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ABSTRACT 
 

In this paper a comparison is done between two classification architectures, those are Standard Neural 
Networks (NN) that contain one hidden layer and Deep Learning concept using Deep Belief Networks 
(DBN). Both algorithms are applied on Capital English Character with same architectures and parameter 
for comparison purpose. The Standard Neural Network was trained as a supervised learning using Back 
Propagation (BP) algorithms while Deep Belief Network was trained using two phases of learning, the first 
phase as unsupervised learning using Contrastive Divergence (CD) algorithm and the second phase as a 
supervised learning using Back Propagation algorithms for fine tuning the network. Each character 
represented as an image in grayscale pixels. The features are extracted depending on the intensity of pixel 
in image that white color represents as a 0’s and black color represent as a 1’s. DBN is represented as a 
stack of Restricted Boltzmann Machines (RBM). The DBN learning procedure undergoes a pre-training 
stage and a fine-tuning stage. DBN gave a higher performance as compared with the Standard neural 
networks with an accuracy of approximately 92.3% for a classification of Capital English handwritten 
characters. 
Keywords: Backpropagation, Supervised Learning, Contrastive Divergence, Character Recognition, Deep 

Belief Networks. 
 
1. INTRODUCTION  
 

Machine learning is widely used to solve practical 
problems by learning from a given input. The center 
qualities of machine learning are to keep a good 
representation of data and create a generalized 
algorithm to predict inconspicuous information 
appropriately [1]. Deep learning (DL) is a branch of 
machine learning in light of an arrangement of 
calculations that endeavor to model abnormal state 
reflections in information by utilizing model 
designs, with complex structures or something else, 
made out of multiple non-linear transformations 
[2][3]. Deep of the architecture indicates to the 
number of phases of arrangement of non-linear 
operations in the service learned [4]. Deep learning 
permits computational models that are made out of 
numerous preparing layers to learn representations 
of information with various levels of deliberation. 

These methods have significantly improved the 
state-of-the-art in speech recognition, visual object 
recognition, object detection and many other 
domains such as drug discovery and genomics 
[1][5]. Facebook is also planning to empower its big 
data with deep learning methods to make predictions 
about its users. Deep learning finds complex 
structure in large data sets by using the 
backpropagation algorithm to describe how a 
machine should change its internal parameters that 
are used to calculate the representation in each layer 
from the representation in the previous layer [5]. 

There are many algorithms of machine learning 
such as supervised learning, semi-supervised 
learning and unsupervised learning [3]. Supervised 
learning generates a classifier or relapse capacity 
from labeled data, semi-supervised learning make 
use of both labeled and unlabeled data, and 
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unsupervised learning use unlabeled data [3,5]. In 
this paper, we are focusing to comparing between 
Standard Neural Network and Deep Belief Network 
approaches to solve a classification problem of 
recognizing Capital English Characters. 

2. RELATED WORKS 

The main problems of computer vision is the image 
classification that is concerned with determining the 
visual structures of an input image. The ability of 
object recognition system using the neural networks 
in some particular tasks like digit recognition, face 
recognition is claimed to be near to human 
performance. 

Geoffrey E. Hinton, Simon Osindero, Yee-Whye 
(2006) introduced how to use the complementary 
priors to remove the explaining way impact that 
makes difficult deduction in violently connected 
belief nets with many hidden layers. They used 
complementary priors and proposed a fast greedy 
algorithm. It can train deep learning belief networks 
in a one by one layer for each time. The fast greedy 
algorithm is used to initialize a slower learning 
procedure that fine-tuning the weights by contrastive 
divergence algorithm, the network is modeled as 
three hidden layers. It produces a good generative 
model of common distribution of handwritten digit 
images and its labels. This obstetric model produces 
a better classification than the best discriminative 
learning algorithms [6]. 

Yoshua Bengio, Pascal Lamblin, Dan Popovici and 
Hugo Larochelle (2006) introduced a supervised 
learning of the constructive methods and auto-
encoders to get a better comprehension of the 
possible use of the greedy layer wise. They suppose 
that three steps of the learning Deep Belief 
Networks (DBN) are especially important: the first 
step is to pre-training phase one layer in each time 
with greedy way using unsupervised learning at 
each layer is well-arranged to maintain information 
from the input and fine-tune the complete network 
with regard to the eventual standard of interest. 
However, they discover when the DBN is used for a 
supervised classification task possibly helpful to use 
the target information at least to the last layer. The 
second step is to implement an experience to 
superior understand the advantage of the brought by 
the greedy unsupervised learning. Finally, they talk 
about the problem that occurs with the layer-wise 
greedy unsupervised procedure when the input 
distribution is not revealing enough of the 
conditional allocation of the targets vector that gives 
the input vector. They extended the Restricted 
Boltzmann Machine and Deep Belief Networks in 

continuous valued inputs and they performed 
experiments which support the hypothesis that the 
greedy layer-wise training strategy helps to optimize 
deep networks with unsupervised training to train 
each layer in the networks, except the last to be 
trained as supervised learning [7]. 

Dan Ciresan, Ueli Meier, Jonathan Masci and 
Jurgen Schmidhuber (2012) they describe method 
that is applied on the German traffic signals. They 
use DNN that does not seek accurate design of pre-
wired feature extractions, which are rather learned in 
a supervised learning way. The method achieved a 
higher recognition than human recognition. They 
combined our methods trained on directly 
preprocessing data into a MCDNN further assistance 
recognition performance, making the system more 
insensitive also to the change in the intensity of 
brightness and contrast [8]. 

Dumitru Erhan, Aaron Courville, and Yoshua 
Bengio (2010) they enhance tools for discovering 
good qualitative version of high level features 
learned by such models of deep learning. They also 
request to gain shrewdness into the invariances 
learned by deep networks and disparity and compare 
several techniques for finding such interpretations. 
They apply methods on Deep Belief Networks and 
Stack de-noising Auto-Encoders that are trained on 
some machine learning datasets and show that 
harmonious filter-like interpretation is potential and 
simple to achieve at each level. The tools are 
developed to analyze deep models in many depth 
and achieve the tracing of invariance manifolds for 
the hidden layers. This study will help the 
researchers to understand more about how deep 
architectures work [9]. 

3. NURAL NETWORK 

Artificial Neural Network (ANN) is a branch of 
artificial intelligence which relies on its work on the 
intelligence in the human brain that contain a large 
number of neurons. Those neurons are arranged in 
the form of interconnected layers with each other 
through the weights [10] [11]. 

The exploration of manufactured neural networks 
was inspired by the research and models of how the 
brain works in human and other creatures. Analysts 
think about the human brain as a highly complex, 
nonlinear and parallel computer or data preparing 
system that is capable of performing profoundly 
complex errands. It is a fact that the brain consists 
of a set of structures called neurons [12]. These 
neurons are in charge of performing complex 
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calculations as pattern recognition. It is faster than 
the speediest computerized PCs accessible today. 
For the human brain, it can take some of 
milliseconds to understand a familiar face. The 
human brain adapts new assignments and how to 
take care of issues through experience furthermore, 
adjusts to new circumstances. Due to this 
adjustment the brain is considered to be plastic, 
which implies that neurons learn to make new 
connections. Plasticity means that it is necessary for 
the working of neurons as data processing units in 
the human brain. This also seems to be the case for 
the neural networks of artificial neurons [12] [13]. 
 
2.1 Multilayer Neural Networks 

Models in form of one neuron are called 
perceptron, which have serious restrictions. As 
described by Minsky and Papert [14], a perceptron 
cannot be implemented in model data that isn't 
linearly separated like solving a simple XOR 
operator. Then, as shown by Hornik et al. [15], 
multi-layer neural networks are a global 
approximate that can approximate any quantifiable 
capacity to any desired degree of accuracy. 

A Multi-Layer Neural Network (MLP) consists of 
a number of neurons layers as shown in figure (1). 
The first layer represents the inputs signals to the 
neural network, the second layer is the hidden layers 
that confirm the non-linearly of the model and the 
last layer that contains the outputs of the network. In 
the simplest arrangement, each layer in hidden part 
is connected with the previous layer and the next 
layer finally will produce an output vector from the 
previous layers. 

 The output of a layer is computed by applying 
the neuron activation function for all neurons on the 
layer as in equation:  

Y =  bwxf         (1) 

Where w represents a weight assigned to each pair 
of neurons from layer input to hidden layer or from 
hidden to output layer and b is a vector of bias terms 
for each neuron in layers and x is the input from the 
previous layer [16]. 

 
 In a classification task the output neuron uses the 

Softmax activation function to generate a good 
probability distributions on the outputs. Equation (1) 
is applied from the first layer up to the last layer 
(output layer) in sequence (feed forward). 
 

 
Figure 1: Three Layers of Neural Network 

When train MLP an error function used to show if 
the network is understanding the data or not. There 
are two error functions that can be used: the first one 
is Square Error Function (Equation (2)) and the 
second function is the Cross-Entropy Error Function 
(Equation (3)). Those two equations are described 
the error of a one pattern in the dataset [17]. 
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Where y is the output in the last layer of the 
model and t is the identity of the example in dataset. 

The main objective of the training model is to 
minimize the proportion and minimize the mean of 
error function applied to all cases in the dataset. 
This process is completed by using stochastic 
gradient decent [18]. It works with the derivative of 
the error function concerning the model parameter 
of the gradient as in equation: 
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Where yi represents the output of the neuron, zh 
represents the output before applying the activation 
function, and whj are the weights. 

The effective learning algorithm to do this process is 
a backpropagation algorithm. To use the 
backpropagation algorithm, we need to: 
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Usually, computing starts from the last layer, first 
calculating the derivative of the error function with 
regard to zi: 
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For the derivatives with respect to the weights, 
we obtain the formula: 
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For the derivatives with respect to the biases, 
we obtain the formula: 
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For the derivatives with respect to the inputs و   
we obtain the formula: 
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The equations (6 and 7) are adequate to calculate the 
derivatives with respect to the weight and bias of a 
last layer, and the derivative with respect to the 
output of the layer L -1. The other equation is the 
derivative of the activation function of the layers 1 
until L − 1. The derivative of sigmoidal function is 
described below: 
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The speed and accuracy of the learning process 
of updating the weights also depends on a learning 
rate as shown figure (2). 

 
Figure 2: Factor of Learning Rate and Momentum  

Figure (2) show the ability of training with 
deference parameter of learning rate which is 0.03 
and 0.3. When the x-axis represent a number of 
epochs and y-axis represent an error rate of the 
learning. 

 The learning rate specifies how fast the neural 
network will learn. This is usually a value around 
one as percent. Another factor of training is the 
momentum that specifies how much of an effect the 
previous training iteration will effect on the current 
iteration. The momentum is also a percent and is 
usually a value near one [12]. 

 
 

Step 1: 

Compute the derivative of errors in the last 
layer. 

Step 2: 

Compute the derivative of outputs before 
computed the activation function. 

Step 3: 

Compute the derivative of weights wij. 

Step 4: 

Compute the derivative of bias bj. 

Step 5: 

Then compute the derivative its inputs. 
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3. DEEP BELIEF NETWORKS 

A Deep Belief Networks is a generative learning 
models that have been introduced by Hinton & 
Salakhutdinov [19]. They described a DBN as a 
stacked of restricted Boltzmann machines [19].  
DBN aimed to learn structures of the inputs given as 
a dataset and one or more layers for features 
detectors. 

 A DBN is a mix of two representations: directed 
and undirected graphical models, the top layer of the 
network is an undirected RBM, and the lower layers 
are directed as shown in figure (3).The training in 
deep belief networks is done by one layer at a time. 
The learning strategy consists of two phases; 

 The first is unsupervised learning, which is 
called pre-training phase. 

 The second phase is a refinement phase, 
the network is unfolded as a feed forward 
neural network in which the weights of 
hidden units are initialized using the 
forward weights of the conforming RBMs. 

 A competitive layer is added as final output layer of 
the feed forward network, which is trained using a 
supervised algorithm, to classify the inputs into the 
appropriate class type [19]. 

 

 
Figure 3: Describe Deep Belief Network 

3.1 Restricted Boltzmann Machines 
Restricting the connections between nodes in a 

Boltzmann machine to only those between visible 
and hidden nodes gives elevation to the Restricted 
Boltzmann Machine (RBM). Figure (4) describes a 
simplicity ordering of an RBM within six visible 
nodes and four hidden nodes. 
 

 
Figure 4: Restricted Boltzmann Machine 

RBMs can themselves be used as regression, 
classification, or generative models attaching either 
a single regression label or a SoftMax class label to 
the visible units that are used for supervised 
learning and a training models. They can generate a 
sample of the data distribution that gives a clamped 
visible label unit. The need of describing a RBM in 
this study to constructing of a DBN, and training it 
with an unsupervised learning model [11][12][16]. 
 
3.2 Training a Restricted Boltzmann Machine 

Training of an RBM keeps track of the same 
basics in any case of its purposed use. The energy 
function used as a particular state of stochastic 
binary visible and hidden units is: 

   (10) 

 
Where θ is the model parameters and the value of 

a and b are the visible and hidden unit biases, 
respectively, and the w refers to the weights of 
networks that connect the two layers. 

 
The restriction of RBM connection layers 

inherent very simplification of the Gibbs sampling 
used in learning and generation model. Since the 
hidden units and visible units factorize completely, 
Gibbs sampling for the whole hidden or visible 
layers that can be executed in a parallel way. 

 
To compute the gradients of the log-likelihood in 

a training stage, at the beginning we need to find the 
derivative of the log-likelihood of a one training 
sample (v) with regards to the weight wij: 
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Averaged over the training set, we find the often-
seen rule: 

 
 
(12) 
 

 
Unfortunately, finding this precisely is 

unmanageable, so samples can be gotten by using 
Gibbs sampling. Sampling takes less time, however 
achieving an appropriate stationary circulation is 
frequently still undesirable because of the need to 
achieve the stationary dispersion of the Markov 
chain. A breakthrough in speeding up this learning 
procedure was sketched out by Hinton and named 
Contrastive Divergence that computing the log-
likelihood gradient of RBM specifically is regularly 
not done straightforwardly because of the parcel 
capacity, so approximations are utilized. Hinton 
presented Contrastive Difference (CD) [20] as a 
technique to get estimated samples without a larger 
number of Gibbs sampling steps. 
Hinton found that augmenting the log-likelihood 
over the information dissemination is equivalent to 
minimizing the Kullback-Leibler uniqueness 
between the information distribution and the balance 
dispersion of the model after Gibbs sampling. 
 

The general thought behind CD is that even only a 
few steps of the Markov chain will give a heading to 
the slope in the state space for the Markov chain, 
and provide the training algorithm with the suitable 
redress to the gradient. Running the chain for an 
infinite number of steps would give us the accurate 
redress for the model parameters. However, this is 
clearly recalcitrant too. 

 Typically, the CD algorithms is running for one 
full steps of Gibbs sampling. The visible units are 
initialized with the training data (v0), h0 is sampled 
from p (hj v0), and v1 is sampled from p (vj h1). 
Then, the log-likelihood for v0 is approximated by 
[19][20]: 

 
(13) 
 

Even with this approximation and the variance 
that it introduces to the learning process, empirical 
results show that this is an effective and efficient 
learning algorithm. 
 

4. EXPERIMENTAL SETUP 
In this section the experimental setup used for 

English Character Recognition is described. 
 

4.1. Dataset 
The dataset is composed of 260 images of size 10 

by 10 pixels in gray scale which is representing 
characters (A-Z) at which there are 10 images for 
each character in different write shape. Some 
examples are shown in figure (5). The dataset is 
divided into two parts, one for training that take 
70% from dataset (182 images), and others take 
30% for testing (78 images). Images have been 
stochastically binaries according to their pixel 
intensity as: 

Y= 
3

pixel.Bpixel.Gpixel.R 
        (14) 

F(Y) = 


 

otherwise

Yif

0

1281
                          (15) 

 
Figure (5): Sample Images in Dataset 
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4.2. Methodology 
In this section we describe the methodology of the 

paper which is shown as figure (6). 
 

 
Figure: (6) Describe the Methodology 

 
 
 The preprocessing stage is to extract the features 

that the first step take the picture from drawing 
panel and resize the image to 10 x 10 pixel as shown 
figure (7).  

 

 
Figure: (7) Resize Image 

 
After that the resized step the image will convert 

to white and black depending of the intensity of the 
pixel. The threshold of convert the image to binary 
set to 128 and if the value of the pixel greater than 
threshold then set one otherwise set zero as shown 
figure (8).  

 

 
Figure: (8) Binaries Image 

 

After complete the previous step the input will 
generate by build vector that take row by row of the 
image to build the final representation of the feature 
of the character. As shown figure (9). 

 

 
Figure: (9) Feature Extraction 

 
All samples of dataset take the same processing 

and the final presentation of the dataset as a 250 
rows, each one refer to one sample as shown in 
figure (10). 

 

 
Figure: (10) Samples Features 

 
The architecture of Standard Neural Network in 

figure (6) contain of 100 neurons (image 10 by 10) 
as an inputs layer that represent as vector of zero 
and one and hidden layer within variable number (v) 
that change in each training network to produce the 
best neural network . On the side of hidden layer the 
network have weights that connected the input to 
hidden and hidden to output layers. These weights 
initialize to small number at the beginning with 
range of [0.3,-0.3] then adjusted in training phase to 
produce the best weights. The adjusting weight 
completed by supervised learning using the 
backpropagation algorithm. In the end of networks 
the 26 neurons represented as an output layer (26 
Characters). Each neuron in output layer represent 
as a class of character depend on the index of these 
character as shown figure (11). 
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Figure: (11) Neural Network Architecture 

 
The algorithms of BP describe bellow: 

 

 
Also in the architecture of the Deep Belief 

Networks in figure (6) we use the same input 
contain of 100 neurons (image 10 by 10) as an 
inputs layer that represent as vector of zero and one 
and hidden layer within variable number (v) that 
change in each training network to produce the best 
Deep Belief Network. In the end of networks the 26 
neurons represented as an output layer (26 
Characters). 

 Each neuron in output layer represent as a class 
of character depend on the index of these character 
as shown figure (12). 

 

 
Figure: (12) Deep Belief Network Architecture 

 
The parameter input, hidden and output layers as 

the same as Standard Neural Networks parameter 
for comparing purpose between them. But the 
training be in two phases the first phase adjusting 
the weight between the input and hidden neurons by 
unsupervised learning using contrastive divergence 
algorithm. And the second phase by supervised 
learning using the backpropagation algorithm. The 
training in Deep Belief Network learn each layer at 
one time.  

The learning will work in the first phase as 
unsupervised using CD algorithms and adjust the 
weight for all epoch then move to the next phase as 
supervised learning using backpropagation 
algorithms. 
The algorithms of CD describe bellow: 

Algorithm 1: Backpropagation (BP) 

Input: Training inputs, training outputs. 
Output: Best weights. 
Goal: Optimize the weights to make the neural 

network correctly mapping arbitrary inputs 
to outputs. 

Forward: 
Step1: for all layers in the network: 
 Compute the summation multiple weight.  
 Compute the output by activation function 

Backward: 

Step2: For the outputs of step1: 

 Compute the derivative for the output. 

 Compute the output gradient depend on the 

derivative. 

Step3: For the hidden layer: 

 Compute the derivative for hidden layer. 

 Compute the hidden gradient depend on the 

derivative. 

Step4: For the inputs by hidden neurons: 

 Compute the delta as multiply learning rate by 

gradient. 

 Update weights between inputs and hidden. 

Step5: For the hidden by output neurons: 

 Compute the delta as multiply learning rate by 

gradient. 

 Update weights between hidden and outputs. 
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5. RESULTS 
 
Tests were run on a laptop computer with Intel® 
Core i3 CPU 2.40 GHz processor, 4GB of RAM. 
Firstly we do an experiment with large iteration 
numbers saying 1000 training epochs to have a 
general sense about error rate. Figure (13) shows 
mean square error for training phase with 1000 
iterations. 
 

 
Figure 13: Mean Square Error for 1000 Iteration 

 
The feed forward neural networks are evaluated 
based on backpropagation learning algorithm. Here 
the class labels were used based on value in the 
nodes at the output layer. While Deep Belief 
Networks was pre-trained using unsupervised 
learning contrastive divergence. The pre-trained 
weights were used as the initialization for the feed 
forward neural networks. The weights are fine-tuned 
using Error Back-propagation learning algorithm. 
 
The experiment for the number of hidden layer is a 
six experiment that the first is 50 neuron that 
training as a 200 epoch it take about 1:17 min/sec in 
a standard neural networks give an accuracy of 
85.8% while the same parameter in deep belief 
network take about 1.27 min/sec give an accuracy of 

92.3%. These result show the deep belief network 
take more time but it take a high accuracy 
comparing to standard neural networks. The Result 
of two models are shown in table (1) that show the 
result of ANN and table (2) show the result of DBN. 

Table 1:.Results of Standard Neural Network. 

Architecture 
Neural networks 

T F 
Error 
Rate 

Time 
train 

Time 
test 

100-50-26 67 11 14.102 1:17.18 0.09 
100-80-26 68 10 12.82 1:52.41 0.106 

100-100-26 65 13 16.666 2:20.93 0.113 
100-120-26 67 11 14.102 2:41.37 0.120 
100-150-26 65 13 16.666 3:20.39 0.147 
100-200-26 66 12 15.384 4:19.29 1.695 

 
Table (1) show the accuracy of neural networks with 
different architecture of networks. It show that the 
best architecture when the number of hidden layer is 
80 neurons. The networks test on the 78 samples 
and gives an 87.12% with 10 misclassified samples. 
The training of this architecture take about two hour 
for training and 0.1 second for testing all samples. 

Table 2:.Results of Deep Belief Network. 

Architecture 
Deep belief network 

T F 
Error 
Rate 

Time 
train 

Time 
test 

100-50-26 72 6 7.6923 1:27.45 0.04 
100-80-26 69 9 11.538 2:05.44 0.04 

100-100-26 71 7 8.9743 2:31.95 0.04 
100-120-26 69 9 11.5384 2:56.21 0.053 
100-150-26 69 9 11.5384 3:37.51 0.054 
100-200-26 69 9 11.5384 4:40.35 0.065 

 
Table (2) show the accuracy of Deep Belief 
Networks with different architecture of networks. It 
show that the best architecture when the number of 
hidden layer is 50 neurons. The networks test on the 
78 samples and gives a 92.3% with only 6 
misclassified samples. The training of this 
architecture take about 90 minutes for training and 
0.04 second for testing all samples. 
 

The recognition accuracy is calculated as the ratio 
of the sum of all character with correct recognition 
to the entire set of character in the training set. The 
best accuracy success is 92.3% with deep belief 
network with one RBM. 

For each character in dataset, we also calculate its 
classification rate as table (3). It shows in ANN that 
some characters have identifying rate as high as 
90% to 100% but the worst case character G can just 

Algorithm 2: Contrastive Divergence (CD

Input: RBM visible and training data. 
Output:  Best weights of RBM. 
 
Step1: Initialize weights by using Gaussian function 

with Alf =0.1. 
Step2: For all samples in the training set: 

 Apply the sample to the RBM. 
 Compute the probability of hidden layer. 
 Compute the probability of visible layer. 

Step3: For each visible and hidden: 
 Compute the gradient. 

 

Step3: For each input by hidden weights: 
 Update weights. 
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achieve 80%. While in DBN the character have 
identifying rate as 90% to 100% for all test for 
training and testing data and figure (14) shows 
visual comparing between two algorithms. 
 

Table 3:.Results of Deep Belief Network. 

  NO. Of 
Classified 
in ANN 

NO. Of 
Classified 
in DBN 

Accuracy Accuracy 

A  10  10  100 %  100 % 

B  9  10  90 %  100 % 

C  9  9  90 %  90 % 

D  9  10  90 %  100 % 

E  10  9  100 %  90 % 

F  10  10  100 %  100 % 

G  8  10  80 %  100 % 

H  10  10  100 %  100 % 

I  9  10  90 %  100 % 

J  10  10  100 %  100 % 

K  9  10  90 %  100 % 

L  9  9  90 %  90 % 

M  9  10  90 %  100 % 

N  10  10  100 %  100 % 

O  10  10  100 %  100 % 

P  10  10  100 %  100 % 

Q  10  10  100 %  100 % 

R  10  9  100 %  90 % 

S  10  10  100 %  100 % 

T  10  10  100 %  100 % 

U  10  10  100 %  100 % 

V  9  10  90 %  100 % 

W  10  10  100 %  100 % 

X  10  10  100 %  100 % 

Y  10  10  100 %  100 % 

Z  9  10  90 %  100 % 

  
 
The average accuracy recognition rate for all data 
training and testing in ANN give 95.7% while in 
DBN the accuracy is 98.4%. 
 
 

 
Figure 14: Describe Successful Rate For Each Character 

 
6. Conclusion and Future work 
A comparing of Neural Networks and Deep Belief 
Networks for Character Recognition is described to 
identify 26 uppercase. Multilayer Perceptron’s are 
initialized with random weights whereas DBNs are 
initialized with Gaussian weights that trained using 
unsupervised Contrastive Divergence Procedure. 
The parameter of BP is very important for training 
phase that the number of hidden neuron referring to 
higher factor in both algorithms and learning rate is 
another important factor. DBN is a faster than NN in 
training and testing it train and accepted the 
information speediest of NN. DBNs gave a higher 
performance as compared with the NN with an 
accuracy of approximately 92.3% for Character 
Recognition.  
The future work is to improve deep learning 
algorithms using another classification algorithms 
such as spiking neural network instead of BP with 
DBN and show the effected of the classification. 
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