary inputs
to outputs.

Forward:
Step1: for all layers in the network:
 Compute the summation multiple weight.
 Compute the output by activation function

Backward:

Step2: For the outputs of step1:

 Compute the derivative for the output.

 Compute the output gradient depend on the

derivative.

Step3: For the hidden layer:

 Compute the derivative for hidden layer.

 Compute the hidden gradient depend on the

derivative.

Step4: For the inputs by hidden neurons:

 Compute the delta as multiply learning rate by

gradient.

 Update weights between inputs and hidden.

Step5: For the hidden by output neurons:

 Compute the delta as multiply learning rate by

gradient.

 Update weights between hidden and outputs.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5078

5. RESULTS

Tests were run on a laptop computer with Intel®
Core i3 CPU 2.40 GHz processor, 4GB of RAM.
Firstly we do an experiment with large iteration
numbers saying 1000 training epochs to have a
general sense about error rate. Figure (13) shows
mean square error for training phase with 1000
iterations.

Figure 13: Mean Square Error for 1000 Iteration

The feed forward neural networks are evaluated
based on backpropagation learning algorithm. Here
the class labels were used based on value in the
nodes at the output layer. While Deep Belief
Networks was pre-trained using unsupervised
learning contrastive divergence. The pre-trained
weights were used as the initialization for the feed
forward neural networks. The weights are fine-tuned
using Error Back-propagation learning algorithm.

The experiment for the number of hidden layer is a
six experiment that the first is 50 neuron that
training as a 200 epoch it take about 1:17 min/sec in
a standard neural networks give an accuracy of
85.8% while the same parameter in deep belief
network take about 1.27 min/sec give an accuracy of

92.3%. These result show the deep belief network
take more time but it take a high accuracy
comparing to standard neural networks. The Result
of two models are shown in table (1) that show the
result of ANN and table (2) show the result of DBN.

Table 1:.Results of Standard Neural Network.

Architecture
Neural networks

T F
Error
Rate

Time
train

Time
test

100-50-26 67 11 14.102 1:17.18 0.09
100-80-26 68 10 12.82 1:52.41 0.106

100-100-26 65 13 16.666 2:20.93 0.113
100-120-26 67 11 14.102 2:41.37 0.120
100-150-26 65 13 16.666 3:20.39 0.147
100-200-26 66 12 15.384 4:19.29 1.695

Table (1) show the accuracy of neural networks with
different architecture of networks. It show that the
best architecture when the number of hidden layer is
80 neurons. The networks test on the 78 samples
and gives an 87.12% with 10 misclassified samples.
The training of this architecture take about two hour
for training and 0.1 second for testing all samples.

Table 2:.Results of Deep Belief Network.

Architecture
Deep belief network

T F
Error
Rate

Time
train

Time
test

100-50-26 72 6 7.6923 1:27.45 0.04
100-80-26 69 9 11.538 2:05.44 0.04

100-100-26 71 7 8.9743 2:31.95 0.04
100-120-26 69 9 11.5384 2:56.21 0.053
100-150-26 69 9 11.5384 3:37.51 0.054
100-200-26 69 9 11.5384 4:40.35 0.065

Table (2) show the accuracy of Deep Belief
Networks with different architecture of networks. It
show that the best architecture when the number of
hidden layer is 50 neurons. The networks test on the
78 samples and gives a 92.3% with only 6
misclassified samples. The training of this
architecture take about 90 minutes for training and
0.04 second for testing all samples.

The recognition accuracy is calculated as the ratio
of the sum of all character with correct recognition
to the entire set of character in the training set. The
best accuracy success is 92.3% with deep belief
network with one RBM.

For each character in dataset, we also calculate its
classification rate as table (3). It shows in ANN that
some characters have identifying rate as high as
90% to 100% but the worst case character G can just

Algorithm 2: Contrastive Divergence (CD

Input: RBM visible and training data.
Output: Best weights of RBM.

Step1: Initialize weights by using Gaussian function

with Alf =0.1.
Step2: For all samples in the training set:

 Apply the sample to the RBM.
 Compute the probability of hidden layer.
 Compute the probability of visible layer.

Step3: For each visible and hidden:
 Compute the gradient.

Step3: For each input by hidden weights:
 Update weights.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5079

achieve 80%. While in DBN the character have
identifying rate as 90% to 100% for all test for
training and testing data and figure (14) shows
visual comparing between two algorithms.

Table 3:.Results of Deep Belief Network.

 NO. Of
Classified
in ANN

NO. Of
Classified
in DBN

Accuracy Accuracy

A 10 10 100 % 100 %

B 9 10 90 % 100 %

C 9 9 90 % 90 %

D 9 10 90 % 100 %

E 10 9 100 % 90 %

F 10 10 100 % 100 %

G 8 10 80 % 100 %

H 10 10 100 % 100 %

I 9 10 90 % 100 %

J 10 10 100 % 100 %

K 9 10 90 % 100 %

L 9 9 90 % 90 %

M 9 10 90 % 100 %

N 10 10 100 % 100 %

O 10 10 100 % 100 %

P 10 10 100 % 100 %

Q 10 10 100 % 100 %

R 10 9 100 % 90 %

S 10 10 100 % 100 %

T 10 10 100 % 100 %

U 10 10 100 % 100 %

V 9 10 90 % 100 %

W 10 10 100 % 100 %

X 10 10 100 % 100 %

Y 10 10 100 % 100 %

Z 9 10 90 % 100 %

The average accuracy recognition rate for all data
training and testing in ANN give 95.7% while in
DBN the accuracy is 98.4%.

Figure 14: Describe Successful Rate For Each Character

6. Conclusion and Future work
A comparing of Neural Networks and Deep Belief
Networks for Character Recognition is described to
identify 26 uppercase. Multilayer Perceptron’s are
initialized with random weights whereas DBNs are
initialized with Gaussian weights that trained using
unsupervised Contrastive Divergence Procedure.
The parameter of BP is very important for training
phase that the number of hidden neuron referring to
higher factor in both algorithms and learning rate is
another important factor. DBN is a faster than NN in
training and testing it train and accepted the
information speediest of NN. DBNs gave a higher
performance as compared with the NN with an
accuracy of approximately 92.3% for Character
Recognition.
The future work is to improve deep learning
algorithms using another classification algorithms
such as spiking neural network instead of BP with
DBN and show the effected of the classification.

REFRENCES:

[1] Ethem Alpaydın,” Introduction to Machine
Learning”, Third Edition, the MIT Press
Cambridge, Massachusetts London, England,
2014.

[2] Cory Lesmeister, “Mastering machine learning
with r”, 2015.

[3] Li Deng, Dong Yu, “Deep Learning Methods
and Applications”, Foundations and Trends® in
Signal Processing Volume 7 Issues 3-4, ISSN:
1932-8346, 2014.

[4] Kyunghyun Cho, “Foundations and Advances
in Deep Learning”, 2014.

[5] Yann LeCun, Yoshua Bengio , Geoffrey
Hinton, “Deep learning”,
DOI:10.1038/nature14539, 2015.

[6] Geoffrey E. Hinton, Simon Osindero (2006) 'A
Fast Learning Algorithm for Deep Belief Nets',
Neural Computation, 18, pp. 1527–1554.

Journal of Theoretical and Applied Information Technology
15th October 2017. Vol.95. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5080

[7] Yoshua Bengio, Pascal Lamblin, Dan Popovici
and Hugo Larochelle (2006) Greedy Layer-
Wise Training of Deep Networks, Departement
dInformatique et Recherche Operationnelle.

[8] Dan Ciresan, Ueli Meier, Jonathan Masci and
Jurgen Schmidhuber (2012) 'Multi-Column
Deep Neural Network for Trafic Sign
Classication', Neural Networks.

[9] Dumitru Erhan, Aaron Courville, and Yoshua
Bengio (2010) Understanding Representations
Learned in Deep Architectures, Departement
dInformatique et Recherche Operationnelle.

[10] Olaf Booij, “Temporal Pattern Classification
using Spiking Neural Networks”, Universiteit
van Amsterdam (2004).

[11] Subha Manoharan, “Gaussian Discrete
Restricted Boltzmann Machine theory and its
application“, Massey University NewZlanda
(2015).

[12] Gilberto Batres-Estrada, “Deep Learning for
Multivariate Financial Time Series”, (2015).

[13] Simon Haykin, “Neural Networks and Learning
Machines”, 3rd edit., McMaster University
Hamilton, Ontario, Canada (2009).

[14] DONALD L. EPLEY, “Reviews of Books and
Papers in the Computer Field”, IEEE
TRANSACTIONS ON COMPUTERS, (1969).

[15] KURT HORNIK “Multilayer Feedforward
Networks are Universal Approximators”,
Neural Networks, pp. 359-366, (1989).

[16] LUIZ GUSTAVO HAFEMANN, “AN
ANALYSIS OF DEEP NEURAL
NETWORKS FOR TEXTURE
CLASSIFICATION”, CURITIBA University,
(2014).

[17] Pavel Golik, Patrick Doetsch, Hermann Ney,
“Cross-Entropy vs. Squared Error Training: a
Theoretical and Experimental Comparison”,
RWTH Aachen University, (2014).

[18] Pedro Paulo Marques do Nascimento
“APPLICATIONS OF DEEP LEARNING
TECHNIQUES ON NILM”, Rio de Janeiro,
(2016).

[19] Ruslan Salakhutdinov, Andriy Mnih, Geofirey
Hinton, “Restricted Boltzmann Machines for
Collaborative Filtering”, University of Toronto,
(2006).

[20] Geoffrey E. Hinton, “Training Products of
Experts by Minimizing Contrastive
Divergence”, Neural Computation, 14(1771–
1800) (2002).

