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ABSTRACT 
 

Coastal zones are constantly exposed to changes caused by natural processes, anthropogenic activities or 
both, which can precariously alter the coastal landscapes of many countries. Thus, monitoring of coastal 
zones is needed to provide important information about current conditions of a country’s coastal areas by 
examining changes that are taking place. In this respect, such monitoring can be carried out by traditional 
ground survey, airborne aerial photo, or remote sensing. However, the former is more effective and 
efficient as it can extract vital boundary information from satellite images using appropriate image analysis. 
Nonetheless, shoreline extraction has a number of challenges, and many methods have been proposed to 
improve such extraction, such as the use of machine learning methods. Thus, this study was carried out to 
determine the most effective ensemble voting classifier based on two different types of classifiers, 
comprising 11 single classifiers and 4 ensemble classifiers. Performance criteria of the classifiers were 
based on the overall accuracy, training time, and testing time. The analysis of the experimental data 
revealed several interesting results. First, for the combination of single and ensemble classifiers, ensemble 
classifiers with majority voting of Random Forest and Support Vector Machine RBF kernel were the most 
effective classifiers, attaining high overall accuracy. Second, for the combination of two single classifiers, 
Multilayer Perceptron and k-Nearest Neighbor attained high overall accuracy, rendering them as the most 
effective classifiers in this category of classifiers. Third, there were trade-offs between performance 
measures, as increased overall accuracy was accompanied by longer training and testing time.  

in the performance of such classifiers as both of voting-based ensemble classifiers increased significantly.  

Keywords: Shoreline Extraction, Image Classification, Satellite Images, Majority Voting, Ensemble 
Classifier 

 
1. INTRODUCTION  
 

Coastal zones are constantly exposed to changes 
caused by natural processes and anthropogenic 
activities or both. Such shoreline changes are 
largely due to highly dynamic natural processes 
caused by a host of factors, such as tides, winds, 
waves, water currents, sediments, and oceanic 
temperatures, among others. In addition, 
anthropogenic or humans’ activities arising from 
high concentrations of populations along coastal 
areas have significantly contributed to the 
degradation of  shorelines, despite the many 
benefits accrued from socio-economic activities of 

such areas[1]. Inevitably, these changes are 
continually reshaping coastal areas of many 
countries on a massive and unpredictable scales [2].  
Thus, coastal zones monitoring is needed to provide 
important information about the current condition 
of a country’s coastal areas by examining changes 
that are taking place at its border, which is referred 
to as a coastline or a shoreline. According to [3], the 
terms ‘shoreline’ and ‘coastline’ are commonly 
used by the coastal community and remote sensing 
fraternity, respectively. Essentially, a shoreline is 
defined as a physical line that acts as an interface 
that physically separates land and water, thus 
creating a boundary between them [4][5]. Hence, 
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shoreline extraction provides the boundary 
information of land and water, which helps monitor 
erosions or accretions of coastal zones [6]. In this 
regard, such monitoring can be performed faster 
and more accurately by using remote sensing rather 
than by using traditional field survey. Clearly, with 
remote sensing, satellite images of large, 
inaccessible geographical areas can be captured and 
analyzed more effectively and efficiently, as 
opposed to using traditional field survey or airborne 
aerial photography, which are relatively laborious 
and imprecise. Moreover, the former method can be 
used to extract vital boundary information from 
satellite images using appropriate image analysis. 

Additionally, the extraction of selected features 
of shoreline can be readily performed on available 
data to reveal important spatial and temporal 
characteristics. Effectively, this extraction helps 
control and manage historical records of 
geographical changes that have been taking place, 
thus making the prediction of future changes of 
coastlines more precisely and reliable. Irrespective 
of the nature of coastal areas, acquiring information 
of a shoreline entails a shoreline indicator, which 
can accurately represent the true position of a 
particular shoreline of interest [3]. In general, the 
shoreline indicators can be divided into three main 
categories: (i) an indicator that is based on visually 
detectable features, (ii) an indicator that is based on 
a specific tidal datum, and (iii) an indicator that is 
based on features that may be imperceptible to the 
human’s eyes[4]. In this study, the researchers used 
the third category of indicators as the shoreline 
indicator. 

The main aim of this study is to develop and 
evaluate the most effective and efficient ensemble 
machine learning technique for the extraction of 
shoreline of the Langkawi Island (which is located 
at the North West coast of Peninsular Malaysia) 
based on Landsat TM satellite images. For this 
study, the researchers used pixel-based approaches 
to classify land-water classes using majority voting 
of ensemble classifiers based on two different 
combinations of 15 heterogeneous machine learning 
classifiers. In particular, the majority voting 
ensemble classifiers were employed to perform the 
classification process. In fact, the techniques used 
in this study were the improved versions of 
techniques  used in a study of [7], who compared 
and evaluated the performances of single classifiers 
on a same dataset.  

To aid discussion, this paper is structured as 
follows: Section II discusses the related works, 
Section III details the materials and methods used, 

Section IV reports the experimental results of the 
proposed ensemble machine learning techniques, 
and Section V highlights the discussion and 
conclusion of the paper. 

 

2. RELATED WORKS 

To date, many techniques to extract 
shorelines from optical multispectral satellite 
images have been proposed and evaluated. In 
general, such techniques to extract shorelines from 
satellite images can be divided into three main 
techniques, namely the image processing 
techniques, image classification techniques, and 
satellite-derived indices. The image processing 
techniques are based on segmentation[8], edge 
detection[9], wavelet[10], and density slicing[11], 
histogram threshold[12]. The satellite image 
classification techniques are basically machine 
learning (ML) techniques, which can be further 
divided into two types of classifications: (i) 
supervised classification, such as Maximum 
Likelihood, Mahalanobis Distance, Minimum 
Distance, Neural Network and Support Vector 
Machines[13][14][15][16] and (ii) unsupervised 
classification, such as ISODATA[14] and fuzzy c-
means[17]. The satellite-derived indices techniques 
include band rationing[18][19][12] and normalized 
difference water index (NDWI)[16] [20][21].  

For satellite image classification 
techniques based on supervised classification, 
Lipakis et al. [22] employed several machine-
learning algorithms to extract both spectral and 
spatial information of shorelines. However, their 
study did not specify the actual type of machine-
learning algorithms used for such extraction of 
shoreline information. In contrast, Masria et al.  
[12] used SVM to detect temporal changes of 
coastal areas around Rosetta Promontory, Egypt, 
which recorded a range of overall accuracies, 
ranging 97% to 100%. 

Interestingly, Sekovski et al [14] used both 
unsupervised and supervised classification methods 
in their study to compare the impacts of such 
different methods on the detection of bodies of 
water. For the former, they employed ISODATA; 
for the latter, they used Maximum Likelihood, 
Mahalanobis Distance, Parallelepiped and 
Minimum Distance. On the other hand, Rokni et al. 
[13] proposed an approach based on the integration 
of image fusion and image classification techniques 
for surface water change detection. Their study 
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revealed several interesting results, in particular 
Gram-Schmidt-ANN and Gram Schmidt-SVM 
approaches were observed to achieve relatively 
higher accuracies that those of other three image 
fusion techniques that were based on the 
combinations of Maximum Likelihood, ANN, and 
SVM.  

 Recently, Choung and Jo [16] proposed a 
machine learning-based method to extract 
shorelines using SVM and to compare its accuracy 
with that of a water index-based method. 
Remarkably, the former method was observed to be 
more accurate than that of the latter method in 
extracting shorelines of coastal zones consisting of 
numerous irregular shapes and color shades, among 
others. Even though there were some studies of 
land cover mapping [23][24], which have been 
reported in the literature, research on shoreline 
extraction using ensemble methods based on image 
classification techniques is seriously lacking.   
Hence, this study was carried out with the main aim 
to investigate the suitability of several majority 
voting ensemble classifiers in extracting shorelines 
of a particular study area, namely the Langkawi 
Island.  

3. MATERIALS AND METHODS 
 

The methods used to extract shorelines 
from satellite images consisted of four phases. The 
four phases were pre-processing, satellite image 
classification, accuracy assessment, and post-
processing, as depicted in Figure 1. Prior to these 
extraction phases, a study area was chosen and data 
acquisition was carried out before performing data 
pre-processing. 

Figure	1:	The	Four	Phases	of	Methodology	of	This	Study		

3.1 Study Area 
 
Langkawi Island is located at the North West coast 
of Peninsular Malaysia, as shown in Figure 2. 
Geographically, this island is located at 6o 15’N and 
6o 29’N latitude and 99o 37’E and 99o 57’E 
longitude, covering a total area of about 478.48 
km2. This exotic island consists of many small 
islands dotting around a main island, of which the 
latter was chosen as the study area.   

Figure	2:	The	Study	Area	of	the	Research		
 

In	 fact,	 Langkawi Island is one of the 
districts of the state of Kedah. The main landmass 
of this island consists of six sub-districts, such as 
Ayer Hangat, Bohor, Kedawang, Kuah, Padang 
Matsirat, and Ulu Melaka. As a pristine island,  
Langkawi Island is famous for its picturesque 
mountainous landscapes, glittering white-sandy  
beaches,  and long stretch of hills and paddy fields 
[25].  

 
After gaining a duty-free status in 1987, 

Langkawi has become one of the popular tourist 
destinations, enabling it to gain a profitable stream 
of revenues from the tourism industry  [26]. The 
establishment of Langkawi Development Board 
(LADA) in 1990 further boosted the economic 
developments of Langkawi. LADA plays an 
important role in planning and implementing 
development projects in this island. Currently, 
LADA and other local authorities and relevant 
government agencies, such as the Langkawi 
Municipal Council, the Langkawi Land and 
Mineral Office, and the Tourism Malaysia,  are 
working in concert to ensure the development 
projects will proceed smoothly without adversely 
affecting ecological and geological aspects of the 
island [25]. 
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3.2 Data Acquisition 
 

The data used in this research consisted of 
two scenes of multispectral Landsat-5 Thematic 
Mapper (TM) data. Two scenes, instead of one, 
were used to ensure they would sufficiently cover 
the whole study area. These two scenes were 
acquired on two different dates, as shown in Table 
1. As shown, the first scene was acquired on 24 
December 2010 at 11.29 am (local time), while the 
second scene was acquired on 5 August 2011 at 
11.28 am (local time).  

 
Table 1: Description of Satellite Image Data 

Sensor 
Acquired 
Date 

Acquired 
Time 

(GMT) 
Path/Row 

Landsat 
TM 

24/12/2010 3:29:49 129/56 

Landsat 
TM 

05/08/2011 3:28:41 128/56 

 
 Over the years, Landsat TM satellite 
orbited the Earth more than 150,000 times, 
transmitting over 2.5 million images of land surface 
conditions around the world. From 1984 to 2013, 
this satellite provided multispectral images of the 
Earth’s surface at an altitude of 705 km with 8-bit 
radiometric resolution, thus making it the longest 
operating satellite sensor[12]. The repeat cycle was 
within 16 days with 185 km swath width. Landsat 
TM satellite had 7 spectral bands, including a 
thermal band, such as blue: 0.45–0.52 µm; green: 
0.52–0.60 µm; red: 0.63–0.69 µm; NIR (near 
infrared): 0.76–0.90; SWIR 1: 1.55-1.75 µm; 
Thermal: 10.40-12.50; and SWIR 2: 2.05-2.35 µm. 
All these bands had 30m spatial resolution, except 
the Thermal band that had 120m spatial resolution.  
  
3.3 Pre-processing 

Pre-processing of satellite images is an 
important step for attaining high classification 
accuracy and easing computational complexity. In 
this pre-processing phase, 5 processes were 
performed, namely radiometric correction, 
atmospheric correction, mosaicking, geometric 
correction, and subset of the study area, as shown in 
Figure 3. The main aim of the pre-processing phase 
was to clean satellite images from errors caused by 
satellite sensors, such as atmospheric, radiometric, 
and geometric errors. 

	

Figure	3:	Pre‐processing	Phase	 

For this study, such errors were introduced 
when the Landsat TM sensors captured reflected 
solar energy and converted data to radiance values 
before rescaling them to digital numbers (DNs), 
ranging between 0 and 255. Hence, radiometric 
correction was performed using bias and gain 
values to convert DNs to radiance (Lλ) values based 
on the scene being captured [20], as expressed by 
Equation 1.  

 
Lλ = Gain * Pixel value + Offset (1) 
 
Then, atmospheric correction was 

performed by converting the radiance data to Top 
of Atmosphere (ToA) reflectance[27] that helped 
remove the atmospheric scattering effects of the 
image data. This process used the minimum value 
of a band, which represented the background 
signature of the band.  

 
At the end of the pre-processing stage, 

geometric corrections using ground control points 
(GCP) were used to transform the data from global 
coordinate system WGS84 to Rectified Skew 
Orthomorphic (RSO) local projection such as to 
precisely align all data on the same map[28]. In this 
stage, image registration using image-to-image 
geometric correction was performed. The 30 GCPs 
were located between the geo-referenced image 
coordinates and the new image coordinates to cover 
the whole study area. The RMS value for all GCPs 
was 0.457, which was far below 1.00. With such 
small RMS value, registration errors or distortions 
of the image that could increase the overall error 
count was effectively avoided.  

 
In addition, mosaicking and subset 

processes were two processes carried out to 
combine two or more images and to trim the 
combined images such that they would fit neatly 
with the study area. Specifically, ENVI 5.3 was 
used for pre-processing tasks at this stage. Once 
thoroughly cleaned and perfectly fitted, such 
images in the reflectance format would be used in 
the classification phase.  
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3.4 Satellite Image Classification 
 

The main aim of the satellite image 
classification phase was to identify land and water 
classes that helped determine the boundaries that 
separated these two regions. In this phase, 
supervised image classification methods were used 
to classify land and water classes of satellite images 
as shown in Figure 4.  

	Figure	4:	Satellite	Image	Classification	Phase	
	
	

For this study, only one training set was 
created in the form of polygons, consisting of 260 
and 65 generated polygons for land and water 
classes respectively, as depicted in Figure 5. The 
recommended training sample size for each class 
should be higher than 10 - 30 times the number of 
bands[29]. They were selected by image 
interpretation of image regions captured by the 
satellite, which were equivalent region of the fields. 
The same training set was also used as a testing set 
in the cross validation scheme to determine the 
classification accuracy. Actually, the training set 
was created to build the model, while the testing set 
was produced to measure its performance. Jeffries-
Matusita distance and Transformed Divergence 
were used[30] to ensure separability of the training 
and testing set, yielding a  separability index of 
1.97, which was close to 2.0 that represents perfect 
separability. 

	

Figure	5:	Training	and	Testing	Set		

Clearly, given the high number of 
techniques available, choosing the most effective 
ML classifier for this domain problem was a 

challenging task. As such, for this study, the 
researchers used 11 single ML classifiers and 4 
ensemble ML classifiers. The single ML classifiers 
used in this study were Decision Tree (DT), Naïve 
Bayes (NB), k-Neareast Neighbour (kNN), Linear 
Discriminat Analysis (LDA), Quadratic 
Discriminant Analysis (QDA), Logistic Regression 
(LR), SGD Classifier, SVM-linear (SVM-L), SVM-
RBF (SVM-R), SVM-polynomial (SVM-P), and 
Multi-Layer Perceptron Artificial Neural Network 
(MLP). The ensemble ML classifiers selected for 
this study were AdaBoost (ADB), Gradient 
Boosting (GDB), Random Forest (RF), and Extra 
Trees (ET). After the model had learned part of 
image regions from the training samples, the whole 
image regions were then classified. In addition, a 
lookup table (LUT) consisting of all color classes 
was used to render the classified image with 
appropriate colors. In this study, brown and blue 
colors were used to represent land and water, 
respectively. 

In theory, ensemble methods are deemed 
highly effective, because aggregated decision of 
multiple classifiers is far more superior to a single 
decision of a single classifier.  Fundamentally, 
ensemble methods are models composed of 
multiple weaker models that are independently 
trained, where each model’s prediction is combined 
with other models’ predictions to provide an overall 
prediction[31]. In this respect, such combination 
entailed the researcher to carefully select the 
appropriate types of classifiers and the efficient 
ways to combine them. With this approach, a 
reliable model was created that helped improve the 
prediction and classification accuracy. In fact, 
different models of ensembles could be generated 
from the same basic algorithm based on different 
subsets of the data or from different algorithms 
based on the same dataset. Interestingly, on certain 
occasions, ensembles can perform better than a 
single model due to the diversity of base models in 
solving certain problems. Furthermore, according to 
[32][33], the combination of various classifiers can 
result in better accuracy compared to those of 
standalone classifiers. Hence, the ensemble 
approach based on majority voting was proposed 
for this research.  

The majority voting is one of the simplest 
and most intuitive ensemble combination 
techniques, as shown in Figure 6. In general, the 
majority vote classifier is defined as a series of 
votes, which is represented as follows: 

Train Single 
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Classifier
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C(X) = arg max  I(hj(X) = i)  (2)     

For this combination scheme, a classification of an 
unlabeled instance is performed on a class that 
obtains the highest number of votes (the most 
frequent vote), and such a method is also known as 
the Plurality Vote (PV).  

	Figure	6:	Majority	Voting	Classifier	
	

	
3.5 Accuracy Assessment 

In the accuracy assessment phase, the 
overall accuracy, training time, and testing time 
were used as performance indicators, as shown in 
Figure 7. In particular, the overall accuracy was 
used as the primary performance indicator, because 
it is widely used in the evaluation of satellite image 
classification methods. Whereas, the other two 
factors were treated as additional performance 
indicators in this study.  

Figure	7:	Accuracy	Assessment	Phase 

For cross validation, the 10-fold cross-
validation method was used to deal with overfitting 
and class imbalance problems. Essentially, the 
underlying mechanism of k-fold cross-validation 

helps partition an original sample randomly into k 
subsamples of equal size. A single subsample was 
used to test the model as validation data, while the 
remaining (k-1) subsamples were used as training 
data [34]. 

3.6 Post-processing 
 

Finally, in the post-processing phase as 
shown in Figure 8, the resultant classified image 
was converted into GIS vector format using ENVI 
5.3, which could be further processed using ArcGIS 
10.3. Moreover, smoothing processes were 
performed on the classified images to generalize the 
image data consisting of smooth   polygons. Then, 
the resultant classified image underwent a raster-to-
vector conversion process to convert it into GIS 
vector format. Subsequently, polygon-to-line 
conversion process was performed on this 
converted image to change it into vector lines 
format. Finally, line smoothing was applied to the 
final shoreline to smooth the straight edges and 
angular corners of features such that curves would 
be seamlessly connected at their vertices. 
	

Figure	8:	Post‐processing	Phase 
 
4. RESULTS 

Initially, the analysis of the experimental 
data of single classifiers was carried out on a high-
performance workstation, namely Dell Precision 
3620 machine, which was equipped with 3.4GHz 
Intel i7-6700 Quad Core Processor and 16 GB 
RAM, running on the Microsoft Windows 7, which 
was a 64-bit operating system. 

In order to perform majority voting ensemble 
on the same dataset, the workstation’s RAM was 
upgraded to 28GB to avoid any problems related to 
insufficient memory. Such upgrading was needed 
as 16GB memory could only support single ML 
classifiers but not all ensemble ML classifiers. 
 

4.1 Experimental Setup 
 

The study area and specific type of 
satellite images for this study had to be identified 
before performing other processes. As such, we 
chose Landsat TM satellite images of the whole 
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Langkawi Island, which is located at the north-west 
coast of Peninsular Malaysia, as the study area. In 
the pre-processing phase, each image was cleaned 
by a series of processes such as atmospheric and 
geometric corrections to rid it of errors generated 
by satellite sensors. Then two additional processes 
such as mosaicking and image subset were 
performed to ensure the cleaned images were 
configured to the same coordinate system that 
helped overlay it on the same map. In the 
classification phase, 260 and 65 polygons were 
generated for the training and testing samples of the 
image for land and water classes, respectively. 
Image classification was performed on the 30m 
image, resulting in a classified image of land and 
water classes.  

 
In the first run, we classified the geo-

references and fitted satellite images with the use of 
15 ML classifiers (11 single and 4 ensemble 
classifiers). The single ML classifiers used in this 
study were DT, NB, kNN, LDA, QDA, LR, SGD, 
SVM-L, SVM-R, SVM-P, and MLP, while the 
ensemble ML classifiers selected were ADB, GDB, 
RF, and ET. In the experiments, the performances 
of these 15 classifiers were assessed in terms of 
overall accuracy, training time, and testing time. 
Then, in the final run, we classified the same 
satellite image using all possible combinations of 
any two classifiers (as mentioned above). The 
performances of ensemble voting classifiers were 
also assessed in terms of overall accuracy, training 
time, and testing time. Later, we carefully 
examined the accuracy performance results to select 
relevant classifiers for further post-processing. In 
the post-processing phase, the resultant classified 
image was generalized using sieve and clump 
processes before converting it into GIS vector 
format using raster-to-vector conversion process. 
Subsequently, polygon-to-line conversion process 
was performed on this converted image to change it 
into vector lines format. Finally, line smoothing 
was applied to the shoreline to obtain a final 
extracted shoreline.  
 
4.2 Experimental Results 
	

Table 2 summarizes the results of satellite 
image classifications based on the 15 classifiers, of 
which 11 were single classifiers and the remaining 
4 were ensemble classifiers. Clearly, the results 
showed MLP was the most effective method, 
attaining the highest overall accuracy at 99.55%. As 
anticipated, the other four ensemble classifiers also 
achieved impressive overall accuracy, placing them 

among the top five classifiers in terms of accuracy 
performance. In contrast, at 98.58% of overall 
accuracy, QDA was the least effective method, 
albeit having the fastest training and testing time. 
Evidently, these results reinforce the suitability of 
ensemble methods for classifying land and water 
classes. From these promising results, the 
researchers undertook further investigation to 
determine whether ensemble voting methods would 
be suitable for such study in this domain. 

 

Table 2: Performance Results of Satellite Image 
Classification using 15 Classifiers (11 Single Classifiers 

and 4 Ensemble Classifiers).  

ML 
Classifier 

OA 
(%) 

Training 
Time (s) 

Testing 
Time (s) 

DT 99.28 0.098 0.576 
NB 98.75 0.051 0.713 
kNN 99.21 0.378 8.21 
LDA 99.30 0.06 0.534 
QDA 98.58 0.042 0.65 
LR 99.36 0.256 0.75 
SGD 99.01 0.125 0.598 
SVM-L 99.31 1.032 3.311 
SVM-R 99.08 8.758 19.867 
SVM-P 98.91 26.89 28.211 
MLP 99.55 3.512 4.067 
ADB 99.49 1.295 2.213 
GDB 99.50 2.101 9.908 
RF 99.41 0.237 1.256 
ET 99.37 0.201 1.353 

 
Table 3 summarizes the performance 

results of satellite image classifications of selected 
ensemble classifiers, which are shown in Table 4, 
Table 5, and Table 6. Clearly, RF+SVM-R was the 
most effective ensemble classifier, as evidenced by 
its high overall accuracy at 99.59%. Comfortably at 
the second place was kNN+MLP, which attained 
99.57% of overall accuracy. Equally impressive 
were the remaining classifiers such as MLP+SVM-
R, MLP+SGD, and RF+NB, which equally 
achieved 99.56% of overall accuracy.  

 
Table 5 shows the results of overall 

accuracy of ensemble voting classifiers based on 
two single classifiers. The accuracy results of single 
ensemble voting classifiers, with each based on the 
combination of two different classifiers, are 
highlighted in this table. However, the results of the 
same ensemble voting classifiers were not 
displayed, because the voting had not resulted in 
any improvements in the overall accuracy. Overall, 
all the ensemble voting classifiers achieved high 
overall accuracy, with each classifier’s accuracy 
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surpassing more than 90.00%, except for 
QDA+NB. 

Table 3: Performance Results of Satellite Image 
Classification of Selected Ensemble Voting Classifiers 

Voting ML 
Classifier 

OA 
(%) 

Train 
Time (s) 

Test 
Time (s) 

MLP + SVM-R 99.56 13.334 28.451 
SGD + MLP 99.56 3.863 7.738 
kNN + MLP 99.57 4.334 15.866 
RF + NB 99.56 0.594 5.114 
RF + SVM-R 99.59 9.638 22.731 
RF + ADB 99.55 4.709 16.149 

 
 

Given that MLP, as a single classifier, had 
achieved the highest overall accuracy, it was used 
as a benchmark to which other voting results were 
compared. Such comparison revealed that only two 
voting classifiers achieved higher performances 
beyond this benchmark, namely MLP+KNN and 
MLP+SVM-R, with the former and the latter 
attaining the highest and the second highest overall 
accuracy at 99.57% and 99.56%, respectively. In 
contrast, with 98.74% of overall accuracy, 
QDA+NB was the least effective ensemble voting 
classifier.  

 
In addition, the remaining ensemble 

classifiers were evaluated to determine whether 
their performances would improve after voting. The 
evaluation showed that a few of these classifiers did 
improve their accuracy performances. Surprisingly, 
some of the classifiers did not make any 
improvements, such as kNN+SGD, MLP+DT, 
SVM-R+DT, SVM-P+DT, QDA+NB, LDA+ SGD, 
LDA+SVM-P, LR+SGD, MLP+SGD, and SVM-P 
+MLP. These results were significantly different 
from those of DT and LR, which only achieved 
99.28% and 99.36% of the overall accuracy, 
respectively.  

 
As demonstrated, some classifiers were 

not able to improve their accuracy after performing 
ensemble voting. Closer examination revealed that 
such classifiers were those that had been combined 
with LDA, namely LDA+SGD and LDA+SVM-P. 
Similarly, no improvements in accuracy were 
observed for other MLP classifiers, except 
MLP+kNN and MLP+SVM-R that achieved high 
overall accuracy.    

 
Table 6 shows the overall accuracy results 

of voting of an ensemble classifier and other single 
classifiers. The results showed that RF+SVM-R 

was the most effective ML, attaining 99.59% of 
overall accuracy. A close second was RF+NB, 
which achieved 99.57% of the overall accuracy. 
The same results indicated that RF+LDA was the 
least effective ML, which managed to attain 
99.16% of the overall accuracy.  

 
Table 4 summarizes the results of voting 

of two ensemble MLs. Evidently, all combinations 
of ensemble classifiers were observed to be quite 
ineffective, except for the combination of ET and 
RF. Even for the latter combination, the 
improvement was not significantly high. Arguably, 
the lack of improvements was due to overfitting of 
classifiers that led to poor accuracy.   

Table 4: Performance Results of Satellite Image 
Classification Using Ensemble Voting Classifiers of 

Ensemble Classifiers.  

Voting ML 
Classifier 

GDB ADB RF ET 

GDB - 99.50 99.34 99.49 
ADB 99.50 - 99.55 99.49 
RF 99.34 99.55 - 99.42 
ET 99.49 99.49 99.42 - 

 
The best result from Table 3 was chosen to 

do further post-processing tasks. The classification 
process produced the image classification map as 
shown in Figure 9, which clearly highlights the 
differentiation between the land class (in brown) 
and the water class (in blue). Later, post-
classification processes were performed on the 
image classification map to extract the shoreline 
from the satellite image. Figure 10 shows the 
extracted shoreline output after the completion of 
the extraction processes.   
 

 
Figure	9:	Image	Classification	Map	Result	
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Figure	10:	Extracted	Shoreline	Output	

 

5. DISCUSSIONS AND CONCLUSION  

In this study, a series of experiments 
involving 11 single machine-learning classifiers 
and 4 ensemble classifiers were carried out, 
revealing several interesting and important results.  
For single classifiers, MLP was the most effective 
image classification method, having achieved the 
highest overall accuracy [4]. For ensemble 
classifiers using majority voting algorithm, 
RF+SVM-R recorded the highest overall accuracy. 
In addition, RF+NB, MLP+kNN, and MLP+SVM-
R were among the most effective classifiers. In 
contrast, LDA was the least effective classifier 
based on the ensemble voting approach. The results 
also showed that the training and testing time of 
voting ensemble classifiers increased substantially, 
despite their high overall accuracy. Clearly, the 
overall accuracy of such classifiers decreased quite 
significantly when more than two classifiers were 
combined.    

There were, however, some limitations in 
this study, which may preclude the generalization 
of the research findings. Firstly, this research only 
used Landsat TM data as the study area. Ideally, 
Landsat sensors, such as Landsat ETM+ or Landsat 
OLI can be utilized to provide a more robust and 
comprehensive data to improve the reliability of 
such research findings. Furthermore, such sensors 
can also be applied to examine other important 
study areas. Secondly, the resultant extraction 
spatial data were based on 30m satellite resolution, 
below which detecting any changes might be 
difficult. Thirdly, the majority voting of ensemble 
classifiers was only based on the combination of 
two different classifiers. Admittedly, the 
researchers did try to use several combinations 
based on three or more classifiers, but the results 

were disappointingly poor, showing a substantial 
decrease in the overall accuracy. Presumably, the 
maximum number of classifiers to combine that can 
help achieve optimum overall accuracy is limited to 
two only. 

 

For future research, object-based image 
analysis (OBIA) can be applied to each classifier 
that has been implemented using the pixel-based 
approach. With OBIA, the combination of 
segmentation algorithms and ML classifiers can 
further improve the overall accuracy of extracted 
shorelines. In addition, deep learning can be 
performed with the use of a more powerful 
workstation, which should ideally have bigger 
RAM and high-performance GPU card. For 
validation assessment, ML classifier results can be 
further analyzed using ground truth data, such as 
reference shoreline provided by the local authority. 
As there is limitation with 30m dataset, future 
research can use satellite images of higher 
resolution to improve the accuracy of shoreline 
extraction.   
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Table 5: Performance Results of Satellite Image Classification Using Ensemble Voting Classifiers of Single 
Classifiers.  

Single 
ML 

Classifier 

 
DT 

 
NB 

 
kNN 

 
LDA 

 
QDA 

 
LR 

 
SGD 

 
SVM-

L 

 
SVM-

R 

 
SVM-

P 

 
MLP 

DT - - - - - - - - - - -
NB 99.50 - - - - - - - - - -
kNN 99.32 99.39 - - - - - - - - -
LDA 99.30 99.30 99.30 - - - - - - - -
QDA 99.36 98.74 99.33 99.30 - - - - - - -
LR 99.54 99.36 99.44 99.30 99.37 - - - - - -
SGD 99.40 99.30 99.19 99.16 99.33 99.34 - - - - -
SVM-L 99.48 99.34 99.38 99.30 99.37 99.38 99.31 - - - -
SVM-R 99.23 99.37 99.23 99.30 99.26 99.42 99.32 99.35 - - -
SVM-P 99.27 99.43 99.36 99.27 99.45 99.46 99.48 99.40 99.29 - - 
MLP 99.54 99.55 99.57 99.30 99.55 99.55 99.56 99.55 99.56 99.52 - 

 

Table 6: Performance Results of Satellite Image Classification Using Ensemble Voting Classifiers of Single and 
Ensemble Classifiers.  

ML 
Classifier 

 
DT 

 
NB 

 
kNN 

 
LDA 

 
QDA 

 
LR 

 
SGD 

 
SVM-

L 

 
SVM-

R 

 
SVM-

P 

 
MLP 

GDB 99.48 99.53 99.50 99.29 99.55 99.53 99.48 99.49 99.52 99.45 99.55 
ADB 99.49 99.53 99.51 99.29 99.55 99.54 99.52 99.50 99.51 99.46 99.55 
RF 99.31 99.57 99.43 99.16 99.40 99.39 99.38 99.55 99.59 99.27 99.42 
ET 99.41 99.43 99.41 99.29 99.43 99.48 99.34 99.42 99.38 99.41 99.54 


