
Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4888

REVISING PROGRAM’S INTERNAL DOCUMENTATION
FOR DEVELOPERS SUSTAINING

1NOUH ALHINDAWI, 2ZIAD SARAIREH, 3OMAR MEQDADI, 4OBAIDA M. AL-HAZAIMEH,
5MOHAMMAD SUBHI AL-BATAH

1 Department of Software Engineering, Jadara University, Jordan

2 Department of Information Technology, Emirates College of Technology, Abu Dhabi
3Department of Software Engineering, Jordan University of Science and Technology, Jordan

4 Department of Computer Science, Al- Balqa' Applied University, Jordan
5 Department of Software Engineering, Jadara University, Jordan

E-mail: 1hindawi@jadara.edu.jo, 2ziad.saraireh@ect.ac.ae, 3ommeqdadi@just.edu.jo,

4dr_obaida@bau.edu.jo, 5albatah@jadara.edu.jo

ABSTRACT

In software engineering, the developers in order to recognize which ingredients or fragments of any
software code that put into practice a definite functionality, they utilize Information Retrieval (IR) methods
to mechanically spot the code that implement them. The main contribution of this paper is to study and
examine the effects of skipping some textual information, namely, the internal documentations from being
integrated when performing source code indexing for locating changes process purposes. In this paper, we
performed two experiments over three open systems namely Qt, HippoDraw, and KOFFICE. The first
experiment is done with counting the internal documentations when preprocessing the software code for
locating changes process, while the other one is when skipping it. We used the standard IR measurements,
Recall and Precision, and we computed the Wilcoxon signed-rank test to compare and evaluate the results.
The experiments results demonstrate that not all internal documentations should be always considered in
the process of locating changes. Cases in point, for the Qt system, the results show that the internal
documentations improved the results of locating changes while for HippoDraw and KOFFIC systems, the
internal documentations negatively impacted it.

Keywords: Software Engineering, Information Retrieval, HippoDraw, KOFFICE

1. INTRODUCTION

When the developers attempt to maintain or fix
any issue regarding the program’s code, they
usually start with understanding the existing code,
and then change it. This requires a fully knowledge
and accurate realizing of the intended program
code. Therefore, the developers have to collect code
artifacts as much as they can in order to analyze the
code. For instance, information extraction, lexical
analysis, and artifacts filtering are considered as
basic pre-process when collecting and indexing the
program code artifacts [1, 2]. The internal
documentation of programs which includes writing
comments or notes for code fragments is considered
as one of the attributes of a perfect coding [3,4].
Well-documented software is easy to update and
evolve. Moreover, the literature has shown that the

successful use of well written internal
documentations can extensively amplify a
program's understanding [5, 6, 7].

In 8 the authors concluded that the internal

documentations as well as the structure of the
source code aid in program understanding and
therefore reduce maintenance costs. Furthermore,
program internal documentations have a very
efficient and large variety of possible uses, for
example, it adds worthy details for program, and it
is used to create the external documentation when
applying reverse engineering methodology [8, 9,
10, 11, 12]. Usually, commenting any program
code is considered as important component of the
programming mode in order to get an
understandable code to the next person who arrives
along or even for a afterward programmer’s

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4889

treatment [13, 14, 15]. The developers usually try to
make their code as much as clear, well arranged,
and easy to follow [3, 16]. The Existing of program
internal documentations add and allow for a wide
stage of unpredictability and potentially any extra
information inside the source code of any system.
Sometimes, the internal documentation just simply
doesn't denote or indicate any meaningful thing.

Information retrieval (IR) has proved itself in

understanding and realizing software’s code [17,
18]. However, not all of software artifacts can give
benefits or provide the developers with meaningful
information about the software. In this paper we
investigate the effect of adding or deleting the
software internal documentation to the process of
analyzing the software. Moreover, we studied the
effects of performing the stemming over the
software internal documentation. In the literature, a
significant amount of investigation has been done
on the area of analyzing and assessing software
internal documentations [3, 16]. In [19] the authors
concluded that if the internal documentations
are too small, then they are as well unknowable. On
the other side, the ones that are too extensive may
possibly contain extra, repetitive, and pointless
information. When the developers extract and
collects the program artifacts in order to accomplish
a specific maintenance tasks, they consider the
internal documentation, as shown in Figure 1, as
elective linguistic information that can be pulled
out 20. In [21] a client study on 48 qualified
programmers was done, the study results showed
and confirmed that writing code with well
commenting style can be easily improved and
updated by developers.

Every so often, the developers comprise some

indication or information in their software code
internal documentation with the purpose of using it
later on throughout the development task as
orientation guide (i.e. Date and Copyright). In [5]
the authors conclude that the efficient exploit of
well written internal documentation can radically
augment the process of program understanding.
However, the research that focus on the quality
evaluation of in-line documentation is limited [22].

The in-line software documentation has been

studied and an automated approach for assessing
the quality of inline documentation was presented
[23]. In [20] a study was presented about the
usefulness of including the in-line documentations
and about performing stemming over traceability
links, one of their finds is that considering in-line

documentation in the indexing process assists in
improving the whole process of traceability link
significantly.

Figure 1: A feature diagram for code artifacts indexing

In [24] the software internal documentation

was studied by the authors, and one of their advices
was that in order to distinguish among software
code and its internal documentation, an
unambiguous detailed documentation or
programming syntax has to be added. In [25] the
practicability and the usefulness of automatically
analyzing software internal documentations was
studied, their aim was to spot software bugs and
bad documents in the software code internal
documentations. In [26] the authors concluded that
not all of programmer’s internal documentations
are practical or helpful.

2. SOFTWARE INTERNAL

DOCUMENTATIONS CLASSIFICATION

Generally, based on the aim of the internal
documentations, there are three major modules for
internal documentations; the documentary
comments, functional comments, and descriptive
comments. More details are presented on the
following sub-sections about each module [11].

2.1 Functional Internal Documentations

When the developers want to add new
functionality or new feature, this type of
documenting is used always. The core goal of
writing this documentation is only to describe the
added functionality. In this type of documentation,

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4890

the developers do not explain the entire program.
Such an examples of functional documentations are
feature addition, bug description, and to do. To
improve any software code understanding, the
developers should add or assign this type of
documentations in a standard and reasonably way
to the fragments of code [26].

2.2 Documentary Internal Documentations

The name of this type of internal
documentations is called documentary due to its
usage in documenting the process of development
any software project. Moreover, this type internal
documentation holds important information about
the project fragments as we see in Figure 2, for
instance, version number, author's name, and
program idea.

Figure 2: An example about documentary internal
documentations

Remaining the program in a shape that is easy

to interrupt or update is consider as a main situation
of usage this type of internal documentations.
Moreover, this type of internal documentations can
also hold a superior explanation for the equipment
needed. Giving and supporting the new developers
with a brief summary about the program before
altering any fragment of software [25].

2.3 Descriptive Internal Documentations

Writing the internal documentations of any
software code in a very good shape needs this type
of internal documentations to shows up a lot.
However, this internal documentation does not
require to be found for each line of code or for each
statement. Starting up fragment code and the
standard expression are some examples where the

explanatory internal documentations should be
added. Figure 3, shows an example for this type
25.

Figure 3: An example about descriptive internal
documentations

2.4 Internal Documentations Samples

Here, we give some examples for internal
documentations for the systems we investigated in
this paper. We note that the internal
documentations for HippoDraw system and Koffice
system as we see in Table 2 and Table 3, has less
standardized documenting style when compared
with QT system.

Table1: Internal documentations for QT systems

(4-Examples)

Function Name
Internal

Documentations

setOpenFileName

"! options
 selectedFilter
fileName
openFileNameLabel
 selectedFilter
options filename"

blendComponent

"! shadow gets a
 color inversely
 proportional to the
 alpha value then do
 standard blending"

findFiles

"! filePattern
fileNameComboBo
x directory
directoryComboBox
 allFiles directory
 matchingFiles file"

createLayout

"! fileLayout
QHBoxLayout
directoryLayout
 QHBoxLayout
mainLayout
QVBoxLayout “

For instance, as we see in the Table1 that the

internal documentation, for function two
(mousePressEvent) does not support the developers
with any meaningful information and it is too tiny.

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4891

Table 2: Two examples for internal documentations
for HIPPODRAW system

Table3. Two examples for internal documentations

for KOFFICE system

Function Name
Internal

Documentations

createShape

“Factory shape
factory path reset
transformation that
 might come from the
 default shape /
 creates a shap from
 the given shape id“

saveImage
“Format NULL ret
 pixmap Save the
image“

3. EXPERIMENTAL SETUP AND DATASET

As mentioned before, our main contribution in

this paper is to come back with a solution for the
following inquiry; should program internal
documentations always have be considered when
preprocessing program code for locating the needed
changes locations?.

The hypothesis here that our experiments are

built on top revolves around the factor hypothesis
that not all of program internal documentations
have to be included when preprocessing program’s
code when locating the needed changes locations
for the developers. We conducted two experiments
for changes allocating using IR technique, namely
the Latent Semantic Analysis (LSA) [27, 28]. The
first experiment is done with counting the internal
documentations when locating changes and the
other one done with skipping the internal
documentations. Moreover, the stop-list removal

and stemming were executed with the two
experiments. In our evaluation, we used the
Wilcoxon signed-rank by computing the p-value to
inspect whether the diversity in terms of usefulness
for the two approaches we have, which are
counting the internal documentations and skipping
the internal documentations from being
preprocessed when locating any changes the
developers need.

Wilcoxon signed-rank test (One-Tail) is non-

parametric test and it takes as an input two ranked
list created from the two different locating changes
techniques, we assume that ranks unreservedly
hold the entirety efforts required by developers
when performing any maintenance activity. In our
test, the significance level α = 0.05 was chosen, and
the production of the test is a p-value, which can be
studied as follows.

If the p-value is less than α, then the difference

in ranks formed by locating changes technique is
statistically considerably lesser than the ranks
formed by the other technique. Or else, if the p-
value is bigger than α, then both of the two studied
techniques produce approximately comparable
results. The following are the null and alternative
hypothesis that were formulated in order to test
whether counting or adding the internal
documentations has a higher effectiveness measure
than when skipping them when locating the
developers needed changes over the software
artifacts or not.

H0: There is no statistical significant

difference in the measure of effectiveness between
Adding the internal documentations and when
skipping them.

H1: Adding the internal documentations

implied higher effectiveness than skipping them.

For the conducted experiments, we use the

same Dataset we have in our previous work [17]
and [29]; we have three open source systems,
namely, QT, HippoDraw, and KOFFICE. As we
see in Table 4 (HippoDraw and QT), for each
system we used LSA to rank the relevant methods
for 11 changes. The changes were selected based on
the bug reports present in the online system
documentation for all of three systems. The results
analysis is shown in Figure 4.

All the below Figures, show that considering

internal documentations in the locating changes

Function Name
Internal

Documentations

setCutRange

"setCutRange
projector * @bug
 @@@@@@ This
 needs fixing for two
 dimension functions”

mousePressEvent “m_plotter“

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4892

process has a significant effect on the recovery
effectiveness for some systems.

Table4: HIPPODRAW and QT systems features

HippoDraw Feature QT Feature

Update Font Size
Change

Font
Settings

Update Font Style
Add New

Font

Change Zoom Mode
Reset Font

Size

Change Printer Settings
Change

Password

Add Item
Change

RGB

Remove Item
Create
 Menu

Modify Mouse Property
Delete
Menu

Modify Cut Color
Create
Action

Reset Representation
Delete
Action

Add New Display Search

Change Axis Modeling
Sketch

Polygon

4. RESULTS AND DISCUSSION

Now, we will discuss the results for each
system we experimented individually. For the first
system (QT), as shown in Figure 4, counting and
adding the internal documentations has enhanced
the outcome. One of the most reasons at the rear
that is the QT developers used a regular style when
writing the internal documentations for QT code.
As shown in the figure, the average for the two
standard IR measurements we used (Recall and
Precision) is higher when counting the internal
documentations.

Figure 4: QT-System Experiments Results Average.
ID Refers To Internal Documentations.

Figure 5: Hippodraw -System Experiments Results
Average.

As shown in Figures 5 and 6, for HippoDraw

and KOFFICE systems the results are opposite to
QT results. In other words, the counting of internal
documentations while preprocessing the software
artifacts has negative impact when locating any
needed changes. The main reason behind these
results is the stuffing of internal documentations in
both systems; the internal documentations for both
HippoDraw and KOFFICE systems are poorly
written and not reasonably added for most code
fragments. Therefore, our findings go with the fact
“a useful comment always follows some basic rules
of style.” [11]. That’s it; counting or skipping the
internal documentations depends on the contents of
the internal documentations. For instance, the
internal documentations that holds invaluable
information such as author’s copyright remark, yet
also with removing the stop list words, a number of
terms still reside indexed and unenthusiastically
have an effect on locating changes process results
for a number of software systems. Moreover, as we
see in Table 5, for the three systems, we studied the

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4893

distributions of internal documentations compared
with lines of code of each system. In other words,
the density of internal documentations over the
code is computed for each system.

Table 5 shows that the developers of QT

system used a well structured or a good
standardized style when they wrote the internal
documentations. This fact is due to the largest
percentage of internal documentations of QT
system as shown in Table 5, which means that the
QT code is documented enough. As a result, this
was reflected completely on the outcomes of
locating changes process.

Figure 6. KOFFICE-System Experiments Results
Average.

Table5. Internal documentations-Density (%) Line

of Code (LOC) for the three systems

Systems

Internal
documentations-Density

(%) Line of Code
(LOC)

QT 18

KOFFICE 12

HIPPODRAW 11

Moreover, we compared the results of locating

all of the needed changes for the three systems. As
shown in Figures 7 and 8, for the QT system, 90%
of the inquiries were best retrieved when counting
the internal documentations and the rest 10%
provided the same ranks for the related functions,
either when counting or skipping the internal
documentations from the system corpus. However,

for the HippoDraw system, the outcomes are
diverse than QT outcomes; 70% of the inquiries
were not affected by counting the internal
documentations. The internal documentations did
not affect the retrieving process. While the rest 30%
of the inquiries have been recovered more correctly
when counting the internal documentations. As a
conclusion, and based on the manual inspection of
HippoDraw system and on the results, the
developers of HippoDraw poorly documented the
code fragments. Moreover, the internal
documentations of HippoDraw itself stated
previously, doesn’t have a lot of significant
information that considered as important for
location process.

The KOFFICE system results are slightly
diverse than the other two system. As shown in
Figures 7 and 8, skipping the internal
documentations enhanced 50% of the inquiries
while counting them only enhanced 20%.
Conversely, 30% of the inquiries relevant methods
ranks were not affected when counting or skipping
the internal documentations. That’s mean that the
developers poorly documented the related methods
of the take inquiries which reflected negatively on
the outcomes of inquiring the system for locating
purposes. Moreover, as shown in Figures 8 and 9,
we have calculated the recall and precision for all
the systems.

Figure 7: Ranking Comparison For All Relevant
Methods Of All Taken Systems Queries

As shown in Figure 7, three cases taken, the

red color shows the percentage of relevant methods
that best answered when including the internal
documentations, the yellow color shows the
percentage when excluding the internal
documentations, and finally the blue color shows

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4894

the percentage when including and excluding the
internal documentations do the same.

As shown in figure 8, three cases taken, one

with including all internal documentations, and one
without including any internal documentation, and
the final one, is when including the internal
documentations except the bug internal
documentations.

As shown in Figure 9, three cases taken, one

with including all internal documentations, and one
without including any internal documentation, and
the final one, is when including the internal
documentations except the bug internal
documentations.

Figure 8: Recall Results For The Relevant Methods
Of All Taken Systems Querie

Figure 9: Precision Results For The Relevant
Methods Of All Taken Systems Queries.

 Moreover, we computed the Wilcoxon signed-

rank test to examine if the differentiation in terms

of effectiveness for the two approaches is
statistically significant. We computed it based on
the total effort measure (Σ EM) dependent variable.
The null hypothesis is that there is no statistical
significant difference in the measure of
effectiveness between Adding the internal
documentations and when skipping them.

As stated before, the alternative hypothesis is

that adding the internal documentations implied
higher effectiveness than skipping them. Our results
were found to be statistically significant. The p-
value is lower than α = 0.05, it was actually less
than 0.0001. This permits for declining and
rejecting the null hypothesis we have.

5. CONCLUSION

Examining the related artifacts or fragments of
software source code that related to particular
changes is considered as a crucial phase during any
software maintenance process. Moreover, the
internal documentations of program code play a
major role in guiding the developers while locating
the related code fragments that need to be altered.
In this paper we present an empirical study to come
back with answer for the inquiry, should internal
documentations of source code must be always
considered when stuffing the software source code
for locating changes or not?.

To answer this inquiry, we have performed two

experiments over three open source systems,
namely QT, HippoDraw, and KOFFICE. The first
experiment is done with counting the internal
documentations while the other one with skipping
it. The results show that not all internal
documentations should be included or considered.
For instance, for the QT system, the results show
that the internal documentations are granted in a
more consistent and standardized way when
compared to those for HippoDraw and KOFFIC
systems.

Additionally, the results show that for

HippoDraw system, the internal documentations
have an insignificant role in enhancing the results
locating changes.

Therefore, counting or skipping the internal

documentations while staffing any software code
for maintenance issues, is mainly dependent on
how much the internal documentations of any
system are written in a standard and regular way,
whether the it is up to date or not, and if it is

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4895

contains a meaningful and helpful information. As
a future work, we plan to study more systems from
different domains.

Moreover, we plan to build a tool that can

automatically describe and translate any form of
internal documentations (i.e., UML, Logos,
diagrams, and flowcharts) into a standardized
human language form.

A limitation for our research is the number of

taken systems; we plan to conduct more
experiments with different programming language
like Java and Python. In future work, we plan to
compare between the comment’s lengths between
different programming g languages.

REFERENCES

[1] McMillan C. Portfolio: finding relevant

functions and their usage. in 33rd International
Conference on Software Engineering (ICSE).
Waikiki, Honolulu, HI, USA: ACM. 2011
May, pp .111-20.

[2] Dragan N, Collard M L, Maletic J I. Reverse
Engineering Method Stereotypes. in 22nd
IEEE International Conference on Software
Maintenance. 2006 Sept, pp .24-34.

[3] BinkleyD, Lawrie D, Information Retrieval
Applications in Software Development, in
Encyclopedia of Software Engineering: Taylor
& Francis LLC. 2010.

[4] Brooks R, Towards a theory of the
comprehension of computer programs.
International Journal of Man-Machine Studies,
1983 June, 18(6), pp. 543-54.

[5] Dit B, et al, Feature location in source code: a
taxonomy and survey. Journal of Software
Maintenance and Evolution: Research and
Practice, 2011 Jan, 25(1), pp. 53 - 95.

[6] HindleA, German D M. SCQL: A Formal
Model and a Query Language for Source
Control Repositories. in 2nd International
Workshop on Mining Software Repositories
(MSR).. St. Louis, Missouri ACM Press: New
York NY. 2005 J?uly, 30(4), pp .1-5

[7] Poshyvanyk D. Using information retrieval to
support software maintenance tasks. in IEEE
International Conference on Software
Maintenance (ICSM).2009 Sep, pp .453-56

[8] Elshoff JL. Marcotty M, Improving computer
program readability to aid modification.
Commununication of the ACM, 1982 Aug,
25(8), pp. 512-21.

[9] Antoniol G, et al, Recovering traceability links
between code and documentation. IEEE
Transactions on Software Engineering,Oct
2002, 28 (10), pp. 970-83.

[10] Maletic JI, Kagdi H. Expressiveness and
effectiveness of program comprehension:
Thoughts on future research directions. in
Frontiers of Software Maintenance (FoSM).
2008.

[11] Spuida B, The fine Art of Commenting, in
Tech Notes, general Series, S.W. Wrangler,
Editor 2002.

[12] Holmes R, Murphy G C, Using structural
context to recommend source code examples,
in 27th international conference on Software
engineering (ICSE), ACM: St. Louis, MO,
USA. 2005 pp. 117-25.

[13] Haiduc S, Aponte J, Marcus A. Supporting
program comprehension with source code
summarization. in 32nd ACM/IEEE
International Conference on Software
Engineering (ICSE).. Cape Town, South
Africa: ACM.2010, pp .223-26

[14] Hill E,. Pollock L, Vijay-Shanker K.
Improving source code search with natural
language phrasal representations of method
signatures. in 26th IEEE/ACM International
Conference on Automated Software
Engineering.. IEEE Computer Society. 2011,
pp .524-27

[15] MaleticJI. Marcus A. Using latent semantic
analysis to identify similarities in source code
to support program understanding. in 12th
IEEE International Conference on Tools with
Artificial Intelligence (ICTAI) 2000, pp .46-
53.

[16] Maletic JI, Marcus A. Support for Software
Maintenance Using Latent Semantic Analysis.
in 4th Annual IASTED International
Conference on Software Engineering and
Applications (SEA). 2000.

[17] Alhindawi N, Improving Feature Location by
Enhancing Source Code with Stereotypes. in
29th IEEE International Conference on
Software Maintenance (ICSM). Eindhoven,
The Netherlands.2013.

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4896

[18] Maarek YS, Berry D M, Kaiser G E, An
Information Retrieval Approach for
Automatically Constructing Software
Libraries. IEEE Transactions on Software
Engineering, 1991 Aug, 17(8), pp. 800-13.

[19] Cleary B, , An empirical analysis of
information retrieval based concept location
techniques in software comprehension.
Empirical Software Engineering, 2009 Feb,
14(1), pp. 93-30.

[20] Mahmoud A, Niu N. Source code indexing for
automated tracing. in 6th International
Workshop on Traceability in Emerging Forms
of Software Engineering.. Waikiki, Honolulu,
HI, USA: ACM.2011.

[21] Woodfield SN, Dunsmore H E, Shen V Y. The
effect of modularization and comments on
program comprehension. in 5th IEEE
International Conference on Software
Engineering (ICSE).. San Diego, California,
USA: IEEE Press.1981, pp .215-23.

[22] Padioleau Y, Lin T, Yuanyuan Z. Listening to
programmers-Taxonomies and characteristics
of comments in operating system code. in 31st
IEEE International Conference on Software
Engineering (ICSE) 2009 May, pp .331-41.

[23] Khamis N, Witte R, Rilling J. Automatic
quality assessment of source code comments:
the JavadocMiner. in 15th international
conference on Applications of natural language
to information systems. Cardiff, UK: Springer-
Verlag.2010 ,6177 pp .68-79.

[24] SchreckD, Dallmeier V, Zimmermann T, How
documentation evolves over time, in Ninth
international workshop on Principles of
software evolution: in conjunction with the 6th
ESEC/FSE joint meeting, ACM: Dubrovnik,
Croatia. 2007, pp. 4-10.

[25] Tan L, Yuan D, Zhou Y. Hotcomments: how to
make program comments more useful? in 11th
USENIX workshop on Hot topics in operating
systems.. San Diego, CA: USENIX
Association.2007

[26] Howden WE, Comments Analysis and
Programming Errors. IEEE Transition on
Software Engineering, 1990 Jan, 16(1), pp.
72-81.

[27] Deerwester S, Indexing by Latent Semantic
Analysis. Journal of the American Society of
Information Science, 1990, 41(6), pp. 391-07.

[28] Suchithra M, A Survey on Different Web
Service Discovery Techniques, Indian Journal
of Science and Technology, 2015 July, 8 (15),
pp. 1-5.

[29] Alhindawi, Nouh, Obaida M. Al-Hazaimeh,
Rami Malkawi, and Jamal Alsakran. "A Topic
Modeling Based Solution for Confirming
Software Documentation
Quality." INTERNATIONAL JOURNAL OF
ADVANCED COMPUTER SCIENCE AND
APPLICATIONS 7, no. 2 (2016): 200-206.

