
Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4826

AN APPROACH TO IMPROVING THE SCALABILITY OF
PARALLEL HASKELL PROGRAMS

1HWAMOK KIM, 1JOOWON BYUN, 2SUGWOO BYUN, 3GYUN WOO
1,3Dept. of Electrical and Computer Engineering, Pusan National University, Busan 46241, South Korea

2Dept. of Computer Engineering, Kyungsung University, Busan 48434, South Korea
3Smart Control Center of LG Electronics, Busan 46241, South Korea

E-mail: 1,3{hwamok, joowon, woogyun}@pusan.ac.kr, 2swbyun@ks.ac.kr

ABSTRACT

Though the performance of computer hardware is increasing owing to the many-core architectures, the
software counterpart is lack of the proportional throughput. In this situation, functional languages can be
one of the alternatives to promote the performance of parallel programs since those languages have an in-
herent parallelism in evaluating pure expressions without side-effects. Specifically, Haskell is notably
popular in parallel programming because it provides easy-to-use parallel constructs based on monads.
However, the scalability of parallel programs in Haskell tends to fluctuate as the number of cores is getting
increased. The garbage collector is suspected to be the source of this fluctuation because it affects on both
the space and the time for the execution of programs. This paper justifies this conjecture using the specific
tuning tool, namely GC-Tune. We have tuned the behavior of the garbage collector in the executions of
three large-scale parallel programs: the K-means, a maximal independent set, and plagiarism detection pro-
grams. As a result, the scalabilities of the programs have been improved by 38%, 21%, and 7%, respective-
ly; the fluctuation ranges are also narrowed down by 45%, 30%, and 58%, respectively, compared to the
original execution of the programs without any tuning. This result implies that GC-tuning can be an effec-
tive method to promote the scalability of parallel Haskell programs. In results, the execution time of parallel
programs can also be much accurately estimated.

Keywords: Parallel Programming, Haskell, Garbage Collection, GC-Tune, K-means, Maximal Independ-
ent Set, Plagiarism Detection

1. INTRODUCTION

Though the multi-core or many-core proces-
sors are getting popular recently, the software coun-
terpart hardly takes up the technology of the hard-
ware [1]. It is apparent that the parallel program-
ming is mostly appropriate to take the full ad-
vantage of the multi-core, but it is extremely hard to
write parallel programs especially in imperative
languages. Functional languages such as Haskell
are considered as alternatives to parallel program-
ming since their pure functional nature promotes
the implicit parallelism [2].

Despite the many advantages of parallel pro-
gramming, the experiments on typical parallel
Haskell programs indicate that the scalability of the
parallel executions of them is not proportional to
the number of available cores; the speed-up graph
even shows unexpected fluctuations particularly
when the number of cores is getting higher. This
result may be a natural consequence since the paral-

lel Haskell programs are executed on top of the run-
time system supporting the pure functional nature
of the language excluding any side-effects. There-
fore, the run-time system including the garbage
collector is suspected to be the reason of this bad
scalability [3].

This bad scalability can be a significant prob-
lem for real-time applications since the execution
time cannot be predictable for many-core environ-
ment. The response-time predictability is a valuable
criterion especially for real-time applications. Ac-
cording to our experiment, the execution time for
many-core environment can be even worse than that
of the less-core environment. Practically, the bad
scalability voids the advantage of many-core re-
sources in this sense.

This paper proposes a method to improve the
scalability of the executions of parallel Haskell pro-
grams as the number of cores is getting larger. Spe-
cifically, we used the tool called GC-Tune, which is

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4827

a supplementary tool of the Glasgow Haskell Com-
piler (GHC). This tool enables the fine-tuning of the
sizes of several sections of the heap memory, which
is the target of the garbage collection. We per-
formed several experiments on the scalability of the
executions of three programs (a parallel K-means, a
maximal independent set, and a plagiarism detec-
tion programs) as the available number of cores is
increased.

The structure of this paper is as follows. Sec-
tion 2 briefly introduces Haskell, GC-Tune, and
Eval Monad as related work. Section 3 describes
the scalability problem and the method taken to
tackle this problem. Section 4, 5, and 6 describe the
experimental results on the executions of the K-
means, the maximal independent set, and the pla-
giarism detection programs, respectively. Section 6
discusses on the results. Section 7 describe con-
cludes. Finally, Section 8 addresses some future
directions of this research.

2. RELATED WORK

2.1 Features of Haskell

Haskell is a purely functional language in
which the whole program is written as a sequence
of equations much like mathematical declarations
[4, 5]. Since Haskell has no side-effects, the purity
of Haskell expressions guarantees that the function
result is solely determined by the arguments. There-
fore, Haskell expressions have implicit parallelism.
However, we need some impure features to handle
the input and output facilities.

Haskell provides monads to handle the impure
features such as I/O operations with side effects [6].
A monad is a special type to ensure that a set of
operations to be executed sequentially. This implies
that the result of the previous computation can be
handled by the next computation sequentially. Ac-
tually, the monad a class of types including IO
monads for input and output and ST monads for a
storage with states. Further, a new monadic type
can be defined by the programmer as needed.

Haskell also provides lightweight threads.
Many programming languages provide lightweight
threads to increase concurrency. Typical examples
are Haskell, Go, and Erlang [7]. In particular,
Haskell lightweight threads are more suitable for
parallelism because of the small overhead of con-
text switching [8].

2.2 GC-Tuning Tool

The GHC provides a powerful memory tuning
tool called GC-Tune, suggesting the best memory

size for the execution of a program [9]. GHC sup-
ports multiple-stage garbage collectors executed on
the virtual machine, and GC-Tune calculates the
best heap sizes for the executions of a Haskell pro-
gram. GC-Tune even shows the tuning result graph-
ically to reveal the memory consumption tendency.

A typical garbage collecting algorithm adopted
in Haskell is a generational one [10, 11, 12]. The
generational garbage collector manages the heap
memory in multiple sections assigned for different
generations of objects. Also, the sizes of them can
be set using the run-time options: ‘–H’ for the total
size of heap memory and ‘–A’ for that of the young
generations. GC-Tune fine tunes these options to
run the target program to optimize the speed, and
provides the user with the best options.

2.3 Parallelization with the Eval Monad

The Eval monad provides a parallel program-
ming facilities suitable for a shared memory model.
It defines several parallel evaluation strategies, and
these strategies can be applied to function expres-
sions to make parallel operations. The parallelized
expressions change into sparks. The sparks in
Haskell are the computational units that can be exe-
cuted in parallel. The Haskell sparks are much fine-
grained units smaller than lightweight threads as
shown in Fig 1.

Figure	1:	Haskell	spark	conversion	process.	The	fine‐
grained	Haskell	sparks	in	the	spark	pool	are	converted	
into	coarse‐grained	Haskell	lightweight	threads.	

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4828

Haskell	threads	are	under	control	of	the	run‐time	sys‐
tem.

Fig. 1 shows the conversion process until the
sparks are delivered to the CPU. The sparks are
generated by evaluation strategies and delivered to
the spark pool. And then, they are changed into
lightweight threads under the control of the RTS
(run-time system) during execution, or processed
by garbage collection if they do not need to be
evaluated. The lightweight threads generated from
sparks are passed to the OS threads if available, and
executed by the CPU.

3. THE PROBLEM AND THE METHOD

To take a quick grasp of the problem, let us
examine the graph shown in Fig. 2. The graph
shows the speedup of a parallel K-means program
in Haskell. From one to five cores, the speedup is
also scaled up. But above six cores, the speedup is
not observed proportional to the number of cores.
For 31 cores, specifically, the speedup is even
worse than that of five cores.

Figure	2:	The	scalability	problem	found	in	a	parallel	K‐
means	program	written	in	Haskell.	The	boxed	area	

shows	the	fluctuation	of	speed‐up.

The reason for this bad scalability is presumed
to be in the RTS, including the garbage collector, of
the virtual machine since it is not specialized for the
parallel execution of programs [13]. Even though
multiple threads are running, there is a single run-
time system. This implies that the overhead due to
RTS can be a source of this bad scalability especial-
ly for the many-core environment.

In particular, Haskell’s garbage collection may
not suitable for parallel programs [14]. Haskell uses
generational garbage collection as a garbage collec-
tion method. This is based on the hypothesis that
most of the generated objects will die prematurely.
The generated objects are placed in two or more
physically separated areas within the heap memory
and are divided into several generations according
to time or size.

Though idea of the generational garbage col-
lector is good, the control of it in the parallel setting
can be unpredictable. All the objects in the genera-
tional garbage collector are centrally managed. Fur-
ther, the garbage collector is not processed in paral-
lel. Therefore, the overhead during run-time may
greatly affect the throughput of parallel processing.

To justify this presumption, we applied
memory tuning using GC-Tune. Using GC-Tune,
we can reduce the effect of the garbage collector.
Reducing the fluctuation of the speedup, the scala-
bility can be improved hopefully.

Sections 4, 5, and 6 show the results of the ex-
periment. The executional environment for the par-
allel programs is Ubuntu (14.04.1 LTS) on top of
two 16-core CPU (Opteron 6272), 32 cores in total,
with 96GB memory.

The experimental method is as follows. First,
the performance is measured without GC-tuning.
Next, the performance is measured using the largest
possible heap memory. Finally, the performance is
measured with GC-tuning. And the scalability and
the fluctuation range in the speedup graph is meas-
ured for comparison.

4. K-MEANS PERFORMANCE ANALYSIS

4.1 Performance analysis of K-means without

GC-tuning
The program used for the first experiment is a

parallel K-means program in Haskell. The K-means
is a well-known algorithm combining a large set of
randomly given two-dimensional points into several
clusters [15, 16]. Since the clustering can be per-
formed in parallel, K-means is a typical data-
parallel program. In our experiments, 1.2 million
random points are given to generate five clusters.
The result of the first execution without GC-tuning
is shown in Fig. 3 and Table 1 (Without Tuning).

Figure	3:	Run‐time	speedup	of	K‐means	without	tuning.	
The	graph	shows	that	the	speed‐up	is	unstable	when	the	

number	of	cores	is	greater	than	five.

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4829

As noted before, the speedup of the parallel
program is not observable for the cores more than
five as shown in Fig. 3, which implies that there is
no scalability above five. Even worse, the speed-up
is not predictable. For the next step, additional ex-
periments will be performed to validate this pre-
sumption.

4.2 Performance analysis of K-means with

GC-tuning
To estimate the maximum scalability, the max-

imum possible memory is set for the second execu-
tion, the result of which is shown in Fig. 4 and Ta-
ble 1 (Maximum Memory). The size of the maxi-
mum possible heap memory is 268,435,456 bytes,
which can be set using run-time option ‘–H.’ And
the size of memory for the young generation is set
to the half of the maximum size using option ‘–A.’

Figure	4:	Run‐time	speedup	of	K‐means	with	maximum	
possible	memory.	The	fluctuation	of	the	speed‐up	is	
deferred	until	the	number	of	cores	is	ten,	but	it	is	get‐
ting	even	worse	when	the	number	of	cores	is	more	than	

ten.	

Comparing the columns of Table 1 (Without
Tuning and Maximum Memory), the garbage col-
lection time does not differ much. However, it is
confirmed that the runtime scarcely decreases when
the maximum possible memory is set. Fig. 4 shows
that the scalability is improved up to ten cores, but
unexpected fluctuation occurred for the large num-
ber of cores more than ten. The RTS is highly sus-
pected to be the cause of this fluctuation. As a final
experiment, the execution time with fine tuning of
the garbage collection is measured.

Figure	5:	Run‐time	speedup	of	K‐means	without	tuning	
and	with	GC‐tuning.	The	GC‐tuned	execution	shows	
much	smooth	speed‐up	change,	and	the	speed‐up	re‐

mains	stable	until	the	number	of	cores	is	18.

Figure	6:	Run‐time	speedup	of	K‐means	with	maximum	
possible	memory	and	with	GC‐tuning.	The	GC‐tuned	
result	is	more	stable	than	the	maximum	heap	case,	
which	implies	that	the	speed‐up	is	more	predictable.

The third column of Table 1 (With GC-

Tuning) shows the average execution time of ten
executions with the best heap size calculated by
GC-Tune. This result is compared with the previous
results of Table 1 (Without Tuning and Maximum
Memory). As shown Fig. 5 and 6, the fluctuation is
disappeared without losing the scalability.

The scalability of the speedup of the GC-tuned
executions is improved by 38% compared with that
of those without GC-tuning as shown in Fig. 5. The
range of fluctuation of the GC-tuned executions is
compared with that of executions with the maxi-
mum possible heap memory (Fig. 6) resulting that
the range is reduced by 45%.

One notable finding from Fig. 6 is that there is
a speed-up plateau more than 17 cores. In this plat-
eau it seems that the overhead for maintaining the
many-core compensates the performance gain ow-
ing to many-cores.

Even in the plateau section, the fluctuation of
the speedup is much reduced. Though some fluc-
tuations are still found (in 19 and 30 cores), the
fluctuation range is mostly reduced in overall. In
summary, GC-tuning contributes even in the plat-

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4830

eau section, resulting a better predictability for the
execution time of the program.

5. MAXIMAL INDEPENDENT SET ANAL-
YSIS

5.1 Performance analysis of Maximal Inde-

pendent Set without GC-tuning
The program for the second experiment is a

parallel maximal independent set program in
Haskell. In graph theory, an independent set is a set
of non-contiguous nodes. A maximal independent
set is a set that is not a subset of another independ-
ent set. The maximal independent set program finds
all independent sets in parallel [17, 18, 19]. In order
to test this code, we assigned a graph with ten
nodes as an input data. The experimental environ-
ment is the same as test of K-means. The result of
the first execution without GC-tuning is shown in
Fig. 7 and Table 2 (Without Tuning).

Figure	7:	Run‐time	speedup	of	Maximal	Independent	

Set	without	tuning	

As shown in Fig. 7, the speedup of the parallel
program is not observable for the cores more than
ten, which implies that there is no scalability when
the number of cores is above ten. As shown in Ta-
ble. 2 (Without GC-Tuning), garbage collection
time was measured more than K-means program. It
is estimated that the number of objects allocated
and deallocated is larger than that of K-means pro-
gram.

Just as the case in Section 4, the reason for this
bad scalability is presumed to be the overhead due
to the garbage collector. For the next step, addition-
al experiments will be performed to validate this
presumption. Specifically, the garbage collection
will be optimized and the result will be compared.

5.2 Performance Analysis of Maximal Inde-

pendent Set with GC-tuning
To estimate the maximum scalability, the max-

imum possible memory is set for the second execu-
tion. The maximum possible memory is set to be

same to that of the previous experiment. The result
of which is shown in Fig. 8 and Table 2 (Maximum
Memory).

Figure	8:	Run‐time	speedup	of	Maximal	Independent	

Set	with	maximum	possible	memory

Comparing Table 2 (Without Tuning and Max-
imum Memory) shows the difference of the garbage
collection time. This implies that memory tuning
can reduce not only the garbage collection time but
also the execution time. Fig. 8 shows that the scala-
bility is improved up to fifteen cores, but unex-
pected fluctuation occurred for the large number of
cores more than fifteen. As a final experiment, the
execution time with fine tuning of the garbage col-
lection is measured.

Figure	9:	Run‐time	speedup	of	Maximal	Independent	
Set	without	tuning	and	with	GC‐tuning.	The	GC‐tuned	

result	shows	more	speed‐up	over	18	cores.

Figure	10:	Run‐time	speedup	of	Maximal	Independent	
Set	with	maximum	possible	memory	and	with	GC‐

tuning.	When	the	number	of	cores	is	more	than	18,	the	

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4831

GC‐tuned	result	shows	more	speed‐up	than	the	maxi‐
mum	possible	memory	case.

The third column of Table 2 (With GC-

Tuning) shows the average execution time of ten
executions with the best heap size calculated by
GC-Tune. This result is compared with the previous
results of Table 2 (Without Tuning and Maximum
Memory). As shown Fig. 9 and 10, the fluctuation
is also disappeared without losing the scalability.

The scalability of the speedup of the GC-tuned
executions is improved by 21% compared to that of
those without GC-tuning as shown in Fig. 9. The
range of fluctuations of the GC-tuned executions is
compared with that of executions with the maxi-
mum possible heap memory (Fig. 10) resulting that
the fluctuation range is reduced by 45%.

6. PLAGIARISM DETECTION ANALYSIS

6.1 Performance analysis of Plagiarism Detec-

tion without GC-tuning
The program for the third experiment is a par-

allel plagiarism detection program in Haskell,
which was created using DNA-based testing tech-
niques used in SoVAC (software verification and
analysis center). SoVAC treats a sequence of spe-
cial tokens as the program DNA. The program
DNA is generated during program parsing, which is
used to determine whether or not it is plagiarized
[20, 21, 22, 23].

The target programs used for the plagiarism
test are 82 Java codes submitted for an assignment
in the Object-Oriented Programming class held in
2012 at Pusan National University. The experi-
mental environment is the same as test of K-means.
The result of the first execution without GC-tuning
is shown in Fig. 11 and Table 3 (Without Tuning).

Figure	11:	Run‐time	speedup	of	Plagiarism	Detection	
without	tuning.	The	speed‐up	graph	is	most	unpredict‐

able	from	the	three	test	programs.	
	

As shown in Fig. 11, the speedup of the paral-
lel program is not observable for the cores more
than nine, which implies that there is no scalability
when the number of cores is above nine. As shown
in Table. 3 (Without GC-Tuning), the amount of
time spent in garbage collection increases with the
number of cores. Also, the performance fluctuation
is large. The reason for this bad scalability is pre-
sumed to be same as the previous experiments.

6.2 Performance Analysis of Plagiarism Detec-

tion with GC-tuning
To estimate the maximum scalability, the max-

imum possible memory is set for the second execu-
tion. The maximum possible memory is set to be
same to that of the first experiment. The result of
which is shown in Fig. 12 and Table 3 (Maximum
Memory).

Figure	12:	Run‐time	speedup	of	Plagiarism	Detection	
with	maximum	possible	memory.	This	shows	the	similar	
result	to	non‐tuned	case,	though	the	speed‐up	gets	

much	better	than	that.

Comparing the columns of Table 3 (Without
Tuning and Maximum Memory), garbage collec-
tion time and runtime have been reduced signifi-
cantly. Fig. 12 shows that the scalability is im-
proved up to thirteen cores, but unexpected fluctua-
tion occurred for the large number of cores more
than thirteen. As a final experiment, the execution
time with fine tuning of the garbage collection is
measured.

Figure	13:	Run‐time	speedup	of	Plagiarism	Detection	
without	tuning	and	with	GC‐tuning.	The	fluctuation	
range	of	GC‐tuned	graph	is	smoother	than	that	of	non‐

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4832

tuned	one,	though	the	fluctuation	still	occurs	when	the	
number	of	cores	is	over	ten.	

Figure	14:	Run‐time	speedup	of	Plagiarism	Detection	
with	maximum	possible	memory	and	with	GC‐tuning.	
The	fluctuation	range	of	GC‐tuned	graph	is	smoother	

than	that	of	maximum	possible	memory.	

The third column of Table 3 (With GC-
Tuning) shows the average execution time of ten
executions with the best heap size calculated by
GC-Tune. This result is compared with the previous
results of Table 3 (Without Tuning and Maximum
Memory). As shown Fig. 13 and 14, the fluctuation
is disappeared without losing the scalability.

The scalability of the speedup of the GC-tuned
executions is improved by 7% compared with that
of those without GC-tuning as shown in Fig. 13.
The range of fluctuation of the GC-tuned execu-
tions is compared with that of executions with the
maximum possible heap memory (Fig. 14) resulting
that the range is reduced by 58%.

According to the results from Sections 4, 5,
and 6, it was confirmed that the cause the bad
scalability is the RTS, specifically the garbage col-
lector. Thus, using GC-Tune to resize the heap sec-
tion is revealed to be an effective way to improve
the performance of parallel Haskell programs.

7. DISCUSSION

The experimental results in Sections 4, 5, and
6 show that the RTS greatly affects the executional
behavior of parallel Haskell programs. We tried to
find the best heap sizes for the number of cores
involved in the parallel executions, but there seems
no certain rule for determining the heap sizes.
However, the scalability of the parallel executions
can be improved using GC-tune.

The improvement of the scalability depends of
the characteristics of parallel programs. Using GC-
tune, we found that all the parallel programs used in
the experiments (K-means, maximal independent
set, and plagiarism detection programs) showed
some improvements in scalability. However, the

improvement ratios are different depending on the
parallel programs. Specifically, the plagiarism de-
tection program has a relatively low scalability of
7% compared to other parallel programs.

Also, the experimental results show that per-
formance is not proportional to the size of the heap
memory available at the start of the program execu-
tion. The performance of setting the maximum heap
memory was often not as good as the result of GC-
tuning. Therefore, if the programmer wants to in-
crease the parallel program’s scalability, one needs
to set the memory optimized for the core.

Tuning the sizes of heap sections is one way to
improve the performance of parallel Haskell pro-
grams, but the RTS itself eventually should be re-
organized to cope with many-cores to get the most
performance of parallel executions. In the mean-
while, GC-tuning can be an effective way to im-
prove the scalability of parallel Haskell programs.

8. CONCLUSION

The reason of the bad scalability of parallel

Haskell programs is presumed to be due to the run-
time system, particularly the garbage collector.
Haskell’s garbage collector, a generational one,
seems to cause a lot of overhead especially when
the program is executed in parallel, which incurs
unstable behavior in the scalability. With this as-
sumption, this paper presents several experiments
on tuning the garbage collection for the executions
of three parallel programs (the K-means, the maxi-
mal independent set, and the plagiarism detection
programs), resulting the improvements of scalabili-
ties by 38%, 21%, and 7%, respectively. The fluc-
tuation ranges of speed-ups are also observed to be
narrowed down by 45%, 30% and 58% compare to
the executions without tuning.

This result indicates that the run-time system
of Haskell should be adjusted to take the full ad-
vantage of the massively parallel many-core sys-
tems. Before the adjustment, tuning the run-time
system including the garbage collection can be used
and is actually found much effective to promote the
scalability of parallel Haskell programs. The results
of these experiments also implies that the GC-
tuning can be much helpful for estimating the re-
sponse time of parallel programs.

The contributions of this paper can be summa-
rized as follows:

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4833

 This paper showed that the scalability problem
of parallel Haskell programs can be caused by
the generational garbage collector.

 This paper experimentally showed that the
scalability of parallel programs can be much
improved by GC-tuning.

9. FUTURE WORK

Though this paper suggests that the scalability

can be improved by GC-tuning, it does not solved
the scalability problem completely. Since the gar-
bage collector itself is not actually adapted for par-
allel processing, the overall run-time system should
be modified to support the parallel executions of
programs.

Supporting modularized garbage collector can
be one of possible approach. Since the centralized
control can be a source of the unpredictability, the
distributed modular approach can be adopted by the
run-time system especially for the garbage collec-
tor. Modifying the run-time system for many-core
architectures is an important future work.

ACKNOWLEDGEMENT

This work was supported by Institute for In-
formation & communications Technology Promo-
tion (IITP) grant funded by the Korea government
(MSIT) (No.B0101-17-0644, Research on High
Performance and Scalable Manycore Operating
System).

REFRENCES:
[1]1 Y. Kim, S. Kim, “Technology and Trends of H-

igh Performance Processors,” Electronics and
Telecommunications Trends, No. 6, pp.123-
136, 2014

[2]1 J. Kim, S. Byun, K. Kim, J. Jung, K. Koh, S.
Cha and S. Jung, “Technology Trends of
Haskell Parallel Programming in the Manycore
Era,” Electronics and Telecommunications
Trends, No. 29, pp.167-175, 2014.

[3]1 H. Kim, H. An, S. Byun and G. Woo, “An Ap-
proach to Improve the Scalability of Parallel
Haskell Programs,” ICCCA 2016, pp.175-178,
2016.

[4]1 G. Hutton, Programming in Haskell, Cambridg-
e University Press, 2007.

[5]1 S. Marlow, S. P. Jones, and S. Singh. “Runtime
support for multicore Haskell.” ACM SIGPLAN
NOTICES. ACM, 2009.

[6]1 S. L. Peyton Jones, Wadler. P, “Imperative fun-
ctional programming,” Proceedings of the 20th
ACM SIGPLAN SIGACT symposium on Princi-
ples of programming languages. ACM, 1993.

[7]1 J. Armstrong, et al, Concurrent programming i-
n ERLANG, 1993.

[8]1 S Marlow, Parallel and Concurrent Programm-
ing in Haskell, O’Reilly Media, 2013.

[9]1 D. Stewart, ghc-gc-tunes, [Online]. Available:-
http//hackage.haskell.org/package/ghc-gc-tune.
(downloaded 2016. Oct. 13)

[10] S. Marlow, et al. “Parallel generational-copying
garbage collection with a block-structured
heap,” In Proceedings of the 7th international
symposium on Memory management, pp.11-20,
2008.

[11] P. M. Sansom, S. L. Peyton Jones, “Generation-
al garbage collection for Haskell,” In Proceed-
ings of the conference on Functional program-
ming languages and computer architecture,
pp.106-116, 1993.

[12] D. M. Ungar, M. I. Wolczko, Method and a-
pparatus for generational garbage collection of
a heap memory shared by multiple processors,
U.S. Patent No. 6, 2001.

[13] J. MacQueen, “Some methods for classification
and analysis of multivariate observations,” In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, pp.281-
297, 1967.

[14] J. C. Murphy, B. Shivkumar, and L. Ziarek,
“Real-time capabilities in functional lan-
guages,” Declarative Cyber-Physical Systems
(DCPS), CPSWeek Workshop on. IEEE, 2016.

[15] L. Gidra, G. Thomas, J. Sopena and M.
Shapiro, “Assessing the scalability of garbage
collectors on many cores,” Proceedings of the
6th Workshop on Programming Languages and
Operating Systems. ACM, 2011.

[16] K. Krishna, M. N. Murty, “Genetic K-means al-
gorithm,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 29(3),
pp.433-439. 1999.

[17] F, Gavril, “Algorithms for minimum coloring,
maximum clique, minimum covering by
cliques, and maximum independent set of a
chordal graph,” SIAM Journal on Computing,
pp.180-187, 1972.

[18] M. Luby, “A simple parallel algorithm for the
maximal independent set problem,” SIAM
Journal on Computing, pp.1036-1053, 1986.

[19] N. Alon, L. Babai, and A. Itai, “A fast and sim-
ple randomized parallel algorithm for the max-

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4834

imal independent set problem,” Journal of al-
gorithms, pp.567-583, 1986

[20] Y. Kim, J. Cheon, S. Byun and G. Woo, “A Pa-
rallel Performance Comparison of Haskell Us-
ing a Plagiarism Detection Method,” KCC,
pp.1724-1726, 2016.

[21] J. Ji, G. Woo and H. Cho, “A source code linea-
rization technique for detecting plagiarized
programs,” ACM SIGCSE BULLETIN, pp.73-
77, 2007.

[22] Y. Kim, Y. Lee and G. Woo, “A Method for D-
etecting Program Plagiarism Comparing Class
Structure Graphs,” JOURNAL OF THE KOREA
CONTENTS ASSOCIATION, 13(11), pp.37-47.
2013.

[23] J. Ji, G. Woo and H. Cho, “An Adaptive Algor-
ithm for Plagiarism Detection in a Controlled
Program Source Set,” Journal of KISS: Soft-
ware and Applications, 33(12), pp.1090-1102.
2006.

Journal of Theoretical and Applied Information Technology
30th September 2017. Vol.95. No.18

 © 2005 - Ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4835

Table 1: Run-time and speedup of K-means

CORE
Without Tuning Maximum Memory With GC-Tuning

GC Runtime Speedup GC Runtime Speedup GC Runtime Speedup

1 1.67 45.42 1.00 1.56 56.89 1.00 1.58 56.65 1.00

2 2.70 28.96 1.57 2.30 41.29 1.38 2.32 42.64 1.33

3 2.26 22.81 1.99 2.46 31.29 1.82 2.50 30.58 1.85

 ...

10 2.17 17.51 2.59 2.47 14.74 3.86 3.56 17.41 3.25

11 3.67 18.55 2.45 3.33 15.27 3.73 3.91 16.70 3.39

12 5.06 18.72 2.43 4.06 15.39 3.70 3.91 16.35 3.46

13 5.24 16.32 2.78 5.80 17.22 3.30 6.86 16.12 3.51
14 4.76 17.58 2.58 4.09 15.51 3.67 4.01 15.74 3.60

 ...

30 4.89 23.04 1.97 5.39 15.61 3.64 5.70 16.75 3.38

31 5.79 25.37 1.79 6.46 17.17 3.31 5.85 15.45 3.67

32 4.45 22.17 2.05 4.75 14.60 3.90 5.87 15.88 3.57

Table 2: Run-time and speedup of Maximal Independent Set

CORE
Without Tuning Maximum Memory With GC-Tuning

GC Runtime Speedup GC Runtime Speedup GC Runtime Speedup

1 20.02 94.01 1.00 12.71 102.46 1.00 12.95 102.86 1.00

2 17.86 59.76 1.57 10.66 64.51 1.59 11.66 66.69 1.54

3 12.54 42.25 2.22 9.58 45.17 2.27 10.25 48.42 2.12

 ...

10 10.06 23.97 3.92 8.36 24.66 4.15 9.03 26.63 3.86

11 11.01 24.74 3.80 8.75 24.35 4.21 9.26 25.81 3.98

12 11.05 24.33 3.86 8.69 23.59 4.34 9.36 26.10 3.93

13 11.24 24.04 3.91 8.75 23.73 4.32 9.60 25.79 3.99

14 10.97 23.41 4.02 8.84 23.04 4.45 9.81 25.99 3.96

 ...

30 14.79 26.24 3.58 12.55 25.36 4.04 10.7 22.98 4.45

31 15.81 27.56 3.41 12.33 24.94 4.11 11.63 22.94 4.46

32 15.14 26.36 3.57 15.05 27.54 3.72 11.95 22.65 4.52

Table 3: Run-time speedup of Plagiarism Detection

CORE
Without Tuning Maximum Memory With GC-Tuning

GC Runtime Speedup GC Runtime Speedup GC Runtime Speedup

1 1.23 61.92 1.00 1.22 61.85 1.00 1.34 62.08 1.00

2 2.25 33.75 1.83 2.35 33.85 1.83 2.52 34.09 1.82

3 1.95 22.76 2.72 2.00 23.80 2.60 2.12 22.97 2.70

 ...

10 2.44 12.42 4.99 1.26 8.91 6.94 0.84 9.03 6.88

11 2.40 12.43 4.98 1.30 9.06 6.83 1.49 10.28 6.04

12 1.31 11.93 5.19 1.35 8.32 7.43 1.59 10.03 6.19

13 3.27 13.20 4.69 1.36 8.00 7.73 1.62 9.10 6.82

14 2.43 11.04 5.61 1.30 9.23 6.70 1.58 10.48 5.92

 ...

30 7.23 18.41 3.36 1.93 12.38 5.00 1.80 10.26 6.05

31 6.61 15.38 4.03 3.93 13.44 4.60 1.74 10.28 6.04

32 8.83 18.46 3.35 4.79 14.55 4.25 0.94 9.85 6.30

